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PERIODIC POINTS OF EQUIVARIANT MAPS

JERZY JEZIERSKI and WACŁAW MARZANTOWICZ∗

Abstract
We assume that X is a compact connected polyhedron, G is a finite group acting freely on X, and
f : X → X an G-equivariant map. We find formulae for the least number of n−periodic points
in the equivariant homotopy class of f , i.e., infh # Fix(hn) (where h is G-homotopic to f ). As an
application we prove that the set of periodic points of an equivariant map is infinite provided the
action on the rational homology of X is trivial and the Lefschetz number L(f n) does not vanish
for infinitely many indices n commeasurable with the order of G. Moreover, at least linear growth,
in n, of the number of points of period n is shown.

1. Introduction

In the study of the dynamics of a self-map f : X → X the following invariants
of f are considered: the set P n(f ) = Fix(f n) of points of period n and its
cardinality #P n(f ), the set Pn(f ) of n-periodic points, n the minimal period,
and its cardinality #Pn(f ), the set P(f ) = ⋃∞

n=1 P n(f ) of all periodic points
and its cardinality, the set Per(f ) ⊂ N of all minimal periods, finally the rate
of growth of #P n(f ).

It was shown in [19] that if X is a compact manifold, f : X → X a map
and the sequence of Lefschetz numbers of iterations L(f n) is unbounded then
#P(f ) = ∞ provided f is a C1-map. This is not true for continuous maps
in general. Next, in [2] it was proved that in such a case the rate of growth
of #P n(f ) is at least linear which improved the previous results. Recently, in
[10] a sharper constant of growth for #P n(f ) was derived.

On the other hand since N(f n) ≤ #P n(f ), the rate of growth of the se-
quence of Nielsen numbers of iterations gives the required estimate for any
continuous map. But the Nielsen number N(f n) is difficult to compute in gen-
eral (see [15], [16] for detailed expositions). However for continuous maps of
some K(π, 1)-manifolds, N(f n) can be computed due to the Anosov theorem
comparing N(f ) with |L(f )|. This also gives information about #Pn(f ), and
permits us to describe Per(f ) by estimating it by its subset consisting of the
homotopy minimal periods that are determined by the sequence N(f n), which
thus is a homotopy invariant of f (cf. [13], [18] and [15, Chapt. VI]). For
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self-maps of surfaces N(f ) can be derived by the use of a generalized Lef-
schetz number in the sense of Fadell and Husseini which, after an adaption for
iterations, also gives information about the rate of growth of #P n(f ) (cf. [17]).

One purpose of this work is to show that the assumption of smoothness
(C1) on f of [2], [19] can be dropped and replaced with the commutativity of
f with a free homeomorphism g : X → X. The paper is a continuation of the
previous paper [14] where the case of self-maps f : Sd → Sd of the sphere
was studied.

To do it we develop an equivariant Nielsen theory, and an equivariant Nielsen
number, for a mapping f G-equivariant with respect to a free action of a finite
group G. Under the assumption that X is a compact connected polyhedron,
G is a finite group acting freely on X and f : X → X an equivariant map.
We define a non-negative integer NFG

n (f ) (Definition 4.6) and we show that
it satisfies the basic properties of the Nielsen number (Theorem 4.8).

1. NFG
n (f ) is a G-homotopy invariant.

2. NFG
n (f ) ≤ # Fix(hn) for any map h in the G-homotopy class of f .

Our main geometrical result is an equivariant version of the Wecken theorem
for periodic points proved by the first author in [11], [12] (see also [15] for a
simpler proof). Theorem 4.9 states that if X is a compact manifold of dimension
≥ 3 then there is a map h which is G-homotopic to f and

NFG
n (f ) = # Fix(hn).

Next we give some explicit formulae for this invariant under the assumption
that G is abelian. Theorem 5.7 says that NFG

n (f ) grows to infinity if a part of n

commeasurable with the order of G (i.e., powers of these primes which appear
in the decomposition of #G) tends to infinity and all the Nielsen classes are
essential. These formulae are very transparent when G is an abelian p-group
(Theorem 5.8).

As an application, in Section 6 we present a general version of the main
result of [14]. We show that for any G-equivariant map f : X → X of a
finite polyhedron X, or a finite CW-complex, with a free action of a finite
group G (Proposition 6.1, Corollary 6.2, Theorem 6.3) there are infinitely
many minimal periods. Furthermore, as in the C1 case, the number of periodic
points of period n grows at least linearly in n provided the action of G on
homology space H∗(X; Q) is trivial and a condition on sequence {L(f n)}∞1 is
satisfied.

In the last section we consider equivariant maps of products of odd dimen-
sional spheres. We show that an assumption on the spectrum the map implies
infinitely many periodic points.
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2. Nielsen Theory

We recall briefly some facts about Nielsen theory. For the details we refer the
reader to [16].

A few words about the notation. Usually the covering maps are denoted by
p : X̃ → X and we will do so in this section. However in the rest of the paper
we will be given a space X with a free action of a finite group G on X. This
yields a covering X → X̄ = X/G onto the orbit space. We will denote this
covering p : X → X̄.

Let p : X̃ → X be a universal covering of a polyhedron. We denote by

OX := {α : X̃ → X̃ : pα = p}
the group of deck transformations of this covering. This group has a (non-
canonical) bijection with the fundamental group π1X although we will not
use this correspondence in this paper. Let f : X → X be a map and let
lift(f ) = {f̃ : X̃ → X̃ : pf̃ = fp} denote the set of all lifts of f . If we fix
a lift f̃0, then each other lift of f can be uniquely written as αf̃0, α ∈ OX.
Consider the action of OX on the set lift(f ) given by

α ◦ f̃ = αf̃ α−1.

The orbits of this action are called Reidemeister classes and their set is denoted
by R(f ).

On the other hand we consider the fixed point set:

Fix(f ) := {x ∈ X : f (x) = x}.
We define the Nielsen relation on this set as follows. We say that two fixed
points x, y are Nielsen related if there is a path ω : [0, 1] → X satisfying:
ω(0) = x, ω(1) = y and moreover the paths ω and f ω are homotopic rel
{0, 1}. This relation divides Fix(f ) into a finite number of mutually disjoint
classes. A Nielsen class A is called essential if its fixed point index ind(f, A) 
=
0. We denote the set of all Nielsen classes by N (f ). It turns out that, for
any lift f̃ ∈ lift(f ), the set p(Fix(f̃ )) is either a Nielsen class of f or is
the empty set. Each Nielsen class is of the above form. Moreover there is a
natural map j : N (f ) → R(f ) which turns out to be injective (but is not
onto in general). This map is given by the following correspondence: for a
Nielsen class A ⊂ Fix(f ) we define j (A) = [f̃ ] where the lift f̃ ∈ lift(f )

satisfies A = p(Fix(f̃ )). Thus we may identify each Nielsen class with a
Reidemeister class. On the other hand the restriction of f to Fix(f k) is a natural
homeomorphism which induces the self-map of N (f k) which extends to the



periodic points of equivariant maps 227

self-map Rf : R(f k) → R(f k) given by Rf [h] = [h′], where h′ ∈ lift(f k)

is the unique lift making the diagram

X̃ h−−−−−−−→ X̃

↓
f̃

↓
f̃

X̃ h′−−−−−−−→ X̃

commutative (for a fixed lift f̃ of f ). Since (Rf )k = id, we get an action of the
group Zk on R(f k). The orbits of this action are called orbits of Reidemeister
classes and their set is denoted by OR(f k). Now we consider the natural map

lift(f ) 
 f̃ �→ f̃ k ∈ lift(f k).

This induces the map ik1 : R(f ) → R(f k). Similarly we define ikl :
R(f l) → R(f k) for l | k.

Definition 2.1. A Reidemeister class A ∈ R(f k) is called essential if it
corresponds to an essential Nielsen class.

A Reidemeister class A ∈ R(f k) is called reducible if A = ikl(B) for
B ∈ R(f l), where l | k, l < k. An orbit of Reidemeister classes is called
reducible if one (hence all) of its elements is a reducible Reidemeister class.

The following theorem gives an estimate of the number of k-periodic points.

Theorem 2.2. For any self-map f : X → X of a finite polyhedron and a
fixed natural number k ∈ N

# Fix(f k) ≥
∑
r|k

(#IEOR(f r)) · r

where IEOR(f r) denotes the set of irreducible (I ) essential (E ) orbits (O )

of Reidemeister (R) classes of the map f r .

Proof. The inequality follows from:

(1) each essential Reidemeister class (considered as the Nielsen class) is
non-empty,

(2) irreducible Reidemeister classes are mutually disjoint,

(3) each irreducible essential orbit of Reidemeister classes in IEOR(f r)

contains at least r periodic points (of period r).

In [16] Boju Jiang introduced a number NFk(f ), which we will call the
Nielsen-Jiang full periodic number. It is a homotopy invariant and is a lower
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bound for the cardinality of Fix(f k):

NFk(f ) ≤ # Fix(f k)

of the self-map f : X → X of a finite polyhedron. We sketch the definition.
We consider the disjoint union

⋃
l|k OR(f l). For an orbit A ∈ ⋃

l|k OR(f l)

we will denote by l(A) the unique divisor of k satisfying A ∈ OR(f l(A)).
Let S ⊂ ⋃

l|k OR(f l) satisfy: each essential orbit in
⋃

l|k OR(f l) can be
reduced to an orbit (which may be not essential) in S. Then we consider the
sums

∑
A∈S l(A). The number NFk(f ) is defined as the least such sum.

Theorem 2.3 ([15, Thm. 5.3.1, p. 225]). If M is a manifold of dimension
at least three then each map f : M → M is homotopic to a map g satisfying

Fix(gk) = NFk(f ).

In general, for a self-map of a compact polyhedron, (see [15, form. (5.1.20),
p. 197])

(1)
∑
r|k

(#IEOR(f r)) · r ≤ NFk(f ).

Definition 2.4. We say that a self-map f : X → X is essentially reducible
if when an essential Nielsen class A reduces to a class B then B is also essential.

Proposition 2.5 ([15, Lemma 5.1.2, p. 198]). If a self-map of a polyhedron
f : X → X is essentially reducible, then

∑
r|k

(#IEOR(f r)) · r = NFk(f ).

3. Periodic points of a self-map of the quotient space

In this section we consider a simply-connected polyhedron X with a free action
of a finite group G. Let p : X → X̄ be the natural projection on the quotient,
i.e., orbit space X̄ = X/G. Notice that p is a universal covering. We will give
an estimate for the number of periodic points of an equivariant map f . Since
p(Fix(f k)) ⊂ Fix(f̄ k), we first consider the periodic points of the map f̄ .

We recall some results from [14]. Since it is a statement about a property
of a covering map we use the notation of the theory of coverings.
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Lemma 3.1 ([14, Lemma 4.1]). Consider the commutative diagram

Ỹ
f̃−−−−−−−→ Ỹ

↓
p

↓
p

Y
f−−−−−−−→ Y

where p : Ỹ → Y is a finite regular covering of a finite polyhedron Y . Let OY

be the group of covering transformations of this covering.
Then

ind(f̃ ) = r · ind(f ; p(F ix(f̃ )))

where r = #{α ∈ OY ; f̃ α = αf̃ }. In particular ind(f ; p(Fix(f̃ ))) 
= 0 if and
only if L(f̃ ) = ind(f̃ ) 
= 0.

Note that in Lemma 3.1 we do not need to assume that the covering p is
universal.

Remark 3.2. Thanks to this lemma, if all Lefschetz numbers L(αf ) (where
f is an equivariant map and α is a deck transformation) are nonzero, then all
Reidemeister classes of f̄ are essential. In particular this holds for equivariant
self-maps of a sphere if the absolute value of their degree is greater equal 2.

Lemma 3.3. Let a finite group G act freely on a compact polyhedron X. Let
p : X → X̄ = X/G be the natural projection on the quotient space and let
f : X → X be an equivariant map and f̄ : X̄ → X̄ be the induced map. Then

R(f̄ ) = set of conjugacy classes in G.

Proof. Since f is a lift of f̄ , each other lift is uniquely expressed as αf ,
where α ∈ G. Now

[αf ] = [βf ] ∈ R(f̄ ) ⇐⇒ ∃γ∈G βf = γ · α · f · γ −1

⇐⇒ ∃γ∈G βf = γ · α · γ −1 · f (since f is equivariant)

⇐⇒ α, β represent the same conjugacy class in G.

Lemma 3.4. Under the above assumptions, the map Rf̄ : R(f̄ k) → R(f̄ k)

is the identity. Therefore each orbit of Reidemeister classes in R(f̄ k) contains
exactly one element.
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Proof. Consider a class [αf k] ∈ R(f̄ k). Then Rf̄ [αf k] = [βf k] where
β makes the diagram

X
αf k−−−−−−−−→ X

↓
f

↓
f

X̄
βf k−−−−−−−−→ X̄

commutative. Since f commutes with α, we may put β = α.

Lemma 3.5. If G is abelian then OR(f̄ k) = R(f̄ k) = G.

Corollary 3.6 ([14, Lemma 4.5]). If f̄ : M → M (M = Sn/Zm) is a
map induced by an equivariant map f : Sn → Sn, then we have

# Fix(f̄ k) ≥
∑
r|k

(#IR(f̄ r )) · r.

4. Definition and properties of the lower bound NFG
n (f )

We consider a finite polyhedron X with a free action of a finite group G on
X and an equivariant map f : X → X. We look for a lower bound of the
cardinality of Fix(gn) for all g in the G-homotopy class of f .

Let pX : X → X̄ = X/G denote the canonical projection on the quotient
space. Since the action is free, pX is a covering corresponding to the normal
subgroup pX#(π1X) ⊂ π1X̄. This gives rise to the map f̄ and the commutative
diagram

X
f−−−−−−−→ X

↓
pX

↓
pX

X̄
f̄−−−−−−−→ X̄

We will identify G = {α : X → X; pXα = pX}. To minimize the number
of k−periodic points of f we will first minimize the corresponding set of f̄ .
Then we will find out which fibres p−1

X (x̄) (for x̄ ∈ Fix(f̄ k)) contain fixed
points of f k .

Let p̃ : X̃ → X be a universal covering. Then the composition pXp̃ : X̃ →
X̄ is also a universal covering. This gives the natural injection η : lift(f ) →
lift(f̄ ) by the formula η(f̃ ) = f̃ , i.e., a lift of f is considered as the lift of f̄ .
The injection η induces the map η : R(f ) → R(f̄ ).

Lemma 4.1.
pX(Fix(f )) =

⋃
[f̃ ]∈im η

pXp̃(Fix(f̃ ))
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is the mutually disjoint union, where in the summation we take one represent-
ative from each class [f̃ ] ∈ im η ⊂ R(f̄ ).

Proof. Since p̃ : X̃ → X is a universal covering, Fix(f ) =⋃
[f̃ ]∈R(f ) p̃(Fix(f̃ )) is the mutually disjoint union. This implies

pX(Fix(f )) =
⋃

[f̃ ]∈R(f )

pX(p̃(Fix(f̃ ))).

We notice that

– Each f̃ ∈ lift(f ) regarded as the lift of f̄ represents a class [f̃ ] ∈ im η ⊂
R(f̄ ).

– If f̃ , f̃ ′ ∈ lift(f ) then pX(p̃(Fix(f̃ ))) ∩ pX(p̃(Fix(f̃ ′))) 
= ∅ ⇐⇒ [f̃ ] =
[f̃ ′] ∈ R(f̄ ).

This gives the disjoint union

pX(Fix(f )) =
⋃

[f̃ ]∈im η

pX(p̃(Fix(f̃ ))).

Lemma 4.2. Under the above notation, let us consider a point x̄0 ∈ Fix(f̄ l)

for some l|k. Let α ∈ G satisfy x̄0 ∈ pX(Fix(αf l)). Then the following condi-
tions are equivalent

(1) p−1
X (x̄0) ∩ Fix(f k) 
= ∅,

(2) p−1
X (x̄0) ⊂ Fix(f k),

(3) αk/l = 1 ∈ G.

Proof. (1) ⇐⇒ (2), because p−1
X (x̄0) is an orbit of the action of G and f k

is equivariant.
(2) ⇒ (3). We assume that f k(x) = x for all x ∈ p−1

X (x̄0). Moreover f l(x) =
α−1(x) for an x ∈ p−1

X (x̄0). This gives f k(x) = f l(f l(· · · (f l(x)) · · ·)) =
α−k/l(x) and α−k/l(x) = x implies αk/l = 1 ∈ G.

(3) ⇒ (1) Let x ∈ p−1
X (x̄0) satisfy αf l(x) = x. This implies f l(x) = α−1x,

hence f k(x) = f l(f l(· · · (f l(x)) · · ·)) = α−k/l(x) = x

Corollary 4.3. Let x̄0 ∈ p(Fix(αf l)) ⊂ Fix(f̄ l). Then x̄0 ∈ p(Fix(f k))

⇐⇒ [x̄0] ∈ im η ⊂ OR(f̄ k) ⇐⇒ αk/l = 1 ∈ G.

Proof. By assumption x̄0 = pX(x0) where x0 ∈ X satisfies αf l(x0) = x0.
If moreover x̄0 ∈ p(Fix(f k)) then, by Lemma 4.2, p−1

X (x̄0) ⊂ Fix(f k), hence
in particular x0 ∈ Fix(f k).
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Now x̄0 = pX(x0) ∈ pX(Fix(f k)) gives [x̄0] ∈ im η ⊂ OR(f̄ k). On the
other hand the equalities αf l(x0) = x0 and f k(x0) = x0 are equivalent to
αk/l = 1.

Definition 4.4. Let A ∈ R(hk) , B ∈ R(hl) be Reidemeister classes. We
say that A precedes B, and we write A � B, if k|l and ilk(A) = B.

Let A ∈ OR(hk) , B ∈ OR(hl) be Reidemeister classes. We say that A

precedes B, and we write A � B, if a class in A precedes a class in B.

Definition 4.5. Let h : Y → Y be a self-map of a finite connected
polyhedron. Consider the disjoint union

⋃
k|n OR(hk). We fix subsets A , B ⊂⋃

k|n OR(hk). We say that A precedes B if for each essential B ∈ B there
is an element A ∈ A preceding B (A � B). We will also say that A is a
preceding system.

For a subset A ⊂ ⋃
k|n OR(hk) we will consider the sum

(2)
∑
A∈A

l(A)

where A ∈ OR(hl(A)).
We will apply Definition 4.5 to the map f̄ : X̄ → X̄ where B will be equal

to
i−1
n∗ [im η]

def=
⋃
k|n

{A ∈ OR(f̄ k) : ink(A) ∈ im η ⊂ OR(f̄ n)}

Now we are in a position to define the Nielsen-type number of an equivariant
map f (with respect to a free action) as

Definition 4.6.

NFG
n (f ) =

(
min

A

∑
A∈A

l(A)

)
· #G

where A runs over the family of all subsets of
⋃

k|n OR(f̄ k) preceding
i−1
n∗ [im η].

Remark 4.7. A preceding system realizing the minimum, in the above
definition, will be called minimal preceding system.

The main geometric property of NFG
n (f ) is the following.

Theorem 4.8.
(1) NFG

n (f ) is a G-homotopy invariant.

(2) NFG
n (f ) ≤ # Fix(gn) for any map g in the G-homotopy class of f .
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Proof. (1) is obvious, since the sets of Reidemeister classes and the pre-
ceding relation are G-homotopy invariants.

Now we prove (2). By virtue of (1) it is enough to prove (2) for g = f . If
Fix(f n) is infinite then the inequality is obvious. We assume that Fix(f n) is
finite. We consider the set of all orbits of points in p(Fix(f n)). Let σ be an
orbit of length lσ . It determines an element Aσ ∈ OR(f̄ lσ ).

We will show that the set of orbits of Reidemeister classes

A = {Aσ ; σ is an orbit in p(Fix(f n))} ⊂
⋃
l|n

OR(f̄ l)

precedes i−1
n∗ [im η]

Let A ∈ i−1
n∗ [im η] be essential, i.e., A ∈ OR(f̄ k), for some k|n, is essential

and ink(A) ∈ im η. This implies A ⊂ p(Fix(f n)) (Corollary 4.3). Since A is
essential, it contains an orbit of points a of length l|k. Now a ⊂ p(Fix(f n)),
hence it defines Aa ∈ A , Aa ∈ OR(f l). It is evident that Aa precedes A,
since l|k and both Aa and A contain the orbit a. This proves that A precedes
i−1
n∗ [im η].

On the other hand we notice that p−1
X (σ ) contains exactly lσ · #G points

and all these points belong to p(Fix(f n)) (Lemma 4.2).
Now a sum in the definition of NFG

n (f ) equals
(∑

σ

l(Aσ )

)
· #G =

(∑
σ

lσ

)
· #G =

∑
σ

#p−1
X (σ ) = # Fix(f n)

where σ runs through the family of orbits of points in pX(Fix(f n)). Now
NFG

n (f ) as minimum of (such sums) ×#G must be ≤ # Fix(f n).

Theorem 4.9 (Wecken Theorem for periodic points of G-equivariant maps).
Let X be a manifold of dimension at least 3 with a free action of a finite group
G. Then every G-equivariant map f is G-equivariantly homotopic to a map
g so that

# Fix(gk) = NFG
k (f ).

Proof. We already know (Corollary 4.3) that each G-equivariant map f :
X → X induces f̄ : X̄ → X̄ and

# Fix(f n) = (
#{x̄ ∈ Fix(f̄ n); in,l(x̄)[x̄] ∈ im η}) · #G

Splitting the set Fix(f̄ n) into orbits we get

(3) # Fix(f n) =
(∑

a

l(a)

)
· #G
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where a runs through the set of all orbits in Fix(f̄ n) satisfying in,l([ā])[a] ⊂
im η.

On the other hand by definition

(4) NFG
n (f ) =

(
min

A

∑
A∈A

l(A)

)
· #G

where A runs through the family of all subsets in
⋃

l|k OR(f l) preceding
i−1
n∗ [im η] ⊂ ⋃

l|k OR(f l).
The theorem will be proved if for a preceding set A (from the definition of

NFG
n (f )) realizing the least sum, we can deform f̄ to a map ḡ satisfying:

each orbit of points a of length l in Fix(ḡn) satisfying in,l([a]) ∈ im η

represents a class Aa ∈ OR(ḡl) ∩ A and no other periodic point rep-
resents Aa .

This gives an injection from the set of orbits of points in Fix(ḡn) to A which
sends an orbit (of points) of length l to an irreducible class Aa ∈ OR(ḡl).

Now we compare (3) (forf = g) with 4 and we get the inequality
∑

a l(a) ≤∑
A∈A l(A). Since the reverse inequality is obvious (Theorem 4.8), we get

# Fix(gn) =
(∑

a

l(a)

)
· #G =

(∑
A∈A

l(A)

)
· #G = NFG

n (f ).

The required deformation ḡ is obtained from the Wecken theorem for Peri-
odic Points [12]. In fact a map, of a manifold of dimension at least 3, realizing
the least number of periodic points has the above property for all periodic
points (see Lemma 5.3 and the first sentence of the proof of Theorem 3.1 in
[11]).

Now we consider the case when f̄ is essentially reducible. Then one can
check that (see [15])

(1) The family A = (⋃
l|n IEOR(f̄ l)

) ∩ i−1
n∗ [im η] precedes the set of all

essential orbits in i−1
n∗ [im η].

(2) A is contained in any family of subsets of
⋃

l|n OR(f̄ l) preceding the
set of all essential orbits in i−1

n∗ [im η].

Thus we get

Corollary 4.10. Let X be a finite polyhedron with a free action of a finite
group G and f : X → X be a G-equivariant self-map of X such that the
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induced map f̄ is essentially reducible (for l|k). Then

NFG
k (f ) =

(∑
l|k

(
IEOR(f̄ l) ∩ i−1

n∗ [im η]
) · l

)
· (#G).

Remark 4.11. We would like to emphasize that our equivariant full Nielsen-
Jiang periodic number is constructed in a different way than an equivariant
Nielsen fixed point number introduced in [5] by E. Fadell and P. Wong and
developed later by the second author (see [21], and [6] for more references).
Also our invariant is based on a different geometric approach than that intro-
duced and used by D. Ferrario [7], [8]. Futhermore it is based on a different
approach than that studied by J. Weber [20] for an action of a discrete group.
Our Nielsen-Jiang periodic number is defined only for a free action of fi-
nite group, but on the other hand it is relatively easy to derive and provides
the periodic Wecken theorem for an equivariant map. Moreover to estimate
this Nielsen-Jiang periodic number, i.e., to verify the essentiality of the Re-
idemeister classes of iterations of f , we use the classical Lefschetz numbers
of these iterations which are easier to calculate.

5. Explicit Formulae

Now we will derive formulae for NFG
k (f ). We consider a simply-connected

polyhedron X, a free action of a finite abelian group G on X and an equivariant
self-map f : X → X. Again let f̄ : X̄ → X̄ denote the induced map of the
quotient space. We assume that all the Reidemeister classes are essential.

Since π1X̄ is finite and abelian it admits a decomposition

G = π1X̄ = (Zp
a11
1

⊕ · · · ⊕ Z
p

a1u1
1

) ⊕ · · · ⊕ (Zp
ar1
r

⊕ · · · ⊕ Zp
arur
r

)

where p1, . . . , pr are distinct primes. We recall that in our case the Reide-
meister action is trivial, R(f̄ l) = π1X for all l, and each orbit of Reidemeister
classes consists of one element, hence OR(f̄ k) = R(f̄ k) = G. In particular
this implies IEOR(f k) = IR(f k).

Remark 5.1. Under the above assumptions

NFG
n (f ) =

(∑
k|n

#(IR(f k) ∩ i−1
nk (0)) · k

)
· m

=
(∑

k|n
#(irreducible elements in i−1

nk (0)) · k

)
· m.
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We fix isomorphisms G = R(f̄ k) = OR(f̄ k) by the correspondence

G 
 [α] → [α · f k] ∈ lift(f̄ k).

Now ikl(x) = k/l · x, since ikl[αf ] = [(αf )k/l] = [αk/l · f k/l].
We need a notion we have already used in [14].

Definition 5.2. We say that a natural number k eventually divides m if
there exists c ∈ N such that k | mc. In other words k eventually divides
m = p

a1
1 . . . par

r , ai > 0 if k = p
b1
1 . . . pbr

r , for some bi ≥ 0.

We start with a general remark that in our case it is enough to find formulae
for NFG

n (f ) for n eventually dividing m. For given m, k ∈ N let k′ be the
greatest divisor of k which eventually divides m (it can be equal to 1!).

Lemma 5.3. Under the assumptions of this section NFG
k (f ) = NFG

k′ (f )

where k′ denotes the greatest divisor of k eventually dividing m.

Proof. We show that if k does not eventually divide m then all elements in
OR(f k) = R(f k) = G are reducible. In fact then there exists a prime number
p|k which does not divide m. Now the map ik,k/p :

⊕
Z
p

aij
s

→ ⊕
Z
p

aij
s

= G,
which is given by ik,k/p[xij ] = [p · xij ], is an isomorphism of each summand,
since p is relatively prime to any ps . Now

NFG
n (f ) =

(∑
k|n

#(irreducible elements in i−1
nk (0)) · k

)
· m

=
(∑

k|n′
#(irreducible elements in i−1

nk (0)) · k

)
· m

=
(∑

k|n′
#(irreducible elements in i−1

n′k (0)) · k

)
· m

= NFG
n′ (f )

since ink = inn′ in′k and inn′ is a bijection.

From now on we will assume that k (hence also any divisor l of k) eventually
divides m. We denote k = p

σ1
1 · · · pσr

r , l = p
τ1
1 · · · pτr

r where σi ≥ τi ≥ 0. We
also denote xij = p

cij

i · x ′
ij where x ′

ij is an integer not divisible by pi : for
xij = 0 we put cij = ∞.

Lemma 5.4. An element [xij ] ∈ R(f̄ l) = G, (where xij ∈ Z
aij

pi
)

(1) represents an irreducible class ⇐⇒ (l = 1) or ( for each i there exists
a j = 1, . . . , ui such that pi does not divide xij ).
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(2) satisfies ikl[xij ] = [0] ⇐⇒ p
aij

i divides k/l · xij for all i, j .

Corollary 5.5. [xij ] ∈ R(f̄ l) is a class which is irreducible and ikl[xij ] =
[0] ⇐⇒

(1) (l = 1) or ( for each i there exists a j such that cij = 0),

(2) cij ≥ aij − σi + τi for all i, j .

In the next lemma we give the formulae of NFG
k (f ) in some special cases.

Since in the formula of NFG
k (f ) the factor m is constant, in the computations

below we will concentrate on the remaining factor.

Lemma 5.6. Let G = Zm act freely on a simply-connected polyhedron,
where m = pa , p is a prime, and let k = pσ for some integer σ . Then

NFG
k (f ) = k · m.

Proof. Let us fix l|k. We have to determine how many classes [x] ∈ R(f l)

satisfy the two conditions of Corollary 5.5.
First we consider the case σ ≥ a, i.e., m|k.
If l = 1 then each element in x ∈ R(f l) is irreducible and moreover m|k

implies that ik1[x] = [kx] = [0] ∈ Zm.
Let 1 
= l|k. Now [x] ∈ R(f l) is reducible iff p|x, hence there are exactly

pσ−1 reducible, hence pa − pa−1 irreducible elements in R(f l). On the other
hand we notice that for each irreducible element [x] ∈ R(f l), p does not
divide x = pcx ′, hence c = 0. Now the class [x] ∈ R(f l) satisfies ikl[x] =
[0] ⇐⇒ 0 ≥ a − σ + τ ⇐⇒ τ ≤ σ − a.

Now the summation in the formula in Remark 5.1 is reduced to l = pτ for
τ ≤ σ − a and the sum becomes

pa +
σ−a∑
τ=1

(pa − pa−1)pτ = pa + (pa − pa−1)

σ−a∑
τ=1

pτ

= pa + (pa − pa−1)
pσ−a+1 − p

p − 1

= pa + pa(pσ−a − 1) = pσ = k.

Now we consider the case σ ≤ a, i.e., k|m.
Let l = 1. Then all classes are irreducible. Moreover again denoting x =

pcx ′ (where p does not divide x ′) we have

ik1[x] = [kx] = [pσ · pc · x ′] = [pσ+c · x ′] ∈ R(f k) = Zpa .
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Now ik1[x] = [0] ∈ Zpa ⇐⇒ pa|pσ+c ⇐⇒ a ≤ σ + c ⇐⇒ c ≥ a − σ . The
last means that x = pa−σ · x ′′ and there are exactly pσ such elements in Zpa .

Now we consider 1 
= l|k and we denote l = pτ . A class [x] ∈ R(f l) is
irreducible ⇐⇒ p does not divide x. Thus for an irreducible [x]

ikl[x] = [pσ/pτ · x] = [pσ−τ · x] 
= [0] ∈ Zpa ,

since σ − τ < σ ≤ a. Thus for l 
= 1 there is no contribution to the sum, so
we get ∑

l|k

∑
x

l =
∑
l=1

∑
x

l = pσ · 1 = k.

In both cases NFn(f ) = (
∑

) · m = km.

Theorem 5.7. Let G = π1X = Zp
a1
1

⊕ · · · ⊕ Zp
ar
r

, where p1, . . . , pr

denote distinct primes, be a cyclic group of order m = p
a1
1 . . . par

r . Then for k

eventually dividing m

NFG
k (f ) =

{
km if m|k,

gcd(m, k) · m otherwise.

Proof. We again denote m = p
a1
1 . . . par

r , k = p
σ1
1 . . . pσr

r , l = p
τ1
1 . . . pτr

r

Then, by Corollary 5.5, an element x = [x1, . . . , xr ] ∈ Zp
a1
1

⊕ · · · ⊕ Zp
ar
r

=
R(f l)

(1) is irreducible ⇐⇒ (l = 1) or (for each i = 1, . . . , r , τi 
= 0 implies pi

does not divide xi),

(2) ikl[x] = [0] ∈ R(f k) ⇐⇒ τi − ci ≤ σi − ai .

We consider two cases. First we assume that m|k, i.e., σi ≥ ai for all i =
1, . . . , r . How many irreducible elements belong to ker(ikl)?

If l = 1 then all the elements in R(f 1) = G are irreducible and because
m|k they belong to ker(ik1). It gives the contribution #R(f 1) · 1 = m.

Now l 
= 1 and we consider an element [x1, . . . , xr ] ∈ IR(f l) ∩ ker(ikl).
Suppose that τi 
= 0. Now (1) implies ci = 0 and then (2) becomes τi ≤ σi −ai

for all i = 1, . . . , r . Now suppose that τi = 0. Then (1) and (2) hold (since
σi ≥ ai by the assumption), hence there are no restriction on xi . Summing up
we get:

#(IR(f l) ∩ ker(ikl)) = m

(
1 − 1

pi1

)
. . .

(
1 − 1

pis

)

where (i ∈ {i1, . . . , is} iff τi 
= 0) and (τi ≤ σi − ai for i ∈ {i1, . . . , is}.
Otherwise #(IR(f l) ∩ ker(ikl)) = 0).
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Let us notice that (1), implies IR(f 1) = G and for l = pτ > 1,

#IR(f l) = m

(
1 − 1

pi1

)
. . .

(
1 − 1

pis

)

where τi 
= 0 iff i ∈ {i1, . . . , is}.
Now we split the sum as

∑
l|k

∑
x

l =
∑

0

+
∑

1

+ · · · +
∑

r

where in
∑

s the summation runs through the set {l = p
τi1
i1

. . . p
τis

is
; τij 
= 0}

(numbers divisible by exactly s prime divisors of k).
Then

∑
0 = m while for s ≥ 1

∑
s

=
∑

i1,...,is

(σi1 −ai1∑
τi1 =1

· · ·
σis −ais∑
τis =1

m ·
(

1 − 1

pi1

)
. . .

(
1 − 1

pis

)
p

τi1
i1

. . . p
τis

is

)

= m
∑

i1,...,is

(σi1 −ai1∑
τi1 =1

(
1 − 1

pi1

)
p

τi1
i1

. . .

σis −ais∑
τis =1

(
1 − 1

pis

)
p

τis

is

)

= m
∑

i1,...,is

(
1 − 1

pi1

)
p

σi1 −ai1 +1
i1

− pi1

pi1 − 1
. . .

(
1 − 1

pis

)
p

σis −ais +1
is

− pis

pis − 1

= m
∑

i1,...,is

(p
σi1 −ai1
i1

− 1) . . . (p
σis −ais

is
− 1)

and thus

∑
=

∑
0

+
∑

1

+ · · · +
∑

r

= m ·
∑

I⊂{1,...,r}

(∏
i∈I

(p
σi−ai

i − 1)

)

= m
(
1 + (p

σ1−a1
1 − 1)

)
. . .

(
1 + (pσr−ar

r − 1)
)

= mp
σ1−a1
1 . . . pσr−ar

r = p
σ1
1 . . . pσr

r = k.

Now we consider the case when m does not divide k, i.e., ai ≥ σi for an
i = 1, . . . , r . We will show that #(R(f 1) ∩ i−1

n1 (0)) = gcd(k, m) and all the
classes in i−1

nl (0) are reducible for l 
= 1. This will give the formula.
We may assume that ai > σi for i = 1, . . . , s (for an 1 ≤ s ≤ r) and

ai ≤ σi for i = s + 1, . . . , r .
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Let l = 1. Then all the classes in R(f 1) are irreducible. We write [x] =
[pc1

1 x ′
1, . . . , p

cr
r x ′

r ] where pi does not divide x ′
i . Then

ik1[x] = [pσ1+c1
1 x ′′

1 , . . . , pσr+cr

r x ′′
r ]

where pi does not divide x ′′
i . Now ik1[x] = [0] ∈ R(f k) ⇐⇒ p

ai

i |pσi+ci

i ⇐⇒
ci ≥ ai − σi . Now for i = 1, . . . , s we get p

ai−σi

i |xi and we have exactly
p

ai

i /p
ai−σi

i = p
σi

i such elements in R(f k).
On the other hand for i = s+1, . . . , r we have ai −σi ≤ 0 hence the inequal-

ity is satisfied for each xi . This implies that #i−1
k1 [0] = p

σ1
1 . . . pσs

s p
as+1
s+1 . . . par

r =

r

i=1p
min(σ1,ai )
i .

Now we consider the case l 
= 1, l|k. We will show that then there is no
irreducible class in i−1

kl [0]. In fact a class [x] ∈ R(f l) is irreducible iff pi does
not divide xi for all i = 1, . . . , r . Now for an irreducible class

ikl[x] = [pσ1/pτ1 · x1, . . . , p
σr /pτr · xr ] = [0] ∈ Zp

a1
1

⊕ · · · ⊕ Zp
ar
r

= R(f l)

⇐⇒ pai |pσi−τi ⇐⇒ ai ≤ σi − τi . But this is impossible for i = 1, . . . , s.
Thus the sum reduces to∑

=
∑

0

= p
σ1
1 . . . pσs

s p
as+1
s+1 . . . par

r = gcd(k, m).

In contrast to the nice formula in the previous theorem, if in a decomposition

G = π1X̄ = (Zp
a11
1

⊕ · · · ⊕ Z
p

a1u1
1

) ⊕ · · · ⊕ (Zp
ar1
r

⊕ · · · ⊕ Zp
arur
r

)

we have uj ≥ 2 then the formula for NFG
n (f ) becomes more complex.

Theorem 5.8. Let G = π1X = Zpa ⊕ · · · ⊕ Zpa (u summands) where p

denotes a prime. Then for k = pσ where σ ≥ a ,

NFG
pσ (f ) =

(
pau + (pau − p(a−1)u) · pσ−a+1 − p

p − 1

)
· pau.

Proof. We consider [x] ∈ R(f pτ

) for τ = 0, . . . , σ . We write xj = pcj x ′
j

where p does not divide x ′
j . Then by Corollary 5.5

– [x] is irreducible ⇐⇒ l = 1 or cj = 0 for a j = 1, . . . , u

– ipσ ,pτ [x] = 0 ⇐⇒ cj ≥ σ − a + τ for all j = 1, . . . , u.

Let us notice that two above conditions imply 0 ≥ σ −a +τ hence σ −a ≥ τ .
Thus the contribution to the sum can be nonzero only for 0 ≤ τ ≤ σ − a.
Moreover the last inequality implies ipσ ,pτ [x] = 0 for all [x] ∈ R(f pτ

). Now

{[x] ∈ IR(f pτ

) ; ipσ ,pτ [x] = 0} = IR(f pτ

)
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hence

NFG
pσ (f ) =

σ−a∑
τ=0

#IR(f pτ

) · pτ .

For τ = 0 all the classes are irreducible, hence #IR(f 1) = (pa)u = pau.
Let τ = 1, . . . , σ . If [x] ∈ R(f pτ

) is irreducible then cj = 0 for some
j = 1, . . . , u. There are exactly pau − p(a−1)u such elements, which implies
#IR(f pτ

) = pau − p(a−1)u. Finally we get

NFG
pσ (f ) =

(σ−a∑
τ=0

#IR(f pτ

) · pτ

)
· pau

=
(

pau +
σ−a∑
τ=1

(pau − p(a−1)u)pτ

)
· pau

=
(

pau + (pau − p(a−1)u) · pσ−a+1 − p

p − 1

)
· pau.

6. Periodic points of equivariant maps

In the previous section we assumed, for the simplicity of the theory, that all the
Reidemeister classes were essential. Now we will demonstrate, on the example
G = Zp, that some formulae are available without this assumption.

Let X be a simply-connected polyhedron with a free action of the group Zp

(p is a prime). Let f : X → X be an equivariant map. We assume that the
action of π1X̄ on H∗(X, Q) is trivial. Then, for a fixed natural number k, all
elements in OR(f̄ k) = R(f̄ k) = Zp are either all essential or all inessential.

We will derive formulae for NF
Zp

pσ (f ).

We recall that R(f̄ k) = Zp and ipσ ,pτ [x] = [pσ−τ · x]. This implies that:

(1) all the classes in OR(f̄ 1) = R(f̄ 1) = Zp are irreducible while for
σ ≥ 1,

(2) [0] ∈ R(f̄ pσ

) is reducible and the remaining p − 1 classes in R(f̄ pσ

)

are irreducible.

Proposition 6.1. Under the above assumptions for every σ ≥ 1 we have

NF
Zp

pσ (f ) = p +
∑

τ

(pτ+2 − pτ+1)

where the summation runs over the set {τ ∈ Z; 0 ≤ τ ≤ σ − 1, L(f pτ

) 
= 0}
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Proof. It follows from the above considerations that for σ > τ

IEOR(f pτ

) ∩ i−1
pσ ,pτ [0] =

⎧⎪⎨
⎪⎩

0 for L(f pτ

) = 0,

p for (σ > τ = 0) and L(f 1) 
= 0,

p − 1 for (σ ≥ τ ≥ 1) and L(f 1) 
= 0.

First we consider the case L(f 1) 
= 0. We will show that then the family

A =
⋃

τ |σ τ<σ

IEOR(f pτ

)

is (the unique) minimal preceding system (see Remark 4.7) for

B =
⋃
τ |σ

OR(f pτ

) ∩ i−1
pσ ,∗[0].

First we notice that B = ⋃
τ |σ,τ<σ OR(f pτ

), since ipσ ,pτ = 0 for σ < τ and
ipσ ,pσ = id. Now each preceding system of B must contain A .

It remains to show that each essential class B ∈ B reduces to A . This is
obvious if B is irreducible. On the other hand each reducible class reduces to
R(f 1) ⊂ A , since L(f 1) 
= 0 implies that all classes in R(f 1) are essential.

Now

NF
Zp

pσ (f pσ

) =
(σ−1∑

τ=0

#IEOR(f pτ

) · pτ

)
· p

=
(

p +
∑

1≤τ≤σ−1;L(f pτ
)
=0

(p − 1) · pτ

)
· p

=
(

1 +
∑

0≤τ≤σ−1;L(f pτ
)
=0

(pτ+1 − pτ )

)
· p

= p +
∑

0≤τ≤σ−1;L(f pτ
)
=0

(pτ+2 − pτ+1).

Now we assume that L(f 1) = 0. If moreover all L(f pτ

) = 0 then all
involving classes are inessential and NFG(f pσ

) = 0 as the sum is taken over
the empty set. Hence we assume that L(f pτ

) 
= 0 for a τ . Then following the
above we get for σ > τ

IEOR(f pτ

) ∩ i−1
pσ ,pτ [0] =

{
0 for L(f pτ

) = 0,

p − 1 for L(f pτ

) 
= 0.



periodic points of equivariant maps 243

Moreover A = ⋃
τ |σ τ<σ IEOR(f pτ

) ∪ ∗ (where ∗ is an (any) element in

R(f 1)) is a minimal preceding system for B = ⋃
τ |σ OR(f pτ

) ∩ i−1
pσ ,∗[0].

This implies

NFG(f pσ

) =
((σ−1∑

τ=0

#IEOR(f pτ

) · pτ

)
+ 1

)
· p

=
(( ∑

0≤τ≤σ−1;L(f pτ
)
=0

(p − 1) · pτ

)
+ 1

)
· p

= p +
∑

0≤τ≤σ−1;L(f pτ
)
=0

(pτ+2 − pτ+1).

Corollary 6.2. Let X be a simply-connected polyhedron with a free action
of the group Zp (p is a prime). Let f : X → X be an equivariant map. We
assume that the action of Zp = π1X̄ on H∗(X, Q) is trivial.

(1) If there are infinitely many σ ≥ 0 satisfying L(f pσ

) 
= 0 then

lim sup
# Fix(f n)

n
≥ p − 1.

(2) If L(f pσ

) 
= 0 for all σ ≥ 0 then

lim sup
# Fix(f n)

n
≥ p.

Proof. Let L(f pσ

) 
= 0. Since all the summands (brackets) in Theorem 6.1
are nonnegative we get the inequality:

NF
Zp

pσ+1(f ) = p +
∑

τ

(pτ+2 − pτ+1) ≥ pσ+2 − pσ+1.

Now if the set {σ ∈ N; L(f pσ

) 
= 0} is infinite then

lim sup
n

# Fix(f n)

n
≥ lim sup

n

NF
Zp

n (f )

n
≥ lim sup

σ

NF
Zp

pσ+1(f )

pσ+1

≥ lim sup
σ

pσ+2 − pσ+1

pσ+1
= p − 1

where σ runs through the (infinite) set {σ ∈ N ; L(f pσ

) 
= 0}.
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Now we assume that L(f pσ

) 
= 0 for all σ ≥ 0. Then

NF
Zp

pσ (f ) = p +
∑

0≤τ≤σ−1

(pτ+2 − pτ+1) = pσ+1

hence

lim sup
n

# Fix(f n)

n
≥ lim sup

σ

NF
Zp

pσ (f )

pσ
= lim sup

σ

pσ+1

pσ
= p.

In the next theorem we provide a condition which needs to be verified for
only one iteration of a given map.

Theorem 6.3. Let X be a simply-connected finite polyhedron with a free
action of a finite group G and f : X → X be a G-equivariant map. Assume
that the action of G on H∗(X; Q) is trivial.

If there exist a prime p dividing the order #G and there is an a ∈ N such
that

L(f pa

) 
∼= 0 mod (pa+1)

then f has infinitely many periodic points and

lim sup
# Fix(f n)

n
≥ p.

Proof. First of all observe that we can restrict the action to a cyclic sub-
group Zp ⊂ G. It is also free action, Zp acts trivially on the homology groups
and f is Zp-equivariant.

We show that the hypothesis (2) of Corollary 6.2 is satisfied. By the Dold
congruences (see [15][Chapter III] for a purely algebraic proof), we have
L(f pa

) ∼= L(f pa+1
) mod (pa+1) for any a ≥ 0. From that it follows that

L(f pa+1
) = L(f pa

) + k1p
a+1 
∼= 0 mod (pa+1). Next L(f pa+2

) = L(f pa+1
) +

k2p
a+2 = L(f pa

) + k1p
a+1 + k2p

a+2 
∼= 0 mod (pa+1). Continuing this argu-
ment we get L(f pa+i

) 
∼= 0 mod (pa+i ) for every i ≥ 0, which shows that
the condition (2) of Corollary 6.2 is satisfied for σ ≥ a.

Remark 6.4. Note that for a free action of a finite group G on a polyhedron
X and a G-equivariant self-map f : X → X we have L(f ) ∼= 0 mod (#G)

which can be proved by the use of the homomorphism induced on chains and
the Hopf lemma. It follows that in our assumption L(f pa

) 
∼= 0 mod (pa+1)

the case a = 0 is excluded.

Remark 6.5. Observe also that in the assumptions of Corollary 6.2 and
Theorem 6.3 we do not require that the sequence L(f n) is unbounded as was



periodic points of equivariant maps 245

assumed in [2] and [19]. On the other hand the assumption of Corollary 6.2
and Theorem 6.3 is obviously satisfied if |L(f n)| n→∞−−−→ ∞.

7. Applications

In this section we present a few cases in which our results can be applied. We
would like to emphasize that they are only particular examples which could
be discussed in a more general form but it would be beyond the main scope of
the work.

The case when X = Sn is the sphere with a free action of a finite group G

was discussed and completely described in [14]. It is worth emphasizing that
then (see [14] for more details):

a) For any finite group G, free action and an equivariant map f : Sn →
Sn the quotient map f̄ : Sn/G → Sn/G is essentially reducible if
| deg(f )| > 1.

b) For any finite group free action and an equivariant map f : Sn →
Sn, all its iterations f k and compositions f k g, g ∈ G are essential if
| deg(f )| > 1 (we do not need the assumption that the induced action
on homology spaces is trivial).

c) If a finite abelian group G acts free on Sn then it is cyclic as follows
from the Milnor theorem.

Consequently, for a free action of G = Zm on Sn and an equivariant map
f : Sn → Sn with | deg(f )| > 1 we have NFG

k (f ) = k′ ·m, thus # Fix(f k) ≥
k′ · m.

Let us next consider the product of spheres

X = Sd1 × Sd2 × · · · × Sdr

By the Künneth formula the cohomology ring H ∗(X; Q) is an algebra over
Q with generators γi ∈ Hdi (X; Q), γ 2

i = 0, each of which corresponds to
the factor Sdi . Moreover if we assume that all the di are odd then X is the
cohomology rational exterior power, i.e., for the elements xi := p∗

i (yi) the
algebra H ∗(X; Q) is isomorphic to the exterior algebra

∧
Q(x1, . . . , xr), where

pi : X → Sdi is the projection and yi ∈ Hdi (Sdi ; Q) ≡ Q is a generator
The fixed points of self-maps of cohomology exterior powers have been

studied by Duan [4], then by Graff [9] (cf. also [15], Chapt. 3.4 for details).
The main result is the following property [4]: there exists an integral matrix
Af = ⊕d

l=1Af,l , d = dim X, such that for every n ∈ N

(5) L(f n) = det(I − Af,n)
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The matrix Af is equal to the linear map induced by H ∗(f ) on the quotient
space A∗(X) := H ∗(X; Q)/D∗(X), where D∗(X) is the subspace of decom-
posable elements of the algebra H ∗(X; Q). By the definition it is a rational
matrix but is not difficult to show that Af is an integral matrix (cf. [4]).

In the case of X = Sd1 × Sd2 × · · · × Sdr the coefficients ai,j of the mat-
rix Af,l , are given by the formula expressing the image of each generator γi

corresponding to Sdi , di = l:

Hl(f )(γi) =
∑
dj =l

ai,j γj .

Note also that in this case the dimension of A∗(X), called the rank of the
exterior rational power, is equal to r .

Let λ1, λ2, . . . , λr be all eigenvalues of Af .
We are in a position to formulate a theorem which extends the main result

of [14].

Theorem 7.1. Let a finite group G acts freely on the space X = Sd1 ×
Sd2 × · · · × Sdr , di ≥ 3 are odd. Let f : X → X be an equivariant map and
Af the integral matrix associated with H ∗(f ).

Suppose that there exists a prime p | |G| such that the spectrum of Af

contains no root of unity of order pτ , τ ≥ 1.
Then f has infinitely many periodic points. Moreover we have the estimate

lim sup
# Fix(f n)

n
≥ p.

Proof. If we assumed moreover that the action of π1X̄ on H ∗X are trivial
then the theorem would follow from Corollary 6.2, (ii). However this assump-
tion was used only to guarantee that all Reidemeister classes of f̄ pσ

, for all
n ∈ N, are trivial. Since the last statement is equivalent to L(gf pσ

) 
= 0 (for
all n ∈ N, g ∈ G), it remains to prove this directly.

First note that for the computation of the Lefschetz number we can use
cohomology with complex coefficients H ∗(X; C) = H ∗(X; Q) ⊗ C. Next,
since f ng = gf n, H ∗(g)H ∗(f n) = H ∗(f n)H ∗(g), and consequently H ∗(g)

preserves the generalized eigenspaces of H ∗(f n) and so does H ∗(f n) with
the generalized eigenspaces of H ∗(g). By the same argument, we have the
same property for the linear maps of A∗(X) ⊗ C. This shows that the matrix
Agf n = Af n Ag = An

f A(g) has eigenvalues of the form λn
i μ, where λi , 1 ≤

i ≤ r is an eigenvalue of Af , and μ an eigenvalue of Ag . But all eigenvalues of
H ∗(g), thus of Ag , are roots of unity of order p. For a given μj = exp

( 2πıj

p

)
,
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0 ≤ j ≤ p − 1, let λi1 , . . . λirj
be all eigenvalues of Af corresponding to the

μj .
From the formula (5) we have

L(gf n) = det(I − An
f A(g)) =

p−1∏
j=0

rj∏
1

(1 − λn
ij

μj ).

It is enough to show that for every σ (or for σ sufficiently large) and n = pσ

we have L(gf n) 
= 0. Now the above product is equal to 0 if and only if at
least one of its factors (1 − λ

pσ

i μj ) is zero.
We will show that the last is impossible. In fact λ

pσ

i μj = 1 and μ
p

j = 1
imply

1 = (λ
pσ

i μj )
p = λ

pσ+1

i μ
p

j = λ
pσ+1

i

contradicting the assumption that λi is not a root of unity of order being a
power of p.

This proves the statement of Theorem 7.1.

Remark 7.2. In the above theorem we did not need to assume that the
action of G on H ∗(X; Q) is trivial.

Remark 7.3. Note that in Theorem 7.1 we do not assume that the sequence
L(f n) is unbounded! If r = 1, X = Sd , d-odd, then Af = deg(f ) ∈ Z and our
assumption reads that deg(f ) 
= 1 if p is odd, or deg(f ) 
= −1 if p = 2. The
case deg(f ) = 0 is excluded, since deg f ∼= 1 mod (p) for an equivariant
map of a sphere due to a Zp version of the Borsuk-Ulam theorem (see [14]
for more details). Consequently for r = 1 the assumption of Theorem 7.1 is
equivalent to deg(f ) /∈ {−1, 0, 1}, but the latter is exactly the assumption of
the main theorem of [14].

Remark 7.4. For some recent results and the literature on actions of finite
groups on the space X = (Sd)r we refer the reader to [1].

Remark 7.5. Note that the statement of Theorem 7.1 holds for an equivari-
ant map f of any simply-connected space X which is rational exterior power
and which admits a free action of a finite group G.
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