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COMPLETELY BOUNDED POLYNOMIALS
BETWEEN OPERATOR SPACES

SEÁN DINEEN and CRISTINA RADU∗

Abstract
In this article we introduce the concept of a completely bounded polynomial between operator
spaces, prove some basic properties and determine the operator structure of the space of diagonal
polynomials on the more important operator Hilbert spaces.

1. Operator Spaces

Two important areas within functional analysis are Banach space theory and
the theory of C ∗ algebras. In Banach space theory the isomorphic approach has
always maintained it’s importance while in C ∗ algebra theory there is only an
isometric approach. In the last few decades a new theory, intermediate between
the above two, Operator Space Theory, has emerged and come of age in recent
years with the publication of books by Effros and Ruan [2], Paulsen [5] and
Pisier [6]. This theory of Banach spaces is turned into an essentially isometric
theory by building into the definition the isometric realisation of the Banach
space as a subset of a C ∗ algebra.

Guided by the Banach space theory we see that there are a number of dif-
ferent approaches to defining polynomial mappings between operator spaces,
e.g. tensor products and duality, multilinear mappings, etc. We use here dif-
ferentiation, a mapping P : X → Y is a polynomial of degree m if and only if
for each v ∈ X the mapping

x ∈ X → DvP (x) := lim
t∈C→0

P(x + tv) − P(x)

t
∈ Y

is a polynomial of degree m − 1.
Polynomials of degree greater than 1 are non-linear and the successful

linearisation of polynomial mappings between Banach spaces has led to a rich
theory of polynomial and holomorphic mappings between Banach spaces [1].
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In considering polynomials between operator spaces we encounter two sources
of non-linearity, that arising from the nature of polynomials, as mentioned
above, and in addition the non-linearity due to the matrix norms of operator
spaces (see Definition 3 below). This double dose of non-linearity considerably
complicated our endeavours and rendered certain proofs, which one might
expect from the Banach space theory to be straightforward, non-trivial. The
nature of these proofs and the examples given in Section 3, however, have
convinced us that the theory of completely bounded (CB) polynomials between
operator spaces contains challenging problems and should yield interesting and
elegant results.

We now recall the basic concepts from operator space theory. All vector
spaces are over the complex numbers and if n is a positive integer we let Mn(V )

denote the set of all n × n matrices with entries from the vector space V . If
T : V → W is a linear mapping between vector spaces we let Tn : Mn(V ) →
Mn(W) denote the induced map Tn([xij ]1≤i,j≤n) := [T (xij )]1≤i,j≤n.

If X and Y are Banach spaces we let L (X, Y ) denote the space of all
continuous linear mappings from X to Y and if T ∈ L (X, Y ) let ‖T ‖ :=
sup{‖T (x)‖ : ‖x‖ ≤ 1}. We let L (X, C) = X∗, L (X, X) = B(X) and H

will always denote a Hilbert space. If Hn is an n-dimensional Hilbert space
then B(Hn) = Mn(C) =: Mn is always assumed to be endowed with the
operator norm ‖·‖Mn

.

Definition 1.1. An operator space is a triple (X, i, B(H )) where X is a
normed linear space and i : X �→ B(H ) is an isometric embedding. If X is
isometric as a normed linear space to a Hilbert space we call (X, i, B(H )) an
operator Hilbert space.

It is convenient to sometimes write X in place of (X, i, B(H )). As a Banach
space may be embedded in the space of bounded linear operators on a Hilbert
space in many different ways the same Banach space may appear as the Banach
space part of many different operator spaces. There are, however, certain nat-
ural operator space structures associated with a given operator space and we
refer to these as canonical. Unless stated otherwise one may assume that we are
using these structures. For example, if Y is a closed subspace of X, iY : Y → X

is the canonical embedding, and (X, i, B(H)) is an operator space then we
call (Y, i ◦ iY , B(H )) the canonical operator space structure on Y inherited
from X.

If H is a Hilbert space and n is a positive integer we endow H n with a
Hilbert space structure by letting

〈
(xj )

n
j=1, (yj )

n
j=1

〉
:=

n∑
j=1

〈xj , yj 〉
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denote the inner product and define a natural embedding

ϕn : Mn(B(H )) → B(H n)

by letting [
ϕn

(
[Ti,j ]1≤i,j≤n

)]
(xj )

n
j=1 :=

[ n∑
j=1

Ti,j xj

]n

i=1

.

If (X, i, B(H )) is a operator space and n is a positive integer we refer to
(Mn(X), ϕn ◦ in, B(H n)) as the canonical operator space structure on Mn(X)

inherited from X. Note that this defines a norm ‖·‖Mn(X) on Mn(X). If Y is an
operator subspace of X, that is if Y inherits its operator structure from X, then
the norm and operator structure on Mn(Y ) are induced by those on Mn(X).

Definition 1.2. If (X, i, B(H )) and (Y, j, B(K )) are operator spaces
then the linear mapping u : X → Y is completely bounded if ‖u‖cb :=
supn ‖un‖ < ∞. We let CB(X, Y ), endowed with the norm ‖·‖cb, denote the
Banach space of all completely bounded mappings from X to Y . A linear
bijection u between operator spaces is called a complete isometry if ‖u‖cb =
‖u−1‖cb = 1.

If (X, i, B(H )) is an operator space and i(X) generates a commutative
C ∗ subalgebra of B(H )) we say that the operator space structure is minimal
and write Xmin in place of (X, i, B(H )) (see [2], Proposition 3.3.1 or [6],
Proposition 1.10). Given a Banach space X there exists a unique minimal
operator space of the form (X, i, B(H )), it suffices to use the mapping i : X →
C (BX′ , σ (X′, X)), [i(x)](ϕ) = ϕ(x), where ‖i(x)‖ = ‖x‖ = max{|ϕ(x)| :
ϕ ∈ X′, ‖ϕ‖ ≤ 1} and C denotes continuous complex valued functions.

The maximal operator space associated with the Banach space X is char-
acterised as the unique operator space Xmax such that for any operator space
Y we have isometrically CB(Xmax, Y ) = B(X, Y ) (see [2] p. 48, [5] or [6]
p. 71).

Definition 1.3. The pair (V , (‖·‖n)
∞
n=1), where V is a vector space and

for each n, (Mn(V ), ‖·‖n) is a Banach space, is called an L∞ matrix normed
space if the following hold: for all x ∈ Mn(V ), a, b ∈ Mn

(1) ‖a · x · b‖ ≤ ‖a‖Mn
· ‖x‖n · ‖b‖Mn

for all positive integers we have for all x ∈ Mn(V ), y ∈ Mm(V )

(2) ‖x ⊕ y‖n+m = max(‖x‖n, ‖y‖m)

where x ⊕ y is the block diagonal element of Mn+m(V ) with x and y on the
diagonal.
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Ruan’s theorem [2], [6] establishes a correspondence between operator
spaces and L∞-matrix normed spaces.

Theorem 1.4 (Ruan). If (X, i, B(H )) is an operator space then (X,

(‖·‖Mn(X))
∞
n=1) is an L∞-matrix normed space.

Conversely, if (V , (‖·‖n)
∞
n=1) is an L∞-matrix normed space then there

exists a unique isometric embedding i of X := M1(V ) into B(H ) such that,
modulo obvious identifications, for all n the norm induced on Mn(X) by the
operator space (X, i, B(H )) coincides with ‖·‖n.

If X and Y are operator spaces then we identify algebraically Mn(CB(X, Y ))

and CB(X, Mn(Y )). It is easy to check that the norms on CB(X, Mn(Y )) satisfy
(1) and (2) and hence, by Ruan’s theorem, define the canonical operator space
structure on CB(X, Y ). If Y = C this defines an operator space structure on
X∗. One dimensional spaces admit a unique operator space structure and X∗
and CB(X) := CB(X, C) are isometric as Banach spaces.

Let X := (X, i, B(H )) and Y := (Y, j, B(K )) denote operator spaces and
let H ⊗2 K denote the Hilbert tensor product of H and K . We embed X⊗Y in
B(H ⊗2 K ) by letting (x ⊗y)(a⊗b) = x(a)⊗y(b) and we call the resulting
tensor product X ⊗min Y the minimal operator space tensor product1 of X and
Y . We denote the completed tensor product by X ⊗min Y and denote the norm
by ‖ · ‖X⊗minY . The norm ⊗min is a cross norm, that is if x ∈ X and y ∈ Y then
‖x ⊗ y‖X⊗minY = ‖x‖·‖y‖ and X ⊗min Mn = Mn(X) for any operator space
X and any positive integer n. The minimal tensor product corresponds to the
minimal tensor product in C ∗-algebra theory and to the injective or ε tensor
product in Banach space theory. The minimal tensor product is commutative
or symmetric, associative and injective, that is it respects subspaces. If K is a
compact Hausdorff topological space then

Mn(C (K)) = C (K, Mn) = C (K) ⊗̂ε Mn = C (K) ⊗min Mn

as Banach spaces, operator spaces or C ∗-algebras.
If X is an operator space then, by ([2], p. 139 or [6], p. 40), the natural

embedding

(3) θ1,X∗,Y : X∗ ⊗min Y → CB(X, Y )

given by [θ1,X∗,Y (x∗ ⊗ y)](x) = x∗(x)y, for all x∗ ∈ X∗, y ∈ Y and x ∈ X,
and linearity is a complete isometric embedding which is surjective if either
X or Y is finite dimensional.

1 The notation
∨⊗ and ‖·‖∨ are also used in place of ⊗min and ‖·‖ respectively and ⊗min is also

called the injective operator tensor product and the spatial operator tensor product.
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Associativity of
⊗

min implies that

m+1⊗
min

X :=
( m⊗

min

X

)
⊗min X =

( i⊗
min

X

)
⊗min

( j⊗
X

)

for any operator space X whenever i + j = m + 1.
If H is a separable2 Hilbert space with basis (ei)

∞
i=1 then each T ∈ B(H )

can be identified with the infinite matrix (〈T ei, ej 〉)1≤i,j<∞. The set of all
T ∈ B(H ) with zero entries except in the first row (respectively column) can
be identified with L (H , C) (respectively L (C, H )) and the Hilbert operator
spaces Hr := R := (R, i, B(H )) (respectively Hc := C := (C, i, B(H ))),
where i is the canonical embedding of R and C into B(H ) are called the row
and column operator spaces respectively. We have completely isometrically
R∗ = C, and C∗ = R.

Pisier [6] has shown that for any cardinal number I there exists a unique, up
to complete isometry, operator Hilbert space OHI isometric to l2(I ) and which
is such that the canonical identification l2(I ) � l2(I )∗ induces a complete
isometry from OHI to OH∗

I . If cardinality is not an issue we write OH in place
of OHI .

Let X be an operator space and let (ei)
n
i=1 denote an orthonormal subset of

OH. If (xi)
n
i=1 ⊂ X then, by [6] p. 146,

(4)

∥∥∥∥
n∑

i=1

xi ⊗ ei

∥∥∥∥
X⊗minOH

=
∥∥∥∥

n∑
i=1

xi ⊗ xi

∥∥∥∥1/2

X⊗minX

.

Given Hilbert spaces H and K , we have ([2], p. 163) the complete isometry

Hr ⊗min Kr = (H ⊗2 K )r .

2. Polynomial Mappings between Banach spaces

If X and Y are Banach spaces and m is a positive integer we let P(mX, Y )

denote the space of continuous Y -valued m-homogeneous polynomials on X.
Endowed with the supremum norm over the unit ball of X, ‖·‖, this space is a
Banach space.

If P ∈ P(mX, Y ) and their exist bounded sequences (φj )
∞
j=1 ⊂ X∗ and

(yj )
∞
j=1 ⊂ Y such that P = ∑∞

j=1 φm
j · yj and

∑∞
j=1 ‖φj‖m · ‖yj‖ < ∞ then

we say that P is nuclear. The nuclear norm on PN(mX, Y ), the space of all

2 We confine ourselves to finite and separable Hilbert spaces purely for convenience.
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nuclear m-homogeneous polynomials from X to Y , ‖·‖N , is defined as follows:

‖P ‖N := inf

{ ∞∑
j=1

‖ φj‖m · ‖yj‖ : P =
∞∑

n=1

φm
j · yj .

}
.

Let αm : P(m+1X, Y ) → L (X, P(mX, Y )), αm(P ) = P where

[P(x)](y) := ∨
P (x, y, y, . . . , y) = ∨

P (x, ym)

and
∨
P : Em+1 → F is the symmetric (m + 1)-linear map associated with P . It

is easily verified that

Im(αm) = {
T ∈ L (X, P(mX, Y )) : [T (x1)]

∨(x2, . . . , xm+1)

= [T (xσ(1))]
∨(xσ(2), . . . , xσ(m+1)), all σ ∈ Sm+1

}
where Sm+1 is the set of all permutations of the first m + 1 natural numbers.

If (ej )
∞
j=1 is a unit vector basis for the Banach space X and Y is a Banach

space, then we call P : X → Y an m-homogeneous diagonal polynomial with
respect to (ej )

∞
j=1 if there exist a sequence in Y , (yj )

∞
j=1 such that

P

( ∞∑
j=1

xj ej

)
=

∞∑
j=1

xm
j yj

for all
∑∞

j=1 xj ej ∈ X and

lim
n→∞ sup

{∥∥∥∥P

( ∞∑
j=n

xj ej

)∥∥∥∥ :

∥∥∥∥
∞∑

j=1

xj ej

∥∥∥∥ ≤ 1

}
→ 0

as n → ∞. This means in particular that ‖yj‖ = ‖P(ej )‖ → 0 as j →
∞. As the basis is generally fixed we use the term diagonal polynomial and
let Pd(

mX, Y ) denote the space of all continuous m-homogenous diagonal
polynomials from X to Y .

3. Completely Bounded Polynomials

We now define inductively the completely bounded polynomials between op-
erator spaces and show they can be endowed naturally with an operator space
structure. If X and Y are operator spaces let

Pcb(
1X, Y ) = CB(X, Y )
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as operator spaces. Now suppose that we have defined, as an operator space,
Pcb(

mX, Y ) where m is a positive integer. This implies that CB(X, Pcb(
mX, Y ))

also has a canonical operator space structure and allows us to make the fol-
lowing definition.

Definition 3.1. Let

Pcb(
m+1X, Y ) := {

P ∈ P(m+1X, Y ) : P ∈ CB(X, Pcb(
mX, Y ))

}
.

In light of earlier remarks we note that

[mP(y)](x) = m
∨
P(xm−1, y) = DyP (x)

for all x, y ∈ X. We let ‖·‖• denote the norm on Pcb(
mX, Y ) and let ‖·‖cb denote

the norm on CB(X, Pcb(
mX, Y )), that is ‖·‖cb is the completely bounded norm

of completely bounded linear mappings from X into Pcb(
mX, Y ).

Lemma 3.2. If X and Y are operator spaces and m and n are positive
integers then Mn(Pcb(

mX, Y )) = Pcb(
mX, Mn(Y )) as operator spaces.

Proof. Since we may identify Mn(CB(X, Y )) and CB(X, Mn(Y )) for any
operator spaces X and Y (see [2], p. 45) the result is true when m = 1. Suppose
the result holds for m. By induction, the m = 1 case and injectivity of ⊗min

we obtain the sequence of complete isometric embeddings:

Mn(Pcb(
m+1X, Y )) = Mn ⊗min Pcb(

m+1X, Y )

→ Mn ⊗min CB(X, Pcb(
mX, Y ))

= Mn(CB(X, Pcb(
mX, Y )))

= CB(X, Mn(Pcb(
mX, Y )))

= CB(X, Pcb(
mX, Mn(Y ))).

The characterisation of αm in the previous section shows that the image of
Mn(Pcb(

m+1X, Y )) coincides with Pcb(
m+1X, Mn(Y )). This completes the

proof.

Let ‖·‖Mm
n (X,Y ) denote the norm on L (Mn(X), Pcb(

mX, Mn(Y ))) for posit-
ive integers m and n. The above identifications mean that we have

(5) ‖P ‖• = ‖P ‖cb = sup
n

‖P n‖Mm
n (X,Y )

for all P ∈ Pcb(
m+1X, Y ).
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Proposition 3.3. Let X, Y be operator spaces and suppose Y is complete.
For every positive integer m, (Pcb(

mX, Y ), ‖·‖•) is a Banach space and ‖P ‖ ≤
‖P ‖• for all P ∈ Pcb(

mX, Y ), that is the natural embedding

P ∈ Pcb(
mX, Y ) �→ P ∈ P(mX, Y )

is a continuous contraction.

Proof. By construction Pcb(
mX, Y ) ⊂ P(mX, Y ) for all m. We prove the

remaining results by induction. The case m = 1 follows from Definition 2
since CB(X, Y ) is complete.

We suppose the result is true for m. If P ∈ Pcb(
m+1X, Y ) then

P ∈ CB(X, Pcb(
mX, Y )) ⊂ L (X, Pcb(

mX, Y ))

and using the induction hypothesis

‖P ‖• = ‖P ‖cb ≥ ‖P ‖L (X,Pcb(mX,Y ))

= sup
x∈X,‖x‖≤1

‖P(x)‖Pcb(mX,Y )

≥ sup
x∈X,‖x‖≤1

‖P(x)‖P(mX,Y )

= sup
x,y∈X,‖x‖≤1,‖y‖≤1

‖ ∨
P(x, ym)‖

≥ sup
x∈X,‖x‖≤1

‖ ∨
P(x, xm)‖ = ‖P ‖.

Since Pcb(
mX, Y ) is complete by our induction hypothesis, it follows that

CB(E, Pcb(
mX, Y )) is also complete. By (5) and the polarisation formula

([1],p. 9) {
P : P ∈ Pcb(

m+1X, Y )
}

is a closed subspace of CB(E, Pcb(
mX, Y )). Hence (Pcb(

m+1X, Y ), ‖·‖•) is
complete. This completes the proof.

Using the fact that

(6) ‖ϕ‖ = ‖ϕ‖cb = ‖ϕ‖•

for all ϕ ∈ X∗ we see that if P := ϕm+1·y ∈ P(m+1X, Y ) where ϕ ∈ X∗, y ∈ Y

and m is a positive integer then P(x) = ϕ(x)ϕm ·y. Hence P ∈ Pcb(
m+1X, Y )

and

(7) ‖P ‖• = ‖ϕ‖m+1 · ‖y‖ = ‖P ‖ = ‖P ‖N.
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This immediately leads to the following proposition which shows that there
always exists an abundance of CB-polynomials. For tensors of degree m we let⊗

m x = x⊗· · ·⊗x (m-times) and let
⊗s,m

min X∗ denote the set of all symmetric
tensors in

⊗m
min X∗ with the operator space structure inherited from

⊗m
min X∗.

Proposition 3.4. Let X and Y be operator spaces and let m denote a
positive integer.

(a) If (ϕj )
n
j=1 ⊂ X∗ and (yj )

n
j=1 ⊂ Y then

∑n
j=1 ϕm

j · yj ∈ Pcb(
mX, Y ) and

∥∥∥∥
n∑

j=1

ϕm
j · yj

∥∥∥∥•
=

∥∥∥∥
n∑

j=1

(⊗
m

ϕj

)
⊗ yj

∥∥∥∥
(
⊗m

min X∗)⊗minY

(b) PN(mX) ⊂ Pcb(
mX) ⊂ P(mX) for all m and

‖P ‖ ≤ ‖P ‖• ≤ ‖P ‖N

for all P ∈ PN(mX).

Proof. (a) Suppose the mapping

θm,X∗,Y :

( s,m⊗
min

X∗
)

⊗min Y → P(mX, Y )

defined by linearity and by letting θm,X∗,Y
(
(
⊗

m ϕ)⊗y
) = ϕm ·y is a complete

isometric embedding. We have already noted in (3) that this is the case when
m = 1. This implies that the mapping

βm : T ∈ CB

(
X,

( s,m⊗
min

X∗
)

⊗min Y

)
→ θm,X∗,Y ◦ T ∈ CB(X, P(mX, Y ))

is also a complete isometric embedding. Using the mappings αm defined earlier
we see that

(8) αm ◦ θm+1,X∗,Y = βm ◦ θ1,X∗,(
⊗s,m

min X∗)⊗minY
.

The mappings on the right in (8) are complete isometric embeddings and as αm

is also a complete isometric embedding it follows that θm+1,X∗,Y is a complete
isometric embedding. This proves (a) by induction. Part (b) follows from (7).

When the domain is a maximal operator space all continuous polynomials
are completely bounded. This shows that the theory of completely bounded
polynomials includes the theory of continuous polynomials. This is part of the
following proposition.
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Proposition 3.5. If X is a maximal operator space, Y is an operator space
and m is a positive integer then

P(mX, Y ) = Pcb(
mX, Y )

and
‖P ‖ ≤ ‖P ‖• ≤ mm

m!
‖P ‖

for all P ∈ P(mX, Y ).

Proof. When m = 1 the result holds by the definition of maximal operator
spaces. We suppose that the result holds for the positive integer m. Let P ∈
P(m+1X, Y ). Then, by the induction hypothesis, and the definition of maximal
operator space

P ∈ L (X, P(mX, Y )) = L (X, Pcb(
mX, Y )) = CB(X, Pcb(

mX, Y ))

and P ∈ Pcb(
m+1X, Y ). Moreover, for all P ∈ P(m+1X, Y ) we have

‖P ‖ ≤ ‖P ‖• = ‖P ‖CB(X,P(mX,Y )) = ‖P ‖L (X,Pcb(mX,Y )) (since X is maximal)

= sup{‖P(x)‖• : ‖x‖ ≤ 1}

≤ mm

m!
sup{‖P(x)‖ : ‖x‖ ≤ 1} (by induction)

= mm

m!
sup

{∥∥∥∥ 1

m + 1
· DyP (x)

∥∥∥∥ : ‖x‖, ‖y‖ ≤ 1

}

≤ mm

m!
· 1

m + 1
· (m + 1)m+1

mm
‖P ‖ (by Corollary 1 in [3])

= (m + 1)m+1

(m + 1)!
‖P ‖.

This completes the proof.

Clearly the left-hand inequality in Proposition 3.5 is always best possible
and we now show that the same holds for the right-hand inequality. Let X = 	1

endowed with its maximal operator space structure. If m is positive integer we
let Pm((xn)

∞
n=1) = x1 . . . xm for all (xn)

∞
n=1 ∈ 	1. Clearly Pm ∈ P(m	1) and,

by Lemma 1.38 in [1], ‖Pm‖ = m−m and hence, by Proposition 3.5,

‖Pm‖• ≤ mm

m!
· 1

mm
= 1

m!
.
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To show that ‖Pm‖• = mm

m! ‖Pm‖ it suffices to show that ‖Pm‖• ≥ 1
m! . This

holds when m = 1 by (7). Suppose the result is true for the positive integer m.
It is easily checked that

[
Pm+1((xn)

∞
n=1)

]
((yn)

∞
n=1)

m = 1

m + 1

m+1∑
i=1

y1 . . . yi−1xiyi+1 . . . ym+1.

If e = (0, . . . , 0, 1, 0, . . .), where 1 lies in the (m+1)th position, then ‖e‖ = 1
and Pm+1(e) = 1

m+1Pm, and by induction we have, as required,

‖Pm+1‖• ≥ ‖Pm+1(e)‖• = 1

m + 1
‖Pm‖• = 1

m + 1
· 1

m!
= 1

(m + 1)!

We now show that the scalar-valued CB polynomials form an algebra and
afterwards consider the composition of certain CB polynomials. The analog-
ous results for continuous polynomials are easily proved and illustrates the
difference between continuous and CB polynomials.

Proposition 3.6. Let X denote an operator space and let m, k be natural
numbers. If P ∈ Pcb(

mX) and Q ∈ Pcb(
kX) then PQ ∈ Pcb(

m+kX) and

‖PQ‖• ≤ ‖P ‖•‖Q‖•.

Proof. The product rule for differentiation implies for all x, y ∈ X that

D(PQ)y(x) = DPy(x)Q(x) + P(x)DQy(x).

Hence

[(m + k)PQ(y)](x) = [mP(y)](x)Q(x) + P(x)[kQ(y)](x)

that is
(m + k)PQ(y) = mP(y)Q + kQ(y)P .

For any natural number n, let

P n : Mn(X) → Mn(Pcb(
m−1X)) = Pcb(

m−1X, Mn)

where
mP n([yij ]ni,j=1) = m[P(yij )]

n
i,j=1 = [Dyij

P ]ni,j=1.

Since
Qn : Mn(X) → Mn(Pcb(

k−1X)) = Pcb(
k−1X, Mn)
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is given by

kQn([yij ]ni,j=1) = k[Q(yij )]
n
i,j=1 = [Dyij

Q]ni,j=1.

we have (PQ)n : Mn(X) → Pcb(
m+k−1X, Mn) and

(m + k)(PQ)n([yij ]ni,j=1) = [(m + k)PQ(yij )]
n
i,j=1

= [mP(yij )Q + kQ(yij )P ]ni,j=1

= mP n([yij ]ni,j=1)Q + kQn([yij ]ni,j=1)P .

Since Pn([yij ]ni,j=1) ∈ P(m−1X, Mn) and Q ∈ P(k−1X) we have

‖Pn([yij ]ni,j=1)Q‖ ≤ ‖Pn([yij ]ni,j=1)‖‖Q‖ ≤ ‖Pn([yij ]ni,j=1)‖‖Q‖•.

Similarly, since Qn([yij ]ni,j=1) ∈ P(k−1X, Mn) and P ∈ P(m−1X), we get

‖Qn([yij ]ni,j=1)P ‖ ≤ ‖Qn([yij ]ni,j=1)‖‖P ‖ ≤ ‖Qn([yij ]ni,j=1)‖‖P ‖•.

Hence

(m + k) sup
‖[yij ]ni,j=1‖≤1

‖(PQ)n‖ ≤ m sup
‖[yij ]ni,j=1‖≤1

‖P n([yij ])‖‖Q‖•

+ k sup
‖[yij ]ni,j=1‖≤1

‖Qn([yij ])‖‖P ‖•

or
(m + k)‖(PQ)n‖ ≤ m‖P n‖‖Q‖• + k‖P ‖•‖Qn‖.

Taking the supremum over the natural numbers n we obtain

(m + k)‖PQ‖cb ≤ m‖P ‖cb‖Q‖• + k‖Q‖cb‖P ‖•

that is
(m + k)‖PQ‖• ≤ m‖P ‖•‖Q‖• + k‖Q‖•‖P ‖•

or
(m + k)‖PQ‖• ≤ (m + k)‖P ‖•‖Q‖•

and the proof is complete.

Proposition 3.7. Let X, Y, Z and W denote operator spaces, u : X → Y

and v : Z → W cb linear maps and let P ∈ Pcb(
mY, Z). Then v ◦ P ◦ u ∈

Pcb(
mX, W) and

‖v ◦ P ◦ u‖• ≤ ‖v‖cb · ‖P ‖• · ‖u‖m
cb.
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Proof. We use induction on m. If m = 1 then P ∈ CB(Y, Z). In this case
it is well known, see [2], [5], [6], that v ◦ P ◦ u ∈ CB(X, W) and

‖v ◦ P ◦ u‖cb ≤ ‖v‖cb · ‖P ‖cb · ‖u‖cb.

In the first case we suppose that v ◦ P ∈ Pcb(
mY, W) and ‖v ◦ P ‖• ≤

‖v‖cb‖P ‖• whenever P ∈ Pcb(
mY, Z) and v ∈ CB(Z, W).

Suppose P ∈ Pcb(
m+1Y, Z). By the polarisation formula the symmetric

(m + 1)-linear mappings (v ◦ P)∨ and v ◦ ∨
P are equal since they coincide on

the diagonal in Ym+1. Hence v ◦ P = v ◦ P and, by the induction hypothesis,
v ◦ P(x) ∈ Pcb(

mY, W) for all x ∈ X. Hence

v ◦ P : x ∈ Y → Pcb(
mY, W)

Moreover, if [yij ]1≤i,j≤n ∈ Mn(Y ) then

(v ◦ P)n([yij ]1≤i,j≤n) = [v ◦ P(yij )]1≤i,j≤n = [v ◦ P(yij )]1≤i,j≤n

= vn ◦ [P(yij )]1≤i,j≤n = vn ◦ P n([yij ]1≤i,j≤n).

Hence (v ◦ P)n = vn ◦ P n and

‖(v ◦ P)n‖Mm
n (Y,W) ≤ ‖vn‖L (Mn(Z),Mn(W))‖P n‖Mm

n (Y,Z).

Since this holds for all n,

‖v ◦ P ‖• = sup
n

‖(v ◦ P)n‖ ≤ sup
n

‖vn‖ · sup
n

‖P n‖Mm
n (Y,Z) = ‖v‖cb · ‖P ‖cb

and

(9) ‖v ◦ P ‖• ≤ ‖v‖cb · ‖P ‖•.

For fixed u ∈ L (X, Y ) and P ∈ P(mY, Z) consider the sequence of mappings

X
u−→ Y

P−→ P(mY, Z)
γm,Z−→ P(mX, Z)

where γm,Z(Q) = Q ◦ u for all Q ∈ P(mY, Z).
Our induction hypothesis on m is that the following three conditions hold

for all operator spaces X, Y and Z, all u ∈ CB(X, Y ) and all P ∈ Pcb(
mY, Z):

(a) γm,Z(Pcb(
mY, Z)) ⊂ Pcb(

mX, Z),

(b) γm,Z is completely bounded and ‖γm,Z‖cb ≤ ‖u‖m
cb,

(c) ‖P ◦ u‖• ≤ ‖P ‖• · ‖u‖m
cb for all P ∈ Pcb(

mY, Z).
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We first verify the above when m = 1. If v ∈ P(1Y, Z) = CB(Y, Z) then
γ1,Z(v) = v ◦ u ∈ CB(X, Z) and as ‖v ◦ u‖cb ≤ ‖v‖cb · ‖u‖cb we have

(10) ‖γ1,Z‖ = sup{‖v ◦ u‖cb : ‖v‖cb ≤ 1} ≤ ‖u‖cb.

Since (γ1,Z)n : CB(Y, Mn(Z)) → CB(X, Mn(Z)) is given by (γ1,Z)n =
γ1,Mn(Z), (10) implies that ‖(γ1,Z)n‖ ≤ ‖u‖cb. Hence

‖γ1,Z‖cb = sup
n

‖(γ1,Z)n‖ ≤ ‖u‖cb

and this proves the m = 1 induction step. Now suppose the inductive hypo-
thesis holds for the positive integer m. Take a fixed P in Pcb(

m+1Y, Z). Then
P ◦ u ∈ P(m+1X, Z) and for all x, y ∈ X

[P ◦ u(x)](y) = (P ◦ u)∨(x, ym) = ∨
P(u(x), u(y)m)

= [P(u(x))](u(y)) = ([P(u(x))] ◦ u)(y)

= [γm,Z(P (u(x)))](y).

Hence
P ◦ u(x) = [P(u(x))] ◦ u = γm,Z(P (u(x)))

and

(11) P ◦ u = γm,Z ◦ P ◦ u.

As all the terms in the right-hand side of (11) are completely bounded, P ◦ u is
completely bounded, P ◦u = γm+1,Z(P ) ∈ Pcb(

m+1X, Z), and this establishes
(a) for m + 1. By the inductive hypothesis (b),

‖P ◦ u‖cb ≤ ‖γm,Z‖cb · ‖P ‖cb · ‖u‖cb ≤ ‖u‖m
cb · ‖P ‖cb · ‖u‖cb

and hence

(12) ‖P ◦ u‖• ≤ ‖P ‖• · ‖u‖m+1
cb .

This proves (c) for m + 1 and all Z. Moreover, as

‖P ◦ u‖cb = ‖P ◦ u‖• = ‖γm+1,Z(P )‖•

(12) also implies

(13) ‖γm+1,Z‖ ≤ ‖u‖m+1
cb
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for any operator space Z. Now

(γm+1,Z)n = γm+1,Mn(Z) : Pcb(
m+1Y, Mn(Z)) → Pcb(

m+1X, Mn(Z))

and, replacing Z by Mn(Z) in (13), we see that

(14) ‖γm+1,Z‖cb = sup
n

‖(γm+1,Z)n‖ ≤ ‖u‖m+1
cb

This establishes (b) for m + 1 and completes the induction. The proof is com-
plete on combining (9) and (14).

4. Polynomials on Operator Hilbert Spaces

In this section we discuss the operator space structure of the space of diagonal
polynomials on the homogeneous operator Hilbert spaces X, where X is OH,
R, or C. An operator space X is homogeneous if ‖u‖ = ‖u‖cb for all u ∈
CB(X, X). All closed subspaces of a homogeneous operator Hilbert space
with the same Hilbert dimension are completely isometrically isomorphic (see
[6] p. 172). We take a fixed orthonormal basis (ej )

∞
j=1 for X with dual basis

(e∗
j )∞j=1. Let πn denote the projection from X onto Xn, the span of (ej )

n
j=1,

πn = 1X − πn, and let Y denote an operator space. For any positive integer m

let
Pcb,d (

mX, Y ) := Pd(
mX, Y ) ∩ Pcb(

mX, Y )

where the diagonal polynomials are with respect to (ej )
∞
j=1. We endow

Pcb,d (
mX, Y ) with its operator structure from Pcb(

mX, Y ). If P ∈ Pcb,d (
mX, Y )

then

(15) P

( ∞∑
j=1

xj ej

)
=

∞∑
j=1

xm
j P (ej ) =

( ∞∑
j=1

P(ej )(e
∗
j )m

)( ∞∑
j=1

xj ej

)

and if Pn := P ◦ πn then, by (15),

(16) Pn =
n∑

j=1

P(ej )(e
∗
j )m.

Proposition 4.1. If m ≥ 2 and Y is an operator space then P ∈
Pcb,d (

mOH, Y ) if and only if (‖P(ej )‖)∞n=1 ∈ c0. Moreover,

(17) Pd(
mOH, Y ) = Pcb,d (

mOH, Y ),

and

(18) ‖P ‖• = ‖P ‖cb = ‖P ‖ = sup
n

‖P(ej )‖.



264 seán dineen and cristina radu

Proof. If P ∈ P(mOH, Y ) then ‖P(ej )‖ ≤ ‖P ‖ for all j . If P ∈
Pd(

mOH, Y ) then‖P(ej+1)‖ ≤ ‖Pj+1−Pj‖ → 0 as j → ∞ and (‖P(ej )‖)∞j=1∈ c0.
Conversely, if (‖yj‖Y )∞j=1 ∈ c0 let P

(∑∞
j=1 xj ej

) = ∑∞
j=1 xm

j yj . Since

∥∥∥∥
∞∑

j=1

xm
j yj

∥∥∥∥ ≤ sup
j

‖yj‖Y ·
∞∑

j=1

|xj |m ≤ sup
j

‖yj‖Y ·
( ∞∑

j=1

|xj |2
)m/2

< ∞,

P ∈ P(mOH, Y ) and P(ej ) = yj for all j . Moreover, as n → ∞,

‖P − Pn‖ ≤ sup

{∥∥∥∥
∞∑

j=n+1

xm
j yj

∥∥∥∥:

∥∥∥∥
∞∑

j=1

xj

∥∥∥∥ ≤ 1

}
≤ sup{‖yj‖Y : j ≥ n} → 0

and this implies P ∈ Pd(
mX, Y ) and supj ‖yj‖Y = ‖P ‖.

Now fix a positive integer n and let Pn

(∑∞
j=1 xj ej

) = ∑n
j=1 xm+1

j yj . As OH
is self-dual and ⊗min is commutative, (4) and Proposition 3.4(a) implies

‖Pn‖• =
∥∥∥∥

n∑
j=1

e∗
j ⊗ (e∗

j ⊗ · · · ⊗ e∗
j ⊗ yj )

∥∥∥∥
(
⊗m+1

min OH∗)⊗minY

=
∥∥∥∥

n∑
j=1

(e∗
j ⊗ · · · ⊗ e∗

j ⊗ yj )

⊗ (e∗
j ⊗ · · · ⊗ e∗

j ⊗ yj )

∥∥∥∥1/2

((
⊗m

min OH∗)⊗minY )⊗min((
⊗m

min OH∗)⊗minY )

=
∥∥∥∥

n∑
j=1

(e∗
j ⊗ · · · ⊗ e∗

j ) ⊗ yj ⊗ yj

∥∥∥∥1/2

(
⊗2m−1

min OH∗)⊗min(Y⊗minY )

.

By induction, we obtain for all k a positive integer δ(k) such that

‖Pn‖• =
∥∥∥∥

n∑
j=1

(e∗
j ⊗ · · · ⊗ e∗

j ) ⊗ (yj ⊗ yj ) ⊗

· · · ⊗ (yj ⊗ yj )

∥∥∥∥1/2k

(
⊗δ(k)

min OH∗)⊗min(⊗2k

minY )

≤
( n∑

j=1

‖yj‖2k

Y

)1/2k

→ sup
j≤n

‖yj‖Y

as k → ∞, since ‖yj‖Y = ‖yj‖Y for all j and ‖e∗
j ⊗ · · · ⊗ e∗

j ‖⊗l
min OH∗ = 1

for any positive integer l. Hence ‖Pn‖• = supj≤n ‖yj‖Y and for s ≥ t

‖Ps − Pt‖ ≤ ‖Ps − Pt‖• = sup
t≤j≤s

‖yj‖Y → 0 as s, t → ∞.
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This implies P ∈ Pcb,d (
mOH, Y ) and

(19) ‖P ‖• = sup
j

‖yj‖Y .

Corollary 4.2. Pcb,d (
mOH) is a minimal operator space.

Proof. Let N := N∪(∞) denote a one-point compactification of N and let
C0(N) denote the set of all complex-valued continuous functions on N which
vanish at infinity. With the supremum norm this is a commutative C ∗-algebra.
Let φ : Pcb,d (

mOH) → C0(N) be defined as follows: if (λj )
∞
j=1 ∈ c0 and

P

( ∞∑
j=1

xj ej

)
=

∞∑
j=1

λjx
m
j

let
[φ(P )](j) = P(ej ) = λj , [φ(P )](∞) = 0.

Then

φn : Mn(Pcb,d (
mOH)) = Pcb,d (

mOH, Mn) → C0(N, Mn) = Mn(C0(N))

is given by [φn([Pij ]1≤i,j≤n)](k) = [Pij (ek)]1≤i,j≤n = P(ek) for all k ∈ N

and all P := [Pij ]1≤i,j≤n. By (19), ‖φn‖ = 1 for all n, that is φ is a complete
isometry. By Proposition 3.3.1 in [2], Pcb,d (

mOH) is minimal. This completes
the proof.

Proposition 4.3. If R is the separable row operator Hilbert space and R =
C∗ then, for any positive integer m, Pcb,d (

mR) = C completely isometrically.

Proof. We first suppose that R := Rn has finite dimension n. By (15) and
(16) we see that Pcb,d (

mRn) is an n dimensional space. We suppose, for fixed m,
that Pcb,d (

mRn) is completely isometrically isomorphic to (Rn)
∗ = Cn. When

m = 1 the result is known from the linear theory. By definition the mapping

χ : P ∈ Pcb,d (
m+1Rn) → P ∈ CB(X, Pcb(

mRn)) = R∗
n ⊗min Pcb(

mRn)

is a complete isometric embedding. Let λ = (λj )
n
j=1 and x = (xj )

n
j=1 denote

sequences of complex numbers. Let Pm,λ = ∑n
j=1 λj (e

∗
j )m ∈ Pcb,d (

mX) and

let x = ∑n
j=1 xj ej ∈ Rn. Since Pm+1,λ(x) = Pm,λx ∈ Pcb,d (

mRn) where
λx = (λjxj )

n
j=1 for all x ∈ Rn induction implies that

χ(Pcb,d (
m+1Rn)) ⊂ R∗

n ⊗min Pcb,d (
mRn) = R∗

n ⊗min R∗
n = Cn ⊗min Cn = Cn2
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and χ : Pcb,d (
m+1Rn) → Cn2 is a complete isometric embedding. Since Cn2

is homogeneous and contains Cn as a subspace all n dimensional subspaces
of Cn2 are completely isometric to Cn. Hence Pcb,d (

m+1Rn) = Cn completely
isometrically. By induction this completes the proof when R is finite dimen-
sional.

When R is infinite dimensional the above proof can be adapted to show that
Pcb,d (

mR) is completely isometric to the closure of an infinite dimensional sub-
space of R∗ ⊗R∗ in CB(R, R∗). Hence Pcb,d (

mR) is completely isometrically
isomorphic to an infinite dimensional Banach subspace of R∗⊗min R∗ = R∗ =
C. By homogeneity this implies Pcb,d (

mR) = C completely isometrically and
completes the proof.

We remark that a similar proof shows that Pcb,d (
mC) = R completely

isometrically for all m and that we can also obtain the same result for non-
separable spaces.

Both authors are very grateful to the referee for comments which led to the
removal of a number of errors and to clarifications in the presentation.
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