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GENERALIZATIONS OF KÄHLER-RICCI SOLITONS
ON PROJECTIVE BUNDLES

GIDEON MASCHLER and CHRISTINA W. TØNNESEN-FRIEDMAN

Abstract
We prove that an admissible manifold (as defined by Apostolov, Calderbank, Gauduchon and
Tønnesen-Friedman), arising from a base with a local Kähler product of constant scalar curvature
metrics, admits Generalized Quasi-Einstein Kähler metrics (as defined by D. Guan) in all “suffi-
ciently small” admissible Kähler classes. We give an example where the existence of Generalized
Quasi-Einstein metrics fails in some Kähler classes while not in others. We also prove an analog-
ous existence theorem for an additional metric type, defined by the requirement that the scalar
curvature is an affine combination of a Killing potential and its Laplacian.

1. Introduction

In [6], [7], Guan defined and studied Generalized Quasi-Einstein (GQE) Kähler
metrics. On compact manifolds, these are Kähler metrics for which the Ricci
potential is also a Killing potential. This notion includes gradient Ricci solitons
as a special case, and is thus a natural object of study (such solitons are called
Quasi-Einstein metrics in some Physics references). In [7], GQE metrics are
studied in relation to a modified Calabi flow. Finally, like extremal Kähler
metrics, GQE metrics generalize the notion of constant scalar curvature (CSC)
Kähler metrics.

Extremal Kähler metrics, defined by the requirement that the scalar curva-
ture is a Killing potential, are the focus of much recent work in Kähler geometry.
In [2], a continuity technique was used to show existence of certain explicit
extremal metrics. Our aim in this paper is to apply the same technique to the
question of existence of GQE metrics.

Existence of GQE metrics has been demonstrated in [6], [7], and [11] in all
Kähler classes of certain manifolds. Here we consider a broader class of spaces,
namely projective bundles over local products of CSC Kähler manifolds that
are admissible in the sense defined in [2]. On these spaces we look for a
particular type of GQE metric, which we call admissible. Our main results are
as follows. First, we show that any admissible manifold admits a GQE metric
in all admissible Kähler classes which are “small” in an appropriate sense. On
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the other hand, we give an example of a Kähler class on an admissible manifold
which is not small, and contains no GQE metric.

Our work is laid out as follows. Section 2 provides a brief introduction to
the Generalized Quasi-Einstein metrics as defined by D. Guan in [6] and [7].
Section 3 outlines a brief introduction to the notion of admissible manifolds,
defined in [2], while Section 4 covers the definition and basic properties of
admissible Generalized Quasi-Einstein metrics. Section 5 presents our exist-
ence theorem, achieved using a continuity argument. This is the heart and main
purpose of these notes. Section 6 provides a non-existence example. Finally,
Section 7 contains an appendix discussing another distinguished metric type
of Guan, for which an analog of the main existence result is obtained.

We would like to thank Vestislav Apostolov for his helpful advice while
preparing this paper. Some of the calculations in Sections 6 and 7 were carried
out using the symbolic computation program Mathematica.

2. Background

Generalized Quasi-Einstein (GQE) Kähler metrics were first introduced by
D. Guan [6]. They may be viewed as an alternative (with respect to extremal
Kähler metrics) generalization of constant scalar curvature (CSC) Kähler met-
rics. For instance, any admissible geometrically ruled surface of genus higher
than one has Kähler classes with no extremal metrics (but some Kähler classes
on such a manifold do admit extremal metrics [12], [2], [13]). In [11] (see also
[7] which offers a generalization) it is shown that any Kähler class on this type
of manifold admits a GQE metric.

Let M be a complex manifold with almost complex tensor J and a Kähler
metric g. A function φ on M is called a Killing potential if J grad φ is a Killing
vector field (i.e., ∇J grad φ is skew-adjoint at every point).

Definition 2.1 ([6], [7]). Let g be a Kähler metric on a compact complex
manifold (M, J ), Scal its scalar curvature and Scal its average scalar curvature.
We say that g is a GQE metric if there exists a Killing potential φ for which

(1) Scal − Scal = �φ.

Here � denotes the Laplacian with respect to g.

Remark 2.2. Since M is compact and Scal − Scal = �G Scal, with G the
Green operator, Definition 2.1 is equivalent to the requirement that the Ricci
potential −G Scal is also a Killing potential. In comparison, the definition of
an extremal Kähler metric is equivalent to the statement that Scal itself is a
Killing potential [3].
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Definition 2.3 ([4], [5]). Let ω be a Kähler form on a compact complex
manifold (M, J ) and let h(M) denote the Lie algebra of the holomorphic vector
fields on (M, J ). Then the Futaki invariant of [ω] is the map F[ω] : h(M) → C
given by

F[ω](�) = −
∫

M

�(G Scal) dμ,

where � ∈ h(M) and dμ denotes the volume form of ω.

The Futaki invariant is a Kähler class invariant. The class of any CSC Kähler
metric has vanishing Futaki invariant. Moreover,

Proposition 2.4 ([6]). A GQE metric is CSC if and only if the Futaki
invariant of the Kähler class vanishes.

Proof. We only need to check the “if” part of the statement. Suppose g is a
GQE metric as above for some Killing potential φ. Then the value F[ω]((∂φ)�)

of the Futaki invariant on the holomorphic vector field (∂φ)� is equal to

−1

2

∫
M

(Scal − Scal)φ dμ = −1

2

∫
M

φ�φ dμ = −1

2

∫
M

‖dφ‖2 dμ,

where the first equality follows from (1) (see e.g., [10]). If this expression
vanishes, then φ is constant, and so, using (1) again, Scal = Scal.

3. Review of admissible manifolds and metrics

Let S be a compact complex manifold admitting a Kähler local product metric,
whose components are Kähler metrics denoted (±ga, ±ωa), and indexed by
a ∈ A ⊂ Z+. Here (±ga, ±ωa) is the Kähler structure. In this notation we
allow for the tensors ga to possibly be negatively definite – a parametrization
given later justifies this convention. Note that in all our applications, each ±ga

is assumed to have CSC. The real dimension of each component is denoted
2da , while the scalar curvature of ±ga is given as ±2dasa . Next, let E0, E∞
be projectively flat hermitian holomorphic vector bundles over S, of ranks
d0 + 1 and d∞ + 1, respectively, such that the condition c1(E∞)/(d∞ + 1) −
c1(E0)/(d0+1) = ∑

a∈A [ωa/2π ] holds. Then, following [2], the total space of
the projectivization M = P(E0 ⊕E∞) → S is called admissible. A particular
type of Kähler metric on M , also called admissible, will now be described.

Let Â ⊂ N ∪ ∞ be the extended index set defined as follows:

• Â = A , if d0 = d∞ = 0.

• Â = A ∪ {0}, if d0 > 0 and d∞ = 0.

• Â = A ∪ {∞}, if d0 = 0 and d∞ > 0.

• Â = A ∪ {0} ∪ {∞}, if d0 > 0 and d∞ > 0.
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In the cases where Â 
= A , the following notations will prove useful: x0 = 1,
x∞ = −1, s0 = d0 + 1 and s∞ = −(d∞ + 1). Correspondingly, (g0, ω0) (or
(g∞, ω∞)) will be the induced Fubini-Study structure with scalar curvature
d0(d0 + 1) (or d∞(d∞ + 1)) on each fiber of P(E0) (or P(E∞)).

An admissible Kähler metric is constructed as follows. Consider the circle
action on M induced by the standard circle action on E0. It extends to a
holomorphic C∗ action. The open and dense set M0 of stable points with respect
to the latter action has the structure of a principal circle bundle over the stable
quotient. The hermitian norm on the fibers induces via a Legendre transform
a function z : M0 → (−1, 1) whose extension to M consists of the critical
manifolds z−1(1) = P(E0 ⊕ 0) and z−1(−1) = P(0 ⊕ E∞). Letting θ be a
connection one form for the Hermitian metric on M0, with curvature dθ =∑

a∈Â
ωa , an admissible Kähler metric and form are given up to scale by the

respective formulas

(2) g =
∑
a∈Â

1 + xaz

xa

ga + dz2


(z)
+
(z)θ2, ω =

∑
a∈Â

1 + xaz

xa

ωa +dz∧θ,

valid on M0. Here 
 is a smooth function with domain containing (−1, 1) and
xa , a ∈ A are real numbers of the same sign as ga and satisfying 0 < |xa| < 1.
The complex structure yielding this Kähler structure is given by the pullback
of the base complex structure along with the requirement Jdz = 
θ . The
function z is hamiltonian with K = J grad z a Killing vector field. In fact, z

is the moment map on M for the circle action, decomposing M into the free
orbits M0 = z−1((−1, 1)) and the special orbits z−1(±1). Finally, θ satisfies
θ(K) = 1.

In order that g (be a genuine metric and) extend to all of M , 
 must satisfy
the positivity and boundary conditions

(3)

(i) 
(z) > 0, −1 < z < 1,

(ii) 
(±1) = 0,

(iii) 
′(±1) = ∓2.

The last two of these are together necessary and sufficient for the compactific-
ation of g.

The Kähler class �x = [ω] of an admissible metric is also called admiss-
ible and is uniquely determined by the parameters xa , a ∈ A , once the data
associated with M (i.e., da , sa , ga etc.) is fixed. The xa , a ∈ A , together with
the data associated with M will be called admissible data. The reader is urged
to consult Section 1 of [2] for further background on this set-up.
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Define a function F(z) by the formula 
(z) = F(z)/pc(z), where pc(z) =∏
a∈Â

(1 + xaz)
da . Since pc(z) is positive for −1 < z < 1, conditions (3)

imply the following conditions on F(z), which are only necessary for com-
pactification of the metric g:

(4)

(i) F (z) > 0, −1 < z < 1,

(ii) F (±1) = 0,

(iii) F ′(±1) = ∓2pc(±1).

For the purpose of understanding admissible GQE metrics, it is useful to
recall the fact below.

Proposition 3.1 ([1]). For any admissible metric g, if S(z) is a smooth
function of z, then

(5) �S = −[F(z)S ′(z)]′/pc(z),

where � is the Laplacian of g.

Proof. This is a special case of Lemma 5 in [1], but for convenience we
shall review the proof here. We denote by ( , ) the inner product on two forms
induced by g. Recall that

�S = − (
ddcS(z), ω

) = − (dJdS(z), ω) .

Thus

−�S = (
d(S ′(z)Jdz

)
, ω) =

(
d

(
S ′(z)

F (z)

pc(z)
θ

)
, ω

)

=
((

[S ′(z)F (z)]′

pc(z)
− S ′(z)F (z)p′

c(z)

(pc(z))2

)
dz ∧ θ, ω

)

+
(

S ′(z)
F (z)

pc(z)

∑
a∈Â

ωa, ω

)

= [S ′(z)F (z)]′

pc(z)
− S ′(z)F (z)

pc(z)

[
p′

c(z)

(pc(z))
−

∑
a∈Â

daxa

(1 + xaz)

]

= [S ′(z)F (z)]′

pc(z)
,

where the relation (ωa, ω) = (ωa, ((1 + xaz)/xa)ωa) = (xa/(1 + xaz))
2(ωa,

((1+xaz)/xa)ωa)a = (xa/(1+xaz))da , with ( , )a the inner product induced
by ga , was used.
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The scalar curvature of an admissible metric is given (cf. [1], or (10) in [2])
by

(6) Scal =
∑
a∈Â

2dasaxa

1 + xaz
− F ′′(z)

pc(z)
,

Let C∞∗ ([−1, 1]) denote the set of functions f (z) of z which are smooth in
[−1, 1] and normalized so that they integrate to zero when viewed as smooth
functions on M . The latter condition is equivalent to

∫ 1
−1 f (z)pc(z) dz = 0,

since the volume form of an admissible metric equals pc(z)
( ∧

a
(ωa/xa)

da

da !

) ∧
dz ∧ θ .

Corollary 3.2. Given an admissible metric g, its Laplacian gives a sur-
jective map from C∞∗ ([−1, 1]) to itself (considered as a space of functions on
M).

Proof. Given R(z) ∈ C∞∗ ([−1, 1]), an explicit solution to �S(z) = R(z)

can be obtained directly from (5) on the open dense set for which z 
= ±1.
Either by Hodge decomposition for smooth functions on compact manifolds
or, more concretely, by a L’hospital rule argument (using (4.ii) and (4.iii)), this
solution extends to the ±1 level sets of z.

Corollary 3.3. The Ricci potential of an admissible metric is a function
of z.

Proof. This follows from the previous corollary since by (6) the scalar
curvature of an admissible metric is a smooth function of the moment map z.

4. GQE metrics on admissible manifolds

Recall from Remark 2.2 that a Kähler metric is GQE if and only if its Ricci
potential is a Killing potential. It follows from Corollary 3.3 that an admissible
metric g with moment map z is GQE only if its Ricci potential is affine in z.
When this holds, we will call the metric admissible GQE. Using Definition 2.1
and Remark 2.2, the admissible GQE condition can be written as

(7) Scal − Scal = k�z,

for some k ∈ R.
We turn now to an ODE for F which characterizes admissible GQE metrics.

Since for an admissible metric we have from (6) and (5) the formulas

Scal =
∑
a∈Â

2dasaxa

1 + xaz
− F ′′(z)

pc(z)
, �z = −F ′(z)

pc(z)
,
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equation (7) holds if and only if

(8) F ′′(z) − kF ′(z) = 2

(∑
a∈Â

dasaxa

1 + xaz

)
pc(z) − 2β0pc(z)

α0
,

where
α0 =

∫ 1

−1
pc(t) dt

and
β0 = pc(1) + pc(−1) +

∫ 1

−1

(∑
a∈Â

dasaxa

1 + xat

)
pc(t) dt.

Note here that the expression Scal = 2β0/α0 (as well as the formula for Scal),
appears in the proof of Proposition 6 in [2].

Remark 4.1. Using work of [2], it is straightforward to verify that an
admissible metric is simultaneously GQE and extremal if and only if it is
CSC. It is tempting to conjecture that this is true in more generality.

Just as in the extremal case (see e.g., Section 2.4 in [2]), equations (4.ii)
and (4.iii) together with (8) imply (3.ii) and (3.iii). So, under assumption (8),
(4.ii) and (4.iii) are the necessary and sufficient boundary conditions for the
compactification of g.

Integrating (8) and then solving the resulting first order ODE gives

(9) F (z) = ekz

∫ z

−1
e−ktP (t) dt,

where k is a constant and

(10) P (t) = 2
∫ t

−1

((∑
a∈Â

dasaxa

1 + xau

)
pc(u) − β0pc(u)

α0

)
du + 2pc(−1),

with the last term determined by the requirement that (4.iii) be satisfied. Also,
(4.ii) will be satisfied if and only if there exists a k ∈ R for which

(11)

∫ 1

−1
e−ktP (t) dt = 0.

In summary, we have

Proposition 4.2. Given admissible data on an admissible manifold, let
F be the solution of (8) of the form (9), (10). Suppose there exists k ∈ R
for which (11) holds and (4.i) is satisfied by F . Then the admissible metric
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naturally constructed from F and the given data is GQE. Conversely, for any
admissible GQE metric (up to scale), the associated function F has the form
(9), (10), solves (8), satisfies (4.i) and there exists a k ∈ R for which (11) holds.

We give now two preparatory lemmas on properties of the rational function
P(t).

Lemma 4.3. For any given admissible data, the function P(t) given by (10)
satisfies: If d0 = 0, then P(−1) > 0, otherwise P(−1) = 0. If d∞ = 0, then
P(1) < 0, otherwiseP(1) = 0. Furthermore, P(t) > 0 in some (deleted) right
neighborhood of t = −1, and P(t) < 0 in some (deleted) left neighborhood
of t = 1.

Proof. First observe that by design P(±1) = ∓2pc(±1), which yields the
claimed signs of P at the endpoints. Also, pc(t) contains the factors 1 + x0t ,
1+x∞t with multiplicity d0 or, respectively, d∞. One of these factors accounts
for the vanishing of P at t = −1 (or t = 1) unless d0 = 0 (or d∞ = 0).
Furthermore, P ′(t) contains these factors in each summand, to multiplicity at
least d0 − 1 (or d∞ − 1). Differentiating P(t), we see that if d0 > 0, then
P (d0)(−1) > 0 (and the lower order derivatives vanish), while if d∞ > 0,
then P (d∞)(1) has sign (−1)d∞+1 (and the lower order derivatives vanish).
From these observations the result follows easily by considering the Taylor
expansion of P(t) near ±1.

Lemma 4.4. If the function P(t) given by (10) has exactly one root in the
interval (−1, 1), then there exists a unique k ∈ R such that

(12)

∫ 1

−1
e−ktP (t) dt = 0.

Moreover, for this k, the positivity condition (4.i) is satisfied when F(z) is
defined as in (9), (10).

Proof. If P(t) has just one root t0 in the interval (−1, 1), then, we may
write

P(t) = (t − t0)p(t)

where, due to Lemma 4.3, p(t) is negative for all t ∈ (−1, 1). Consider now
the auxiliary function

G(k) = ekt0

∫ 1

−1
e−ktP (t) dt =

∫ 1

−1
p(t)(t − t0)e

−k(t−t0) dt.

By direct calculation, G′(k) is positive, while limk→−∞ G = −∞, and
limk→∞ G = +∞, as can be checked by taking the limit after first breaking
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the integral in the form
∫ t0
−1 + ∫ 1

t0
. This proves the existence and uniqueness of

a k for which G(k) = 0, or equivalently
∫ 1
−1 e−ktP (t) dt = 0.

Finally, given this k, since e−ktP (t) changes sign exactly once in (−1, 1) and
is positive near t = −1, condition (12) clearly guarantees that

∫ z

−1 e−ktP (t) dt

is a nonnegative function for z ∈ (−1, 1). Therefore (4.i) is satisfied for F(z)

as defined in (9), (10).

5. A continuity argument

Let M = P(E0 ⊕ E∞) → S be an admissible manifold, where the base S is a
local Kähler product of CSC metrics (±ga, ±ωa). The aim of this section is to
show that for |xa| sufficiently small for all a ∈ A , the corresponding Kähler
class admits an admissible GQE metric. In light of Lemma 4.4, the strategy
will be to show that in this case P(t) has just one root in (−1, 1).

Observe that

P ′(t) = 2

(∑
a∈Â

dasaxa

1 + xat

)
pc(t) − 2β0pc(t)

α0

and, as in the proof of Lemma 4.3, we make the following observations

• If d0 > 1, then P ′(−1) = 0 and P ′(t) is positive in some (deleted) right
neighborhood of t = −1.

• If d0 = 1, then P ′(−1) > 0.

• If d∞ > 1, then P ′(1) = 0 and P ′(t) is positive in some (deleted) left
neighborhood of t = −1.

• If d∞ = 1, then P ′(1) > 0.

We will now look at the behaviour of P ′(t) when xa is near 0 for all a ∈ A .
The limit xa → 0 for all a ∈ A (of any expression) will be denoted simply by
lim. This limit cannot be taken in the formulae for admissible Kähler metric
and class, but P(t) defined in (10) and P ′(t) above, with xa = 0, are still
well-defined functions.

Lemma 5.1. lim P ′(t), taken as xa → 0 for all a ∈ A , equals

2d0(d0 + 1)(1 + t)d0−1(1 − t)d∞

+ 2d∞(d∞ + 1)((1 + t)d0(1 − t)d∞−1

− (1 + d0 + d∞)(2 + d0 + d∞)(1 + t)d0(1 − t)d∞ .

Proof. The first two terms of the expression simply follows from the fact
that s0x0 = d0 + 1 (if d0 
= 0) and s∞x∞ = d∞ + 1 (if d∞ 
= 0).
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The last term follows from the fact that (in the limit considered here)
lim(2β0/α0) equals (1 + d0 + d∞)(2 + d0 + d∞). This fact is not at all trivial
but follows directly from the calculations at the end of Appendix B of [2].

The following cases occur for lim P ′(t).

5.1. Case 1: d0 > 0, d∞ > 0

In this case lim P ′(t) is

g(t)(1 + t)d0−1(1 − t)d∞−1,

where

g(t) = 2d0(d0 + 1)(1 − t) + 2d∞(d∞ + 1)(1 + t)

− (1 + d0 + d∞)(2 + d0 + d∞)(1 − t2)

is a concave up parabola, which is positive at t = ±1 and has a minimum
value equal to −4(1 + d0)(1 + d∞)/(2 + d0 + d∞), so negative, in the interval
(−1, 1). It is now clear that lim P ′(t)has two distinct simple roots in the interval
(−1, 1). Thus for |xa| sufficiently small for all a ∈ A , the function P ′(t) also
has exactly two zeroes, i.e., P(t) has exactly two critical points in (−1, 1).
This is because the factored term (1 + t)d0−1(1 − t)d∞−1 does not depend on
xa , so the corresponding endpoint roots stay put as xa changes. Putting this
together with Lemma 4.3, we see that P(t) must change sign exactly once in
(−1, 1).

5.2. Case 2: d0 = 0, d∞ > 0

In this case lim P ′(t) is

g(t)(1 + d∞)(1 − t)d∞−1,

where
g(t) = (2 + d∞)t + d∞ − 2

is linear and increasing from g(−1) = −4 < 0 to g(1) = 2d∞ > 0. Hence
lim P ′(t) has exactly one simple zero in (−1, 1). Thus for |xa| sufficiently
small for all a ∈ A , the function P ′(t) also has exactly one zero, i.e., P(t) has
exactly one critical point in (−1, 1). Putting this together with Lemma 4.3, we
see that P(t) must change sign exactly once in (−1, 1).
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5.3. Case 3: d0 > 0, d∞ = 0

In this case lim P ′(t) is

g(t)(1 + d0)(1 + t)d0−1,

where
g(t) = −(2 + d0)t + d0 − 2

is linear and decreasing from g(−1) = 2d0 > 0 to g(1) = −4 > 0. Hence
lim P ′(t) has exactly one simple root in (−1, 1). Thus for |xa| sufficiently
small for all a ∈ A , the function P ′(t) also has exactly one zero, i.e., P(t) has
exactly one critical point in (−1, 1). Putting this together with Lemma 4.3, we
see that P(t) must change sign exactly once in (−1, 1).

5.4. Case 4: d0 = 0 = d∞
In this case lim P ′(t) is simply the constant function g(t) = −2. Hence
lim P ′(t) has no roots in (−1, 1) and is negative. Thus for |xa| sufficiently
small for all a ∈ A , the function P ′(t) is also strictly negative, i.e., P(t) is a
strictly decreasing function on (−1, 1). Putting this together with Lemma 4.3,
we see that P(t) must change sign exactly once in (−1, 1).

Having thus considered all possible cases we may now conclude with

Theorem 5.2. Let M = P(E0 ⊕ E∞) → S be an admissible manifold
arising from a base S with a local Kähler product of CSC metrics. Then the
set of admissible Kähler classes admitting an admissible GQE metric forms a
nonempty open subset of the set of all admissible Kähler classes. Any admiss-
ible Kähler class which is sufficiently small, that is, for which |xa|, a ∈ A , are
all sufficiently small, belongs to this subset.

Proof. The non-emptiness and the inclusion of sufficently small admissible
classes follow from the observations above and Lemma 4.4.

For the openness we proceed as follows. Recall from Section 3 that for a
given admissible manifold, the admissible Kähler classes are parameterized (up
to scale) by xa , a ∈ A . Suppose A = {1, . . . , N}, so that the set of admissible
Kähler classes (up to scale) is represented by an open subset W ⊂ (−1, 1)N .
Rephrasing Proposition 4.2, an admissible Kähler class given by (x1, . . . , xN)

admits an admissible GQE metric if and only if there exists k ∈ R such that

(13)
∫ 1

−1
e−ktP (t) dt = 0

and

(14)

∫ t

−1
e−kuP (u) du > 0, t ∈ (−1, 1),

for P(t) as in (10).
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Suppose that (x0
1 , . . . , x0

N, k0) ∈ W × R satisfies (13) and (14). We need
to show that for (x1, . . . , xN) ∈ W sufficiently close to (x0

1 , . . . , x0
N), there

exists k ∈ R such that (x1, . . . , xN , k) also satisfies (13) and (14). Define
� : W × R → R by

�(x1, . . . , xN , k) =
∫ 1

−1
e−ktP (t) dt,

where P(t) is determined by (x1, . . . , xN). Clearly � is a smooth mapping.
Then

∂�

∂k
= −

∫ 1

−1
te−ktP (t) dt

= −
∫ 1

−1
e−ktP (t) dt +

∫ 1

−1

(∫ t

−1
e−kuP (u) du

)
dt,

which by (13) and (14) is positive at (x0
1 , . . . , x0

N, k0). A standard implicit func-
tion theorem now gives an open neighborhood U ⊂ W of (x0

1 , . . . , x0
N) such

that for all (x1, . . . , xN) ∈ U there exists k ∈ R such that �(x1, . . . , xN , k) =
0, i.e., (13) is satisfied. Moreover, such k are close to k0, when (x1, . . . , xN)

is close to (x0
1 , . . . , x0

N). By continuity of
∫ t

−1 e−kuP (u) du with respect to
x1, . . . , xN , and k, there is an open neighborhood V ⊂ U ⊂ W of (x0

1 , . . . , x0
N)

such that for each (x1, . . . , xN) ∈ V there exists k ∈ R for which (14) as well
as (13) are satisfied. The openness statement now follows, and this concludes
the proof of Theorem 5.2.

An alternative way to obtain a setting where the assumption in Lemma 4.4
is met, is to put conditions on the sign distribution of saxa and then perform a
delicate root counting argument on P ′(t) similar in type to the one encountered
for extremal Kähler metrics (see Hwang and Singer [9] as well as Guan [8]).
This is exactly D. Guan’s method in [7]. For certain types of admissible mani-
folds his method yields existence of GQE metrics thoughout the Kähler cone.
For most cases though, the existence of GQE metrics obtained in this way will
depend on the choice of Kähler class - in a different sense than our “smallness”
condition - as well as on the particular admissible manifold.

6. A non-existence example

Consider the admissible manifold

P(O ⊕ O (1, −1)) → �1 × �2,

where �1 and �2 are both compact Riemann surfaces of genus two and g1

and −g2 are both Kähler metrics of scalar curvature −4. Thus d0 = d∞ = 0,
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Â = A = {1, 2}, d1 = d2 = 1, s1 = −s2 = −2, and the Kähler cone is
parametrized by 0 < x1 < 1 and −1 < x2 < 0.

Using Proposition 6 in [2] one may calculate that the Futaki invariant of
J grad z equals (up to sign and scale)

(1 + x1 − x2)(x1 + x2)

(3 + x1x2)2
.

When x2 = −x1 this vanishes, in fact F[ω](�) vanishes for any � ∈
h(M) ∼= C×, and using Proposition 2.4 we see that any GQE metric in the
corresponding class must be CSC. In turn, any CSC Kähler metric must be
admissible [2], and thus k in equation (7) should equal zero. Calculating P(t)

in this case, we get

P(t) = 2t (3 − 3x2
1 − 4x3

1 − x2
1 (1 − 4x1 − x2

1 )t2)

x2
1 − 3

.

It is easy to see that
∫ 1
−1 P(t) dt = 0, so F(z) = ∫ z

−1 P(t) dt solves (4.ii) as
well as (8) and (4.iii). We calculate that

F(z) = (1 − z2)(6 − 7x2
1 − 4x3

1 + x4
1 − x2

1 (1 − 4x1 − x2
1 )z2)

2(3 − x2
1 )

.

For the interested reader, let us remark that F(z) is the extremal polynomial
introduced in [2].

By direct inspection (or by Theorem 2 in [2] and Theorem 5.2 in this text),
we see that if |x1| is sufficiently small, (4.i) holds and a CSC metric exists in
the corresponding Kähler class. However, for e.g., x1 = 0.8 (and x2 = −0.8)
(4.i) fails, and thus there is exists no GQE metric in the corresponding Kähler
class.

Notice, that off but near the line x2 = −x1, (e.g., x1 = 0.9 and x2 = −0.75)
one may check that there is no extremal Kähler metric in the corresponding
class. It can, however, be shown that in this case P(t) satisfies Lemma 4.4.
Hence this Kähler class admits an admissible GQE metric.

Remark 6.1. It seems to be “easier” to obtain existence of an admissible
GQE metric as compared to that of an (admissible) extremal Kähler metric in
a given admissible Kähler class. It is tempting to conjecture that the existence
of extremal Kähler metrics in admissible Kähler classes (i.e., positivity of
the extremal polynomial) implies the existence of an admissible GQE metric.
Such a result would yield Theorem 5.2 as a corollary of Theorem 2 from [2]. To
determine this one would have to study more closely the relationship between
the extremal polynomial from [2] and P(z).
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7. Appendix: other metrics

The methods of this paper can be used to give an existence result for another dis-
tinguished metric type, which interpolates between extremal and GQE metrics.
This type has been considered by Guan in [7]. Namely, the Killing potential φ

is now required to satisfy an equation stating that Scal −Scal is an affine com-
bination of �φ and φ. Among admissible metrics with an associated moment
map z, we therefore look for metrics satisfying

(15) Scal − Scal = k�z + b(z + l),

for some k, b, l ∈ R. The constant l guarantees that the right hand side of this
equation integrates to zero. It can be computed from admissible data using its
defining equation (15), along with the expressions appearing in the proof of
Proposition 6 of [2], giving l = −α1/α0, with αr = ∫ 1

−1 pc(t)t
r dt , r = 1, 2.

Using Appendix B of [2], we have

Lemma 7.1. The limit of l as xa → 0 for all a ∈ A is (d∞ − d0)/(2 +
d0 + d∞).

We now state an existence result for metrics satisfying (15).

Theorem 7.2. Let M = P(E0 ⊕ E∞) → S be an admissible manifold
arising from a base S with a local Kähler product of CSC metrics. Then, for
any given b ∈ R, the set of admissible Kähler classes admitting an admissible
metric satisfying (15) forms a nonempty open subset in the set of all admissible
Kähler classes. Any admissible Kähler class which is sufficiently small, that
is, for which |xa|, a ∈ A , are all sufficiently small, belongs to this subset.

Remark 7.3. Aside from generalizing Theorem 5.2, the above theorem
overlaps with Proposition 9 in [2], which says that for small classes we may
solve (15) for k = 0, obtaining an extremal Kähler metric. Moreover, a solution
with k = 0 can only exist with a particular – Kähler class dependent – value of
b (namely −A as defined in Proposition 6 of [2], see also equation (13) there).
Therefore, when b does not equal this value and is not zero, Theorem 7.2
guarantees existence of Kähler metrics which are of a new type, i.e., are neither
extremal nor GQE.

Below we only prove Theorem 7.2 in the case when the ranks of E0 and
E∞ are at least 2, i.e., when d0, d∞ > 0. The general argument is similar.

Proof. The ODE corresponding to (8) in this case, is

F ′′(z) − kF ′(z) = 2

(∑
a∈Â

dasaxa

1 + xaz

)
pc(z) −

(
2β0

α0
+ b(z + l)

)
pc(z),
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and again, assuming this equation holds, (4.ii) and (4.iii) are the necessary and
sufficient boundary conditions, which guarantee existence of a metric of type
(15) on a (compact) admissible manifold. Its solution F satisfies, as before,
F(z) = ekz

∫ z

−1 e−ktP (t) dt, where P(t) (given similarly to (10)) is such that

P ′(t) = 2

(∑
a∈Â

dasaxa

1 + xat

)
pc(t) −

(
2β0

α0
+ b(t + l)

)
pc(t).

For the function P(t), the analog of Lemma 4.3 holds (since the proof depends
largely on pc(t)). The analog of Lemma 4.4 also holds, for fixed b and l, with
the same proof. Hence what is left is to analyze lim P ′(t), taken as xa → 0 for
all a ∈ A . As in Case 1, we have lim P ′(t) = g(t)(1 + t)d0−1(1 − t)d∞−1, yet
here g(t) is the cubic polynomial

g(t) = 2d0(d0 + 1)(1 − t) + 2d∞(d∞ + 1)(1 + t)

− (1 + d0 + d∞)(2 + d0 + d∞)(1 − t2) − b(t + lim l)(1 − t2).

We have g(−1) = 4d0(d0 + 1) > 0, g(1) = 4d∞(d∞ + 1) > 0. Hence
(asymptotics of a cubic show that) one of the roots of g(t) lies outside (−1, 1),
and thus at most two lie in (−1, 1). Our proof will be complete once we
show that g(t) has exactly two simple roots in (−1, 1), since then the same
will hold for lim P(t), and we can proceed as in the proof of Theorem 5.2.
For this, it is enough to show that g(t0) < 0 for some t0 ∈ (−1, 1). Let
t0 = − lim l = (d0 − d∞)/(2 + d0 + d∞). This number clearly lies in (−1, 1),
and a direct calculation gives g(t0) = −(4(1+d∞)(1+d0))/(2+d0+d∞) < 0
as required. This completes the proof of non-emptiness and the inclusion of
sufficiently small admissible classes, using Lemma 4.4. Openness follows as
in Theorem 5.2.

Remark 7.4. It is not hard to check that the Kähler class in the example
from Section 6, which carries no GQE nor extremal Kähler metric, does in fact
have admissible metrics satisfying (15).
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