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TOPOLOGICAL EQUIVALENCE OF FINITELY
DETERMINED REAL ANALYTIC

PLANE-TO-PLANE MAP
GERMS

OLAV SKUTLABERG∗

Abstract
Generic smooth map germs (R2, 0) → (R2, 0) are topologically equivalent to cones of mappings
S1 → S1. We carry out a complete topological classification of smooth stable mappings of the
circle and show how this classification leads, via the result mentioned above, to a topological
classification of finitely determined real analytic map germs (R2, 0) → (R2, 0).

1. Introduction

Let f and g be smooth mappings between smooth manifolds N and P of
dimensions n and p, respectively. Let 0 ≤ r ≤ ∞. We say that f and g are
Ar -equivalent if there is a commutative diagram

N
f−−−−−→ P

↓h ↓k

N
g−−−−→ P

where h and k are Cr diffeomorphisms. Similarly, if f and g are smooth map
germs (N, p) → (P, q), then we say that f and g are Ar -equivalent if there
is a commutative diagram

(N, p)
f−−−−−→ (P, q)

↓h ↓k

(N, p)
g−−−−→ (P, q)

where h and k are germs of Cr diffeomorphisms. A0-equivalence is usually
referred to as topological equivalence. Let C∞(N, P ) be the set of proper
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smooth mappings N → P , and let C∞(n, p) (resp. O (n, p)) be the set of
smooth (resp. real analytic) map germs (Rn, 0) → (Rp, 0).

A subset � ⊂ C∞(n, p) (resp. O (n, p)) is proalgebraic if

� =
⋂
r≥1

(j r)−1(�r)

where each �r ⊂ J r(n, p) is an algebraic subvariety. A proalgebraic set � is
of infinite codimension if

lim
r→∞ cod �r = ∞.

A property of smooth (real analytic resp.) germs is said to hold in general if
the set of germs not having the property is contained in a proalgebraic set of
infinite codimension.

By the cone of a smooth map f : Sn−1 → Sp−1, we mean the map F :
Sn−1 × [0, 1)/Sn−1 × {0} → Sp−1 × [0, 1)/Sp−1 × {0} given by

F([(p, t)]) = [(f (p), t)].

Consider the space C∞(n, p) when n ≤ p, n 	= 4, 5 and (n, p) is in the ‘nice
range’. The ‘nice range’consists of the pairs of dimensions ofN andP such that
the set of proper smooth stable mappings N → P is dense in the set of proper
smooth mappings N → P . It is shown in [2] that for germs in C∞(n, p), the
property of having a realization which is topologically equivalent to the cone
of a smooth stable mapping Sn−1 → Sp−1 via homeomorphisms which are
diffeomorphisms outside the origin holds in general. We say that map-germs
with this property are generic. Thus, for n, p in this range, the classification of
generic map germs (Rn, 0) → (Rp, 0) with respect to topological equivalence
is contained in the classification of the smooth stable mappings Sn−1 → Sp−1

in the sense that the A0-equivalence class in C∞(n, p) of a generic map germ
corresponds to an A∞-equivalence class in C∞(Sn−1, Sp−1).

In this paper we carry out this classification in the real analytic case for
n = p = 2. In Section 2 we classify the smooth stable mappings S1 → S1 and
show how to generate complete lists of the A∞-equivalence classes of such
mappings. In the case of 1-dimensional spheres, the classification is essentially
a combinatorical problem. In Section 3 we classify finitely determined real
analytic map germs (R2, 0) → (R2, 0) using the above strategy. Our method
solves the so-called ‘recognition problem’: Given two finitely determined real
analytic map germs (R2, 0) → (R2, 0), are they A0-equivalent?

Some of the results in this article have been obtained independently by
Moya-Pérez and Nuño-Ballesteros in [6].
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2. Classification of smooth stable mappings S1 → S1

In this section we define invariants giving a complete classification of smooth
stable mappings S1 → S1. Let f : S1 → S1 be a smooth stable mapping.
Then f has only Morse singularities, �(f ) is finite and f has no singular
double points.

2.1. Definition of Ast(f )

Let P : [0, 2π) → S1 be the parametrization given by P(t) = (cos t, sin t). If
f has no singular points, then we define Ast(f ) = (p, p, . . . , p) where p is
repeated #f −1(1) times. Assume f has singular points si(f ), i = 1, . . . , n(f )

where k < l ⇒ P −1(sk(f )) < P −1(sl(f )). Let σi(f ) = f (si(f )) and
let f −1(σi(f )) \ {si(f )} = {pij (f )}mi

j=1 where k < l ⇒ P −1(pik(f )) <

P −1(pil(f )). Let

A(f ) = {a1, a2, . . . , aN } = P −1

( n⋃
i=1

({si(f )} ∪ {pij (f )}mi

j=1

))

where i < j ⇒ ai < aj and N = N(f ) = n(f ) + ∑n(f )

i=1 mi . Let �(f ) =
f (�(f )) = {σ1(f ), . . . , σn(f )} and define

B(f ) = {b1, b2, . . . , bn(f )} = P −1(�(f ))

where i < j ⇒ bi < bj .
Next, let

S = {s, p}, S∗ =
∞⋃
i=1

{si, pi}

and define maps T : A(f ) → S and T ∗ : A(f ) → S∗ given by

T (x) =
{

s, if P(x) = si(f );

p, if P(x) = pij (f )
, T ∗(x) =

{
si, if P(x) = si(f );

pi, if P(x) = pij (f )
.

Now, define the associated tuples of f to be the ordered N(f )-tuples

Ast(f ) = (
T (a1), T (a2), . . . , T (aN(f ))

)
and

Ast∗(f ) = (
T ∗(a1), T

∗(a2), . . . , T
∗(aN(f ))

)

Remark 2.1. Given Ast∗(f ) one can obtain Ast(f ) by just forgetting the
indices of the s and p in Ast∗(f ). Conversely, given Ast(f ), it is easy to find
the right indices for the s in Ast∗(f ) and then we can find the indices of p in
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Figure 1. Visualization of a map f : S1 → S1 with Ast(f ) = (p, s, s, p, p, s, s, p). The
curve c : [0, 2π) → R2 is such that c(t)/ ‖c(t)‖ = f (P (t)).

Ast∗(f ) as well, using the fact that at a singular point, f changes the behaviour
of being orientation preserving or orientation reversing. This enables us to find
the correct indices of p.

2.2. Legal permutations

Let Sk be the group of permutations of Z/kZ. Some permutations are of par-
ticular interest when trying to classify stable maps under A0-equivalence. We
start with some definitions.

Definition 2.2. An element σ ∈ Sk is a switch if there is some a ∈ Z such
that

σ([x]) = [x + a].

Let Swk be the set of switches in Sk .

Definition 2.3. The permutation r ∈ Sk given by r([x]) = [−x] is called
the reversation. Let Rk = {id, r}.

Definition 2.4. The subgroup Lk = {σ ◦ τ | σ ∈ Swk, τ ∈ Rk} of Sk is
called the group of legal permutations.

Let X be a set. For every k, let ek : {1, 2, . . . , k} → Z/kZ be the bijec-
tion x �→ [x]. We introduce an equivalence relation Ek on Xk by the rule
(t1, t2, . . . , tk) ∼ (t ′1, t ′2, . . . , t ′k) if there is a permutation ρ ∈ Lk such that
ti = t ′

e−1
k (ρ(ek(i)))

for all i = 1, . . . , k. Denote the Ek-equivalence class of t ∈ Xk

by [t]E . For ρ ∈ Sk and t ∈ Xk , let ρ ·t ∈ Xk be defined by (ρ ·t)i = te−1
k (ρ(ek(i)))

for i = 1, . . . , k. For simplicity we write ρ(i) for e−1
k (ρ(ek(i))).
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2.3. The main theorem of the classification

The aim of this section is to prove the following theorem.

Theorem 2.5. Let f, g ∈ C∞(S1, S1) be C∞-stable. Then

f ∼A∞ g ⇔ N(f ) = N(g) and [Ast(f )]E = [Ast(g)]E.

Proof. We prove the theorem when �(f ), �(g) 	= ∅. The same technique
applies when �(f ) = �(g) = ∅. The theorem is proved in three steps:

Step 1 is to prove that Ast(f ) = Ast(g) ⇒ f ∼A∞ g. Suppose Ast(f ) =
Ast(g). After composition with diffeomorphisms in source, we may assume
that A(f ) = A(g) and that (1, 0) is a regular point of f , and hence also of g.
A priori, it may happen that f is orientation preserving on P([a1(f ), a2(f )])
while g is not, but after composition with a diffeomorphism in target, we
may assume that f and g are orientation preserving on the same subset of
source, and that σi(f ) = σi(g) for all i as well. Finally, we may assume that
(1, 0) /∈ f (�(f )).

We are going to define a smooth homotopy ft of stable mappings of S1

starting at f and ending at g. The ft will be smoothly equivalent, and hence,
f ∼A∞ g. The standard technique for producing homotopies between map-
pings in Euclidean space by taking convex combinations of the mappings is
not applicable here, since S1 is not a vector space. Nevertheless, by choosing
appropriate charts, the same strategy may be applied to coordinate neighbour-
hoods, and our assumptions on f and g ensure that the resulting mapping is
in fact a smooth homotopy. The details are as follows.

Let n = n(f ) = n(g), and let N = N(f ) = N(g). Let τ ∈ Sn be such
that bi = bi(f ) = P −1(στ(i)(f )). Notice that b1 > 0 by the assumption
(1, 0) /∈ �(f ). Let

0 < v <
1

2
min

i
(bi+1 − bi, b1, 2π − bn)

and define

�i : P(bi − v, bi+1 + v) → (−v, bi+1 − bi + v), P (x) �→ x − bi

for i = 1, . . . , n − 1. For i = n we define

�n : S1 \ P([b1 + v, bn − v]) → (−v, b1 + 2π − bn + v)

by

P(x) �→
{

2π − bn + x, x ∈ [0, b1 + v)

x − bn, x ∈ (bn − v, 2π).
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The mappings �i, i = 1, . . . , n are well defined by the choice of v. Together
with their domains of definition, they cover S1 with local charts.

Let

0 < u <
1

2
min

i
(ai+1 − ai, a1, 2π − aN)

and let Ui = P(ai − u, ai+1 + u), i = 1, . . . , N − 1 and UN = S1 \ P([a1 +
u, aN − u]). In the same way, let Vi = P(bi − v, bi+1 + v), i = 1, . . . , n − 1
and Vn = S1 − P([b1 + v, bn − v]). We can now define our homotopy. By
continuity of f and g, if u is small enough, then for all i there is a j such
that both f (Ui) and g(Ui) are contained in Vj . More precisely; there exists
ρ : {1, . . . , N} → {1, . . . , n} such that for all i, f (Ui) ∪ g(Ui) ⊂ Vρ(i).
For even smaller u, we can ensure that cl(f (Ui) ∪ g(Ui)) ⊂ Vρ(i). Let F :
S1 × (−ε, 1 + ε) → S1 be defined by

F(p, t) = ft (p)

= �−1
ρ(i)(t�ρ(i)(g(p)) + (1 − t)�ρ(i)(f (p))), p ∈ Ui.

We need to show that ft (p) is well defined on S1 and that ft (p) is smooth. The
continuity of �ρ(i) and the observation that t�ρ(i)(g(p))+ (1− t)�ρ(i)(f (p))

lies between �ρ(i)(g(p)) and �ρ(i)(f (p)) for 0 ≤ t ≤ 1, shows that ft is well
defined on Ui when ε is chosen small enough.

Next we show that the definitions of ft agree on Ui ∩ Uj . It is enough to
check the combinations (i, j) = (N, 1) and (i, j) = (i, i + 1) for i < N .
The other combinations of i and j give Ui ∩ Uj = ∅. We first assume that
1 ≤ ρ(i) = ρ(j) − 1 < n. Writing out the definitions,

�−1
ρ(i)(t�ρ(i)(g(p)) + (1 − t)�ρ(i)(f (p)))

= �−1
ρ(i)(t[P

−1(g(p)) − bρ(i)] + (1 − t)[P −1(f (p)) − bρ(i)])

= �−1
ρ(i)(t[P

−1(g(p))] + (1 − t)[P −1(f (p))] − bρ(i))

= P(t[P −1(g(p))] + (1 − t)[P −1(f (p))])

= �−1
ρ(j)(t�ρ(j)(g(p)) + (1 − t)�ρ(j)(f (p))).

For ρ(i) = n and ρ(j) = 1, we have

�−1
1 (t�1(g(p)) + (1 − t)�1(f (p)))

= P(t[P −1(g(p))] + (1 − t)[P −1(f (p))])
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and

�−1
n (t�n(g(p)) + (1 − t)�n(f (p)))

= �−1
n (t[P −1(g(p)) + 2π − bn] + (1 − t)[P −1(f (p)) + 2π − bn])

= �−1
n (t[P −1(g(p))] + (1 − t)[P −1(f (p))] + 2π − bn)

= P(t[P −1(g(p))] + (1 − t)[P −1(f (p))]).

This shows that ft is well defined on S1 in this case. The case 1 < ρ(i) =
ρ(j) + 1 ≤ n and the case ρ(i) = 1, ρ(j) = n may be checked in a similar
way.

It remains to show that ft has finitely many singularities, all of Morse
type, and no singular double points. In fact, ft has the same singular set and
discriminant set as f, g. To actually show this, we need to work with charts in
the source too. Let

θi : Ui → (−u, ai+1 − ai + u), P (x) �→ x − ai

for i = 1, . . . , N − 1. For i = N we define

θN : UN → (−u, a1 + 2π − aN + u)

by

P(x) �→
{

2π − aN + x, x ∈ [0, a1 + u)

x − aN, x ∈ (aN − u, 2π).

The charts (θi, Ui) cover S1. Now, we may compute

(2.1) �ρ(i) ◦ ft ◦ θ−1
i (x) = t�ρ(i)(g(θ−1

i (x))) + (1 − t)�ρ(i)(f (θ−1
i (x))).

By our assumptions, f and g are equally oriented at every regular point, and
therefore the derivatives with respect to x of two terms on the right side of
(2.1) have the same sign, and hence, �(ft ) = �(f ) = �(g). Moreover, by
definition of Morse singularities, we must have

d2

dx2
�ρ(i)(f (θ−1(x))) 	= 0 and

d2

dx2
�ρ(i)(g(θ−1(x))) 	= 0

whenever θ−1(x) ∈ �(f ) and these second derivatives must have the same
sign at singular points. It follows that in these charts, the second derivative of
ft with respect to x is different from 0 at every singular point. Therefore, ft has
only Morse singularities. From the definition of ft , we see that f (p) = g(p)

implies that f (p) = g(p) = ft (p). It follows that ft has no singular double
points, and hence, ft is stable.



168 olav skutlaberg

Step 2. Assume that Ast(f ) = ρ · Ast(g) for some ρ = σ · τ ∈ LN(g),
where σ ∈ SwN(g), τ ∈ RN(g). If τ = id, then there is some θ = θ(σ ) such
that if

Rσ : S1 → S1

is given by
eiθ �→ ei(θ+θ(σ )),

then
Ast(f ) = Ast(g ◦ Rσ )

and by Step 1 there are diffeomorphisms h and k such that the following
diagram commutes.

S1 S1

S1

S1 S1

g

Rσ

g◦Rσ

h

f

k

Similarly, if σ = id and τ = r ∈ RN(g), then, if

M : S1 → S1

is given by
eiθ �→ e−iθ ,

then
Ast(f ) = Ast(g ◦ M)

and by Step 1 again, we have a commutative diagram:

S1 S1

S1

S1 S1

g

RM

g◦M

h

f

k
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If ρ = σ ◦ r for some σ ∈ SwN(g), then

Ast(f ) = σ · Ast(g ◦ M) = Ast(g ◦ M ◦ Rσ ),

which again, by the above arguments, implies that f ∼A∞ g. Altogether we
have shown that [Ast(f )]E = [Ast(g)]E ⇒ f ∼A∞ g.

Step 3. Suppose that f and g are A∞-equivalent. Then there are diffeo-
morphisms h and k of S1 such that k ◦f = g ◦h. Since a singularity of Morse
type is topologically different from a regular germ, it is clear that h maps
�(f ) to �(g), and that k maps �(f ) to �(g), and it follows that f −1(�(f ))

is mapped onto g−1(�(g)) by h, and hence, N(f ) = N(g). If h is orient-
ation preserving and h(s1(f )) = si(g), then Ast(g) = ρ · Ast(f ) where
ρ([j ]) = [j + i − 1]. If h is orientation reversing, then Ast(g) = ρ ′ · Ast(f )

where ρ ′([j ]) = [i − j + 1]. It follows that [Ast(f )]E = [Ast(g)]E .

2.4. Feasible tuples

By Theorem 2.5, the problem of listing all topological equivalence classes of
smooth stable maps S1 → S1 corresponds to the problem of listing all En-
equivalence classes of associated tuples to such maps. Every non-singular map
f : S1 → S1 is clearly equivalent to the map eiθ �→ einθ where n = #f −1(1).
To generate such a list for maps with singularities, we will make use of another
version of our tuples. If f : S1 → S1 is a smooth stable map with �(f ) 	= ∅,
then [Ast(f )]E may be represented by a tuple in {s, p}N(f ) having an s as the
last component. This may be done in several different ways. Let A′ be such
a representation. Let ρ : {1, . . . , n(f )} → {1, . . . , N(f )} be such that ρ is
increasing and A′

ρ(i) = s. Set ρ(0) = 0 and let ci = ρ(i) − ρ(i − 1) − 1 for
i = 1, . . . , n(f ). Define

Ast#(A′) = (c1, c2, . . . , cn(f )) ∈ Nn(f )

0 .

Let
Ast#(f ) = [Ast#(A′)]E

where A′
n(f ) = s. It is not difficult to see that this definition of Ast#(f ) is

unambiguous.

Remark 2.6. Clearly, Theorem 2.5 is still valid for maps with singularities
if we replace Ast with Ast#.

Given an element (x1, x2, . . . , xn) ∈ Nn
0, we want to determine whether or

not there is a smooth stable map f : S1 → S1 such that

Ast#(f ) = [(x1, . . . , xn)]E.
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Let f be a stable map with Ast#(f ) = [(x1, . . . , xn)]E . We say that f is of
type (n, m) if n(f ) = n and N(f ) − n(f ) = m. Thus, if f is of type (n, m),
then n is an even number and

x1 + x2 + · · · + xn = m.

These two properties arise from observing that f has an even number of sin-
gular points, and that N(f ) − n(f ) is the number of regular preimage points
of the discriminant set. Another property of f is that f restricted to its singular
set is injective, and this fact should be reflected in [(x1, . . . , xn)]E . Indeed, the
curve P(x), x ∈ [0, 2π), passes xi points in f −1(�(f )) \ �(f ) when x runs
through I = [P −1(si−1), P

−1(si)). Therefore, the curve f (P (x)) passes xi

singular values in the same interval of parameters. Thus, if σi−1 = P(bj ) and
f is orientation preserving on P(int I ) and

k = (remainder of the division xi by n) + 1,

then σi = P(bj+k).
In general, let R : Z → {1, 2, . . . , n} be given by R(x) = (remainder of the

division x by n)+1. Let τ ∈ Sn be as in the proof of Theorem 2.5, i.e. such that
P(bi) = στ(i). Assuming that (x1, x2, . . . , xn) = Ast#(Ast(f )), σ1 = P(bj )

and that f is orientation reversing on P(P −1(s1), P
−1(s2)), then we see that

σk = στ(R(j−x1−1+∑k
i=1(−1)i+1[xi+1]))

for k = 1, . . . , n. Moreover, since we chose representatives with s in the last
component in the definiton of Ast#, we have

σn = P(bR(j−x1−1)).

In order for all these equations to be satisfied, the set

R′ =
{ k∑

i=1

(−1)i+1[xi + 1] ; k = 1, . . . , n

}

has to be a complete remainder system modulo n, i.e., the canonical map
R′ → Z/nZ is surjective. Furthermore,

n∑
i=1

(−1)i+1[xi + 1] ≡ 0 mod n.

Definition 2.7. An element A = (x1, . . . , xn) ∈ Nn
0 is feasible of type

(n, m) if n is an even number and the following condtions are satisfied:
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(1)
∑n

i=1 xi = m.

(2)
∑n

i=1(−1)i+1xi ≡ 0 mod n.

(3)
{∑k

i=1(−1)i+1[xi + 1] ; k = 1, . . . , n
}

is a complete remainder system
modulo n.

Remark 2.8. There are no feasible tuples of type (n, m) if m is odd, because
the numbers m = ∑n

i=1 xi and
∑n

i=1(−1)i+1xi have the same parity, and by 2
in the definition, the latter number is even, since n is even.

Proposition 2.9. There are no feasible tuples of type (n, m) if n ≡ 0
mod 4 and m ≡ 2 mod 4.

Proof. Assume that (x1, . . . , xn) is feasible of type (n, m). Let Lk =∑k
i=1(−1)i+1(xi + 1). Notice that

2

(n−1∑
i=1

(−1)i+1Li

)
− Ln = x1 + · · · + xn + n = m + n.

Since Ln ≡ 0 mod n,

(2.2) 2
n−1∑
i=1

(−1)i+1Li ≡ m mod n.

Since {Lk; k = 1, . . . , n} is a complete remainder system modulo n, we have

(2.3) 2
n∑

i=1

Li ≡ 2
n−1∑
i=0

i ≡ n(n − 1) ≡ 0 mod n.

Addition of (2.2) and (2.3) yields

(2.4) 4(L1 + L3 + L5 + · · · + Ln−1) ≡ m mod n.

Hence, there is an integer K such that

4(L1 + L3 + L5 + · · · + Ln−1) − m = Kn.

It follows that 4|n ⇒ 4|m.

The next theorem justifies the term ‘feasible tuple’.

Theorem 2.10. Let A ∈ Nn
0 . There exists a smooth stable map f : S1 → S1

with Ast#(f ) = A if and only if A is feasible of type (n, m) for some number
m.
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Proof. The forward implication follows from the above discussion. For the
other implication, let A = (x1, . . . , xn) ∈ Nn

0 be a feasible tuple of type (n, m).
We need to construct a smooth stable map f : S1 → S1 with Ast#(f ) = A.
We construct a smooth map fA : [0, 2π) → R such that f = P ◦ fA ◦ P −1

is smooth and stable and satisfies Ast#(f ) = A. It is natural to define fA to
consist of line segments outside some small open intervals about the singular
points and consist of a modified parabola around the singular points. This
strategy calls for some kind of gluing process, but we can not use a standard
partition of unity, because we must have full control over the singularities of f̃ ,
and a partition of unity might introduce unwanted singularites. Instead, we will
construct fA explicitly, using smooth “bump functions” to glue the different
parts of the function together.

Let

j (x) =
{

e−(x−1)−2 · e−(x+1)−2
, x ∈ (−1, 1)

0, otherwise

and let

k(x) =
∫ x

−1 j (t)dt∫ 1
−1 j (t)dt

.

Define

l(x) =
⎧⎨
⎩

x, x ≤ −1

x − 2xk(x), x ∈ (−1, 1)

−x, x ≥ 1.

Then

l′(x) =
⎧⎨
⎩

1, x ≤ −1

1 − 2k(x) − 2xk′(x), x ∈ (−1, 1)

−1, x ≥ 1,

and

l′′(x) =
⎧⎨
⎩

0, x ≤ −1

−4k′(x) − 2xk′′(x), x ∈ (−1, 1)

0, x ≥ 1,

Since k is flat at −1 and 1, l is a C∞ function on R. Also, l is increasing for
x ≤ 0 and decreasing for x ≥ 0. Since l′(0) = 0 and l′′(0) = −4k′(0) < 0,
this means that l has its only extreme point at x = 0 and this is a global
maximum and a Morse singularity. The definition of fA is the following. For
k = 1, . . . , n, let

Xk =
k∑

i=1

(xi + 1), Yk =
k∑

i=1

(−1)i+1(xi + 1), Jk = [
Xk − 1

2 , Xk + 1
2

)
.
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Let
I0 = [

1
2 , X1 − 1

2

)
and for k = 1, . . . , n − 1 let

Ik = [
Xk + 1

2 , Xk+1 − 1
2

)
.

For a set B ∈ R, let χB be the corresponding characteristic function which is
1 on B and 0 elsewhere. Put X0 = Y0 = 0. For k = 1, . . . , n, let

Fk(x) = [
Yk−1 + (−1)k−1(x − Xk−1)

]
χIk−1

Gk(x) =
[
Yk + (−1)k+1

2
l(2(x − Xk))

]
χJk

.

Let

H(x) =
n∑

i=1

(Fk(x) + Gk(x)).

Finally, let

fA(x) = 2π

n
H

(
Xn

2π
x + 1

2

)
.

With this definition of fA, let f = P ◦ fA ◦ P −1. It is messy, but straight-
forward to see that f is smooth and that Ast#(f ) = A.

Let f be a smooth stable map of the circle. All the topological properties
of f are coded in Ast#. We show how |deg f | can be retrieved from Ast#(f ).

Proposition 2.11. Let Ast#(f ) = (x1, x2, . . . , xn). Then

|deg f | =
∣∣∣∣1

n

n∑
i=1

(−1)i+1xi

∣∣∣∣.

Proof. Let A = Ast#(f ), and let fA be as in the proof of Theorem 2.10.
Then deg(f ) = deg(P ◦fA ◦P −1). Certainly, fA is homotopic to f̃A given by

f̃A(x) = 1

n

( n∑
i=1

(−1)i+1xi

)
x.

by the homotopy F(x, t) = tfA(x) + (1 − t)f̃A(x). Clearly, p ◦ f̃A ◦ P −1 has
degree 1

n

∑n
i=1(−1)i+1xi , and this finishes the proof.
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2.5. Tables of feasible tuples

A complete classification of smooth stable maps S1 → S1 can be given by
listing all the feasible tuples up to legal permutations. This task is well suited
for recursive computer programming. Table 1 and Table 2 give MATLAB
generated lists of feasible tuples and numbers of topological types for different
(n, m).

(n, m)
Number of topo-

Feasible tuples
logical types

(4, 4) 2 (1, 2, 1, 0), (2, 0, 2, 0)

(4, 8) 5
(5, 2, 1, 0), (1, 6, 1, 0), (2, 4, 2, 0),
(6, 0, 2, 0), (4, 1, 2, 1)

(9, 2, 1, 0), (5, 6, 1, 0), (1, 10, 1, 0),

(4, 12) 12
(6, 4, 2, 0), (2, 8, 2, 0), (5, 2, 5, 0),
(8, 1, 2, 1), (4, 5, 2, 1), (6, 1, 4, 1),
(10, 0, 2, 0), (6, 0, 6, 0), (4, 2, 4, 2)

(6, 6) 1 (2, 0, 2, 0, 2, 0)

(6, 8) 2 (3, 1, 0, 3, 1, 0), (2, 0, 1, 4, 1, 0)

(6, 10) 3
(3, 0, 4, 2, 1, 0), (1, 4, 0, 4, 1, 0),
(3, 1, 2, 1, 3, 0)

Table 1. Table of topological types

(n, m)
Number of topo-

(n, m)
Number of topo-

logical types logical types

(4, 16) 21 (8, 8) 1
(4, 20) 36 (8, 12) 12
(4, 24) 54 (8, 16) 34
(4, 28) 80 (10, 10) 1
(6, 12) 9 (10, 12) 0
(6, 14) 10 (10, 14) 3
(6, 16) 16 (10, 16) 6

Table 2. Number of topological types

Our tables lack the number of feasible tuples of type (2, m) because of the next
proposition.

Proposition 2.12. The number of E2-equivalence classes of feasible tuples
of type (2, m) is

⌊
m
4

⌋ + 1.
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Proof. Assume (x1, x2) is feasible of type (2, m). Then

x1 + 1 ≡ 1 mod 2

x1 − x2 ≡ 0 mod 2.

These equations are satisfied if and only if x1 is even and x1 and x2 have the
same parity. The feasible tuples of type (2, m) are therefore

{
(2i, m−2i); i =

0, 1, . . . , m
2

}
. There are m

2 + 1 elements in this set, and (2i, m − 2i) ∼E2

(m − 2i, 2i) for all i. If m = 4k for some k ∈ N, then m
2 + 1 = 2k + 1 is odd,

and the number of E2-equivalence classes is k + 1 = �m
4 � + 1. If m = 4k + 2,

then m
2 + 1 = 2k + 2 is even, and the number of equivalence classes is still

k + 1 = �m
4 � + 1.

3. Classification of finitely determined real analytic map
germs (R2, 0) → (R2, 0)

Let O = O (2, 2) be the set of real analytic map germs (R2, 0) → (R2, 0). Let
Og = Og(2, 2) ⊂ O (2, 2) be the set of finitely determined map germs. By
Theorem 0.5 of [7], finite determinacy holds in general in O (2, 2).

3.1. Geometric properties

Finitely determined real analytic plane-to-plane germs have the following well
known geometric properties.

Proposition 3.1. For every f ∈ Og there is an open neighbourhood U of
0 in R2 and a real analytic representative of f , f̂ : U → R2 such that

(1) f̂ −1(0) = {0},
(2) f̂ |(�(f̂ ) \ {0}) is injective,

(3) every p ∈ �(f̂ ) \ {0} is a fold point.

Proof. The proof of (2) and (3) goes as the proof of Lemma 6.2 in [1] with
semialgebraic replaced by semianalytic. To prove (1), note that f̂ −1(0)\{0} is a
semianalytic set. If 0 is in its closure, then by the Curve Selection Lemma, there
is a real analytic curve γ : [0, ε) → R2 with γ (0) = 0, γ (0, ε) ∈ f̂ −1(0)\{0}.
Hence, f̂ is identically 0 along γ , but this contradicts both (2) and (3).

For the rest of this section, let f ∈ Og, let U be a small ball around 0 and
let f̂ : U → R2 be a real analytic representative of f such that (1)–(3) of
Proposition 3.1 hold.

Lemma 3.2. If U is small enough, then �(f̂ ) \ {0} is empty or a 1-
dimensional manifold which has only finitely many topological components.
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Proof. By (3), if p ∈ �(f̂ )\{0}, then p is a fold point, and the singular set
is diffeomorphic to the real line in a neighbourhood of a fold point. Also, �(f̂ )\
{0} is a semianalytic set, and hence, its intersection with a small neighbourhood
of 0 has only finitely many topological components.

Let Dε = {p ∈ R2 | ‖p‖ ≤ ε} and let Sε = {p ∈ R2 | ‖p‖ = ε} = ∂Dε .
Define S̃ε(f̂ ) = f̂ −1(Sε) and D̃ε(f̂ ) = f̂ −1(Dε).

Lemma 3.3. If U is small enough, then f̂ � Sδ for small enough δ > 0.

Proof. By Lemma 3.2 there are only finitely many branches of �(f̂ )\{0}.
By the Curve Selection Lemma, for each component Bi of �(f̂ ) \ {0} we
may choose an analytic curve γi : [0, ε) → R2 such that γ (0) = 0 and
γi(0, ε) ⊂ Bi . The curves f̂ ◦ γi are analytic and by (1) of Proposition 3.1,
(f̂ ◦ γi)(t) 	= 0 when t > 0 and therefore (f̂ ◦ γi) � Sδi

for small δi > 0. If
δ < mini δi , then f̂ |�(f̂ ) � Sδ . This proves the lemma, since f̂ � Sδ at any
regular point of f̂ because the dimensions of source and target are equal.

The proof of Lemma 3.3 actually gives us more information. Let �(f̂ ) =
f̂ (�(f̂ )).

Corollary 3.4. If U is small enough, then �(f̂ ) \ {0} is empty or a
1-dimensional smooth manifold such that �(f̂ ) � Sδ for small δ.

Let θ : R2 → R be given by θ(p) = ‖p‖2.

Lemma 3.5. If δ is small enough, then ∇(θ ◦ f̂ )(p) 	= 0 for all p ∈ Dδ \{0}.
Proof. If f̂ =

(
f1

f2

)
, then θ ◦ f̂ = f 2

1 + f 2
2 . We compute

∇(θ ◦ f̂ )(p) = 2

(
f1

∂f1

∂x
+ f2

∂f2

∂x
, f1

∂f1

∂y
+ f2

∂f2

∂y

)
(p)

= 2 ( f1(p) f2(p) ) · Df̂ (p)

If p /∈ �(f̂ ), then f̂ (p) 	= 0 and Df̂ (p) is invertible, and hence, ∇(θ ◦
f̂ )(p) 	= 0. Assume that p ∈ �(f̂ ) and ‖p‖ 	= 0. By (1), f̂ (p) 	= 0 and by
the above,

∇(θ ◦ f̂ )(p) = 0 ⇔ f̂ T (p)Df̂ (p) = 0

⇔ f̂ (p) ⊥ Im Df̂ (p)

⇔ Df̂ (p)(R2) + R

{( −f2(p)

f1(p)

)}
	= R2.
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Note that
( −f2(p)

f1(p)

)
is a tangent vector at f̂ (p) to the circle S‖f̂ (p)‖. It therefore

follows from Lemma 3.3 that Df̂ (p)(R2) + R
{( −f2(p)

f1(p)

)}
= R2. This proves

the lemma.

Lemma 3.6 (Lojasiewicz). There is a ρ > 0 and constants C, r > 0 such
that for p ∈ Dρ , ‖f̂ (p)‖ ≥ C ‖p‖r .

Proof. Remember that 0 is an isolated zero of f̂ and apply IV 4.1 of [5].

Lemma 3.7. For small ε > 0, S̃ε(f̂ ) is a compact 1-manifold diffeomorphic
to S1 and 0 is in the bounded component of R2 \ S̃ε(f̂ ).

Proof. Let ρ > 0 be such that ‖f̂ (p)‖ ≥ C ‖p‖r for all p ∈ Dρ . Such a
ρ exists by Lemma 3.6. If ε ≤ Cρr , then S̃ε ⊂ Dρ is closed and bounded, i.e.
compact. By Lemma 3.3, if ρ is small enough, then f � SCρr in which case
S̃ε is a 1-dimensional smooth manifold.

Every component of S̃ε is diffeomorphic toS1 by the classification of smooth
compact 1-manifolds. Let C be one such component. Then C is an equipo-
tensial curve of θ ◦ f̂ . If 0 is not in the bounded component of R2 \ C, then
θ ◦ f̂ has an extremal point p in the bounded component of R2 \C, and hence,
∇(θ ◦ f̂ )(p) = 0. According to Lemma 3.5, this is not possible for small ρ. It
follows that 0 is in the bounded component of R2 \ C.

Assume that C and D are different components of S̃ε(f̂ ). Then there are
two bounded components of R2 \ (C ∪D), one of them containing 0. The other
component must contain an extremal point of θ ◦ f̂ which is impossible for
small ρ.

Figure 2 below illustrates some of the properties we have proven so far.

S̃ε

D̃δ

f

�( f )
Sε

Dδ

�( f )

Figure 2. Illustration of Lemma 3.2, Lemma 3.3, Corollary 3.4 and Lemma 3.7.

Let Eδ = {p ∈ R2 | ‖p‖ < δ} = int Dδ and let Ẽδ(f̂ ) = f̂ −1(Eδ).
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Lemma 3.8. For small δ > 0 the map f̂ |Ẽδ \ {0} : Eδ \ {0} → Eδ \ {0} is
proper.

Proof. By Lemma 3.6 there are C, r, ρ > 0 such that ‖f̂ (p)‖ ≥ C ‖p‖r

for all p ∈ Dρ . Assume that δ is so small that max
{
δ,

(
δ
C

) 1
r
}

< ρ. Redefine

f̂ putting f̂ := f̂ |Eρ . Then D̃δ(f̂ ) ⊂ D
( δ

C )
1
r

⊂ Eρ , and hence, D̃δ(f̂ ) is

compact.
Let K ⊂ Eδ \ {0} be a compact set. Let K̃ = (f̂ |Ẽδ \ {0})−1(K) and let

(pn) be a sequence in K̃ . Then (pn) is a sequence in D̃δ(f̂ ), and hence, there
is a subsequence pn(k) of pn and a point p ∈ D̃δ(f̂ ) such that pn(k) → p as
k → ∞. Then f̂ (pn(k)) → f̂ (p) ∈ K , and hence, p ∈ K̃ . It follows that K̃ is
compact and that f̂ |Ẽδ \ {0} is proper.

Proposition 3.9. For small ε > 0, the restriction f̂ |S̃ε(f̂ ) : S̃ε(f̂ ) → Sε

is stable.

Proof. It is enough to show that f̂ |S̃ε(f̂ ) has only Morse singularities and
no singular double points. Corollary 3.4 implies that S̃ε(f̂ ) � �(f̂ ) close to
the origin. We also observe that �(f̂ |S̃ε(f̂ )) ⊂ �(f̂ ). In fact, �(f̂ |S̃ε(f̂ )) =
�(f̂ ) ∩ S̃ε(f̂ ). Let p ∈ �(f̂ |S̃ε(f̂ )), and let β be a centered chart about p in
S̃ε(f̂ ), and let π be the projection of R2 onto the line L perpendicular to �(f̂ )

at f̂ (p). The restriction of π to a neighbourhood of f̂ (p) in Sε is a chart about
f̂ (p) in Sε . Let � and � be diffeomorphisms of neighbourhoods of p, f̂ (p)

in U , R2 respectively such that f̂ = �◦F ◦� where F(x, y) = (x, y2). Such
diffeomorphisms exist because p is a fold point of f̂ . Now, choose a linear
isomorphism T : L → R which identifies L with R such that T (π(f̂ (p))) = 0.

Let α = (α1, α2) = � ◦ β−1 and let A = T ◦ π ◦ �. Then f̂ |S̃ε(f̂ ) ∼A

A ◦ F ◦ α. Now we compute

(A ◦ F ◦ α)′(t) = Axα
′
1(t) + 2Ayα2(t)α

′
2(t)

and

(A ◦ F ◦ α)′′(t) = [Axxα
′
1(t) + 2Axyα2(t)α

′
2(t)]α

′
1(t) + Axα

′′
1 (t)

+ [Ayxα
′
1(t) + 2Ayyα2(t)α

′
2(t)] · 2α2(t)α

′
2(t)

+ Ay[2(α′
2(t))

2 + 2α2(t)α
′′
2 (t)].

Here all the partial derivatives of A are to be taken at F ◦ α(t). Since there is
no neighbourhood of p in S̃ε(f̂ ) restricted to which f̂ |S̃ε(f̂ ) is injective and
since S̃ε(f̂ ) � �(f̂ ), we see from the normal form F of folds that α′

1(0) = 0
and α′

2(0) 	= 0. We have also chosen α2(0) = 0. The choice of L gives
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Ax(F (α(0)) = 0. Therefore we must have Ay(F (α(0))) 	= 0. We get

(A ◦ F ◦ α)′′(0) = 2Ay((F (α(0))) · (α′
2(0))2 	= 0.

This shows that A ◦ F ◦ α has a Morse singularity at 0, and hence, f̂ |S̃ε(f̂ )

has a Morse singularity at p.

3.2. Generic mappings as cones of smooth stable mappings between
spheres

In this section we follow the steps in [2] pp. 246–247.
Let f ∈ Og and let f̂ : U → R2 be a fixed representative of f with U

so small that the lemmas of the previous section hold. We simplify notation
putting S̃ε := S̃ε(f̂ ) and similar simplifications for D̃ε(f̂ ) and Ẽε(f̂ ). Let δ be
so small that ∇(θ ◦ f̂ ) 	= 0 on D̃δ \{0} and let ε, α > 0 be such that ε +α < δ.
Let ϕp(t) be the flowline of ∇(θ ◦ f̂ ) passing through p, and let tp be such
that ϕp(tp) ∈ S̃ε . Define maps

φ : Ẽε+α − {0} → S̃ε,

� : Ẽε+α − {0} → S̃ε × (0, ε + α),

� : Eε+α − {0} → Sε × (0, ε + α)

by
φ(p) = ϕp(tp)

�(p) = (φ(p), ‖f̂ (p)‖)
�(q) =

(
ε

q

‖q‖ , ‖q‖
)

Both � and � are certainly diffeomorphisms, and we can define

F : S̃ε × (0, ε + α) → Sε × (0, ε + α)

by F = � ◦ f̂ ◦�−1. Then F(S̃ε ×{t}) ⊂ Sε ×{t} and the following diagram
commutes.

Eε+α − {0} f̂−−−−−→ Eε+α − {0}

↓� ↓�

S̃ε × (0, ε + α) F−−−−−→ Sε × (0, ε + α)

Let ft : S̃ε → Sε be defined by F(p, t) = (ft (p), t). Then ft is a smooth
homotopy and fε = f̂ |S̃ε . If we let π : R2 → R be the projection onto the first
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factor, we get
ft = π ◦ F |S̃ε × {t}

= π ◦ � ◦ f̂ ◦ �−1|S̃ε × {t}
= π ◦ � ◦ f̂ |S̃t ◦ �−1|S̃ε × {t}.

Thus, ft is C∞-equivalent to f̂ |S̃t . It follows from Proposition 3.9 that all f̂ |S̃t

and hence, every ft is smoothly stable. Hence, there are C∞ diffeomorphisms

h′
t : S̃ε → S̃ε

and
h′′

t : Sε → Sε

such that f̂ |S̃ε ◦ h′
t = h′′

t ◦ ft and we can choose h′
t and h′′

t such that h′
ε = id

and h′′
ε = id and the mappings

H ′ : S̃ε × (0, ε + α) → S̃ε × (0, ε + α)

and
H ′′ : Sε × (0, ε + α) → Sε × (0, ε + α)

defined by H ′(x, t) = (h′
t (x), t) and H ′′(y, t) = (h′′

t (y), t) are diffeomorph-
isms. It follows that f̂ |Ẽε+α \ {0} ∼A∞ F = (ft , id) ∼A∞ (f̂ |S̃ε(f̂ ), id) and
that f̂ is A0-equivalent to the cone of the map f̂ |S̃ε(f̂ ) for small ε.

3.3. The main theorem

According to Proposition 3.9, if f ∈ Og, then f̂ |S̃ε : S̃ε(f̂ ) → Sε is stable
for small ε. Also, the homotopy ft of Section 3.2 is a smooth homotopy of
C∞ stable mappings, and hence, they are all C∞-equivalent. Therefore, re-
garding f̂ |S̃ε as a map between 1-spheres, we can associate a tuple Ast(f )

unambiguously to f by the rule Ast(f ) = [Ast(f̂ |S̃ε)]E , the equivalence class
of Ast(f̂ |S̃ε) under the equivalence relation introduced in Section 2.2. In the
same way, we define Ast#(f ) = [Ast(f̂ |S̃ε)]E when �(f ) 	= {0}. It is clear
that

Ast#(f ) = Ast#(g) ⇔ Ast(f ) = Ast(g).

Theorem 3.10. If f, g ∈ Og and �(f ) \ {0}, �(g) \ {0} 	= ∅, then

f ∼A0 g ⇔ Ast(f ) = Ast(g).

Proof. Assume Ast(f ) = Ast(g). Choose representatives f̂ and ĝ for f

and g and construct the homotopies ft and gt as in Section 3.2. Clearly, for
small ε and α, f̂ |Ẽε+α(f̂ )\{0} ∼A∞ F ∼A∞ (fε, id) and ĝ|Ẽε+α(ĝ)\{0} ∼A∞
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G ∼A∞ (gε, id). Now, by hypothesis and Theorem 2.5, there are suitable
homeomorphisms kε and hε (which can be chosen to be smooth) such that

fε = kε ◦ gε ◦ h−1
ε .

It follows that F ∼A∞ G, and hence, f ∼A0 g.
Conversely, assume that f ∼A0 g. Then f and g have representatives f̂

and ĝ which are topologically equivalent to cones of maps of S1 and there
are homeomorphisms �(f̂ ) ≈ �(ĝ), �(f̂ ) ≈ �(ĝ) and therefore also
f̂ −1(�(f̂ )) \ �(f̂ ) ≈ ĝ−1(�(ĝ)) \ �(ĝ). By Lemma 3.3, Corollary 3.4 and
Lemma 3.7, when we pass to the topologically equivalent cones of maps of
circles, these sets appear as disjoint curves in source and target intersecting
each t-level exactly once. It is clear that this implies that [Ast(f̂ |S̃ε(f̂ ))]E =
[Ast(ĝ|S̃ε(ĝ))]E and hence, that Ast(f ) = Ast(g).

Remark 3.11. The implication

Ast(f ) = Ast(g) ⇒ f ∼A0 g

is also true when �(f ) \ {0} = �(g) \ {0} = ∅ with the same proof as above.

3.4. Stable perturbations

The notion of stable perturbations of generic smooth map-germs is introduced
in [3] and is defined as follows: Let f and f̂ be as in Section 3.1 and let δ be
so small that both f̂ |Ẽδ \ {0} : Ẽδ \ {0} → Eδ \ {0} and f̂ |S̃δ : S̃δ → Sδ are
C∞ stable. By Proposition 3.9 such δ exist. Let f̃ : Ẽδ → Eδ be a stable map
such that {p ∈ Ẽδ | f̃ (p) 	= f̂ (p)} ⊂ int Ẽδ . Such a map f̃ is called a stable
perturbation of f .

In [3] it is shown that the number κ(f̃ ) of cusps of f̃ has to satisfy the
formula

κ(f̃ ) ≡ 1 + 1

2
# {branches of �(f ) \ {0}} + deg f mod 2.

Proposition 2.11 enables us to reformulate this formula for κ(f̃ ) in terms of
the components of Ast f .

Proposition 3.12. Let f ∈ Og with Ast#(f ) = [x1, . . . , xn]E and let f̃ be
a stable perturbation of f . Then the number κ(f̃ ) of cusps of f̃ satisfies

κ(f̃ ) ≡ 1 + n

2
+ 1

n

∣∣∣∣
n∑

i=1

(−1)i+1[xi + 1]

∣∣∣∣ mod 2.
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Proof. By Theorem 2.1 of [3],

κ(f̃ ) ≡ 1 + 1

2
# {branches of �(f ) \ {0}} + deg f.

By definition, n = # {branches of �(f ) \ {0}} and furthermore,
|deg f̂ |S̃ε(f̂ )| = |deg f | ≡ deg f mod 2. By Proposition 2.11, |deg f̂ |S̃ε(f̂ )|
= 1

n

∣∣∑n
i=1(−1)i+1[xi + 1]

∣∣ and this finishes the proof.

3.5. Examples and tables

When calculating Ast, one has to check that the germ in question has only fold
singularities outside the origin. Let ω : R2 → R2 be a smooth map and let
p ∈ �(ω). It is shown in [1], Section 3, that p is a fold point if and only if

Dω(p)

( ∂
∂y

Jω(p)

− ∂
∂x

Jω(p)

)
	=

(
0

0

)
.

For simplicity, put

∇⊥Jω(p) =
( ∂

∂y
Jω(p)

− ∂
∂x

Jω(p)

)
.

Example 3.13. Let ω(x, y) = (x, y3 + xky). We find Jω(x, y) = 3y2 +
xk , and therefore, �(ω) is given by 3y2 + xk = 0. We see that k has to be odd
in order for �(ω) \ {0} to be non-empty. Assume that k is odd. It is clear that
ω−1(0) = {0}.

The branches of �(ω) is given by

y = ± 1√
3
(−xk)

1
2 .

Let z(x) = 1√
3
(−xk)

1
2 . We compute

ω(x, ±z(x)) =
(

x, ∓ 2

3
√

3
(−xk)

3
2

)
.

This shows that ω has no singular double points. Also,

Dω(x, y)∇⊥Jω(x, y) =
(

6y

0

)

for (x, y) ∈ �(ω). This shows that ω has only fold singularities outside the
origin.
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To find the branches of ω−1(�(ω))\�(ω), let x < 0 and consider fx(y) =
y3 + xky. We want to solve the equations

fx(y) = fx(z(x))

and
fx(y) = fx(−z(x)).

Since fx is a polynomial of degree 3 in y and ±z(x) are local extremal points
of fx , there are y1(x) < −z(x) with fx(y1(x)) = fx(z(x)) and y2(x) > z(x)

with fx(y2(x)) = fx(−z(x)). No other solution exist. We need to show that
y1(x) → 0 as x → 0 and y2(x) → 0 as x → 0. We know that f (x, ±z(x)) →
0 as x → 0. Therefore, fx(y1(x)) = (y1(x))3 + xky1(x) → 0 as x → 0 and
hence, y1(x) → 0 as x → 0. The same argument applies to y2. Altogether, we
have proved that

[Ast(ω)]E = [(p, s, s, p)]E.

In [4], T. Gaffney presents a table ([4], 9.14) with normal forms of topo-
logically distinct map germs C2 → C2. Using Theorem 3.10, we are able to
reduce this list when we think of it as a list of map germs R2 → R2. Table 3
is Gaffney’s list of germs with the Ast calculated. We see that many of the
A0-equivalence classes in Table 3 are the same in the real case. In the real
case, Table 3 reduces to Table 4.

Type [Ast]E

(1) (x, y) [(p)]E
(2) (x, y2) [(s, s)]E
(3) (x, xy + y3) [(p, s, s, p)]E
(4)k (x, y3 + xky) [(p, s, s, p)]E
(5) (x, xy + y4) [(s, s)]E
(6) (x, xy + y5) [(p, s, s, p)]E
(7) (x, xy + y6) [(s, s)]E
(8) (x, xy + y7) [(p, s, s, p)]E
(9)2k+1 (x, xy2 + y4 + y2k+1) [(s, p, s, s, p, s, p, p)]E
(10) (x, xy2 + y5) [(p, s, s, p, p, s, s, p)]E
(11) (x, x2y + y4) [(s, s)]E
(12) (x, xy2 + y6 + y7) [(s, p, s, s, p, s, p, p)]E
(13) (x, x2y + xy3 + y5) [(p)]E
(14) (x, x3y + y4 + x3y2) [(s, s)]E

Table 3. Gaffney’s table
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Type Ast

(1) (x, y) [(p)]E
(2) (x, y2) [(s, s)]E
(3) (x, xy + y3) [(p, s, s, p)]E
(4) (x, xy2 + y5) [(p, s, s, p, p, s, s, p)]E
(5) (x, xy2 + y6 + y7) [(s, p, s, s, p, s, p, p)]E

Table 4. Reduced table
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