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EXTREMAL w-PLURISUBHARMONIC FUNCTIONS
AS ENVELOPES OF DISC FUNCTIONALS:
GENERALIZATION AND APPLICATIONS
TO THE LOCAL THEORY

BENEDIKT STEINAR MAGNUSSON

Abstract

We generalize the Poletsky disc envelope formula for the function sup{u € Y7 (X, w); u < ¢}
on any complex manifold X to the case where thereal (1, 1)-currentw = w| —w» is the difference of
two positive closed (1, 1)-currents and ¢ is the difference of an w-upper semicontinuous function
and a plurisubharmonic function.

1. Introduction

Many of the extremal plurisubharmonic functions studied in pluripotential
theory are given as suprema of classes of plurisubharmonic functions satisfying
some bound which is given by a function ¢. Some of these extremal functions
can be expressed as envelopes of disc functionals. The purpose of this paper is to
generalize a disc envelope formula for extremal w-plurisubharmonic functions
of the form sup{u € PF¥H (X, w); u < ¢} proved in [7]. Our main result is
the following:

THEOREM 1.1. Let X be a complex manifold, w = w; — w; be the difference
of two closed positive (1, 1)-currents on X, ¢ = ¢, — @, be the difference of
an w;-upper semicontinuous function ¢ in L} (X) and a plurisubharmonic
Sfunction ¢,, and assume that {u € PLH (X, w); u < @} is non-empty. Then
the function sup{lu € PSH (X, w);u < @} is w-plurisubharmonic and for
every x € X \ sing(w),

sup{u(x); u € PLH (X, w), u < ¢}
_ inf{—Rf*w(O) 4 /(p o fdos f € sy, £(0) = x}.
T

If {u € P (X, w); u < @} is empty, then the right hand side is —oo for
every x € X. Here oy denotes the set of all closed analytic discs in X, o is
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EXTREMAL w-PLURISUBHARMONIC FUNCTIONS 297

the arc length measure on the unit circle T normalized to 1, and Ry, is the
Riesz potential in the unit disc D of the pull-back f*w of the current @ by the
analytic disc f.

Observe that the supremum on the left hand side defines a function on X, but
the infimum on the right hand side defines a function of x only on X \ sing(w).
The reason is that for f € /x with f(0) = x € sing(w) both terms R+, (0)
and [; ¢ o f do may take the value +o0 or the value —oo and in these cases
it is impossible to define their difference in a sensible way. The infimum is
extended to X by taking limes superior as explained in Section 5.

The theorem generalizes a few well-known results. Our main theorem in
[7] is the special case ¢, = 0 and w, = 0.

The case ¢ = 0 and w = 0 is Poletsky’s theorem, originally proved
by Poletsky [8] and Bu and Schachermayer [1] for domains X in C*, and
generalized to arbitrary manifolds by Léarusson and Sigurdsson [5], [6] and
Rosay [9]. The case ¢; = 0 and w = 0 is a result of Edigarian [3]. The case
¢> = 0and w = 0 with a weak notion of upper semi-continuity was also treated
by Edigarian [2]. The case when ¢; = ¢» = 0, w; = 0 and w, = dd°v, for
a plurisubharmonic function v on X, was proved by Larusson and Sigurdsson
in [5], [6].

We combine the last case to the case when w = 0 in the following corollary,
which unifies the Poisson functional and the Riesz functional from [5].

COROLLARY 1.2. Assume v is a plurisubharmonic function on a complex
manifold X and let ¢ = @1 — @, be the difference of an upper semicontinuous
Junction ¢ and a plurisubharmonic function @,. Then

sup(u(x); u € PIYH(X),u < ¢, L) > L(v))
=inf{iflog|-|A<vof>+f<pofdo;f € x, f(0) =x}.
27 Jp .

Where Z is the Levi form. This follows simply from the fact that if v =
—dd‘v, then PLH (X, w) = {u € PF¥H(X); L (u) > F(v)} and the Riesz
potential Ry, (0) is given by the first integral on the right hand side. Further-
more, since w; = 0 the function ¢, is w;-usc if and only if ¢, is usc.

The plan of the paper is the following. In Section 2 we introduce the ne-
cessary notions and results on w-upper semicontinuous functions, w-plurisub-
harmonic functions, and analytic discs. In Section 3 we prove Theorem 1.1 in
the special case when w = 0. In Section 4 we treat the case when the currents
w; and w, have global potentials. Section 5 contains an improved version
of the Reduction Theorem used in [7] which we use to reduce the proof of
Theorem 1.1 in the general case to the special case of global potentials.
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2. The w-plurisubharmonic setting

First a few words about notation. We assume X is a complex manifold of
dimension n. Then &/x will be the closed analytic discs in X, i.e. the family
of all holomorphic mappings from a neighbourhood of the closed unit disc, D,
into X. The boundary of the unit disc D will be denoted by T and o will be the
arc length measure on T normalized to 1. Furthermore, D, = {z € C; |z] < r}
will be the disc centered at zero with radius r.

We start by seeing that if w is a closed, positive (1, 1)-current on a manifold
X, i.e.acting on (n — 1, n — 1)-forms, then locally we have a potential for w,
that is for every point x there is a neighbourhood U of x and a psh function
Y : U — RU {—o00} such that dd°i{y = w. This allows us to work with things
locally in a similar fashion as the classical case, w = 0. We will furthermore
see that when there is a global potential, that is, when i can be defined on all
of X, then most of the questions about w-plurisubharmonic functions turn into
questions involving plurisubharmonic functions.

Here we let d and d° denote the real differential operators d = 9 + 9 and
d® = i(d — d). Hence, in C we have ddu = Au dV where dV is the standard
volume form.

PrROPOSITION 2.1. Let X be a complex manifold with the second de Rham
cohomology H*(X) = 0, and the Dolbeault cohomology H®V (X) = 0. Then
every closed positive (1, 1)-current w has a global plurisubharmonic potential
Y 1 X — RU{—o00}, such that dd° = w.

PROOF. Since w is a positive current it is real, and from the fact H>(X) = 0
it follows that there is a real current 7 such that dn = w. Now write n = '+
!, where n'? € A} (X, C) and n*' € A{,(X, Q). Note that n*' = »'.0

since 7 is real. We see, by counting degrees, that 37%! = »%? = 0. Then since

H©OD(X) = 0, there is a distribution x on X such that 9 = n'. Hence
n =%+5,u = L + du.
If we set v = (u — 1) /2i, then
w=dn=dOm+ ) = (0 +0)(0f + 0pn) = 90(u — ) = dd“y.

Finally, v is a plurisubharmonic function since w is positive.
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If we apply this locally to a coordinate system biholomorphic to a polydisc
and use the Poincaré lemma we get the following.

COROLLARY 2.2. For a closed, positive (1, 1)-current w there is locally a
plurisubharmonic potential \ such that dd“{ = w.

Note that the difference of two potentials for w is a pluriharmonic function,
thus C*. So the singular set sing(w) of w is well defined as the union of all
¥ ~1({—o0}) for all local potentials v of w.

In our previous article [7] on disc formulas for w-plurisubharmonic func-
tions we assumed that w was a positive current. Here we can use more general
currents and in the following we assume w = w; — w,, where w; and w, are
closed, positive (1, 1)-currents. We have plurisubharmonic local potentials
and ¥, for w; and w,, respectively, and we write the potential for w as

Yi1(x) — Yrp(x) if x ¢ sing(w;) N sing(w,)
VO = limsup y1 () — ¥2(3)  if x € sing(e)) N sing(2)
y—>x

and the singular set of w is defined as sing(w) = sing(w;) U sing(w;).

The reason for the restriction to w = w; — w,, which is the difference
of two positive, closed (1, 1)-currents, is the following. Our methods rely on
the existence of local potentials which are well defined psh functions, not
only distributions, for we need to apply Riesz representation theorem to this
potential composed with an analytic disc. With v = w; — w, we can work
with the local potentials of w; and w, separately, and they are are given by psh
functions.

DEFINITION 2.3. A function u : X — [—o00, 400] is called w-upper semi-
continuous (w-usc) if for every a € sing(w), lim SUp y\ ino(w)5:>4 #(2) = u(a)
and for each local potential i of w, defined on an open subset U of X, u + ¢
is upper semicontinuous on U \ sing(w) and locally bounded above around
each point of sing(w).

Equivalently, we could say that lim supg,. .., #(2) = u(a) for every
a € sing(w) and u + i extends as

limsup (# 4+ ¥)(2), for a € sing(w)

sing(w)Fz—a

to an upper semicontinuous function on U with values in R U {—oo}. This
extension will be denoted (1 4+ ). Note that (u + )T is not the upper
semicontinuous regularization (u + v)* of the function u + 1, but just a way
to define the sum on sing(w) where possibly one of the terms is equal to 400
and the other might be —oo.
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DEFINITION 2.4. An w-usc function u : X — [—o00, +00] is called w-
plurisubharmonic (w-psh) if (u + ¥)" is psh on U for every local potential ¥
of w defined on an open subset U of X. We let 57 (X, w) denote the set of
all w-psh functions on X.

Similarly we could say that u is w-psh if it is w-usc and dd‘u > w.

As noted after Definition 2.1 in [7] the conditions on the values of u at
sing(w) are to ensure that u is Borel measurable and that u is uniquely determ-
ined from its values outside of sing(w).

If o’ and w are cohomologous then the classes ¥ (X, ') and PFH (X,
w) are essentially translations of each other.

PROPOSITION 2.5. Assume both w and o’ are the difference of two positive,
closed (1, 1)-currents. If the current w — ' has a global potential x = x; —
X2 1 X — [—00, +00], where xi and x, are psh functions, then for every
u' € PLIH (X, o) the function u defined by u(x) = u'(x) — x(x) for x ¢
sing(w’) U sing(w) extends to an unique function in P¥ (X, w) and the map
PIH (X, ') > PSH (X, w), u' +— u is bijective.

PrOOF. Let ¢' = | — ¥/} be a local potential of ’. The functions ¥} =
Y1+ x1 and ¥, = V] + x» are well defined as the sums of psh functions. Then
¥ = Y — ¥, extended over sing(w) as before, is a local potential of w since
w=w +ddy.

Take u' € PS# (X, o) and define a function u on X by

' + ) (x) — ¥(x) for x € X \ sing(w)

limsup (' + ") (y) — ¥ (y) forx € sing(w)
sing(w) Fy—x

u(x) =

This definition is independent of ¥’ since any other local potential of o’ differs
from ¢/’ by a continuous pluriharmonic function which cancels out in the
definition of u, due to the definition of .

Then u + ¢ = (u' + ¥')" on X \ sing(w) where the sum is well defined,
since neither u nor i are +oo there. The right hand side is usc so u + v is
usc on X \ sing(w). But (' + v')" is usc on X so the extension (u + ¥)" also
satisfies (u + )" = (u’ + ¥')" and is therefore psh since u’ € P¥H (X, o).
This shows that u € P (X, w).

This map from L7 (X, ') to PS7 (X, w) isinjective because u = u’'— x
almost everywhere and the extension over sing(w) U sing(w’) is unique.

By changing the roles of w and ' we get an injection in the opposite
direction which maps v € %7 (X, w) toafunctionv’ € ¥ (X, w) defined
as v’ = v+ x outside of sing(w)Using(w’). These maps are clearly the inverses
of each other because if we apply the composition of them to the function
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u € P¥¥H (X, ') we get an w-upper semicontinuous function which satisfies
(' — x) + x = u’ outside of sing(w) U sing(w’). Since this function is equal
to u’ almost everywhere they are the same, which shows that the composition
is the identity map.

PROPOSITION 2.6. If ¢: X — [—o00, +00] is an w-usc function we define
Fy =lu € PIH (X, 0);u < @) If Fopy # 0 then sup F,, , € PIH (X,
w), and consequently sup %, , € F, ¢.

PROOF. Assume v is alocal potential of w definedon U C X.Foru € &, ,,
the function (« + )" is a psh function on U such that (u + )" < (¢ + ¥)T.
The supremum of the family {(u + ¥)";u € Foy) C PSH (U) therefore
defines a psh function Fy (x) = (sup{(u + V) (x);u e Fue})* on U, with
Fy < (¢ + ¥)". We want to emphazise the difference between  and *. The
extension of the function u + ¥ over sing(w), where the sum is possibly not
defined, is denoted by (z+1)" but * is used to denote the upper semicontinuous
regularization of a function.

Since the difference of two local potentials is a continuous function, the
function (sup{(u + ¥)";u € Fuw,e})* — ¥ is independent of . This means

that
S=Fy, —, on U \ sing(w),

extended over sing(w) using lim sup, is a well-defined function on X.
Clearly S is w-psh since (S + ¥)" = Fy, which is psh, and S satisfies

SUpFpo+ V¥ <Fy=S+v¢ <9+, on U \ sing(w).
This implies
(1) sup Fpp < S < @,

on U \ sing(w). The later inequality holds also on sing(w) because of the
definition of § at sing(w) and the w-upper semicontinuity of ¢.
Furthermore, if u € %, , and a € sing(w), then

u(a) = limsupu(x) < limsup[sup %, ,(x)] < limsup S(x) = S(a).

x—>a x—a x—a

Taking supremum over u then shows that the first inequality in (1) holds also
on sing(w). Hence, sup#,, < Sand § € #,,, thatissupF,, = S €
PLI (X, w).

PROPOSITION 2.7. If u, v € PS# (X, w) then max{u, v} € P¥H (X, w).

ProOF. For any local potential ¢ we know that max{u, v} + ¢ = max{u +
¥, v+ }isuscoutside of sing(w) and locally bounded above around each point
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of sing(w). Therefore, the extension (max{u, v} + ¥) is equal to max{(u +
¥)T, (v + )} which is psh, hence max{u, v} is w-psh.

It is important for us to be able to define the pullback of w by a holomorphic
disc because it is needed to include w in the disc functional for the case of w-psh
functions in Chapters 4 and 5.

Assume f(0) ¢ sing(w) and let i be a local potential of w. We define f*w,
the pullback of w by f, locally by dd°(y o f). Since the difference of two local
potentials is pluriharmonic, this definition is independent of the choice of 1,
and it gives a definition of f*w on all of D. Note that ¢ o f is not identically
Fo0 since f(0) ¢ sing(w).

If ® = w; — wy, then we could as well define the positive currents f*w; and
f*w,, using Y| and Y, respectively, and then define f*w = f*w; — fF*w;.
This gives the same result since ¥ o f = ¥ o f — ¥, o f almost everywhere.

ProOPOSITION 2.8. The following are equivalent for a function u on X.
() uisin PLH (X, w).

(i) u is w-usc and f*u € FH (D, f*w) forall f € Ax such that (D) ¢
sing(w).

The proof is the same as the proof of Proposition 2.3 in [7], where w, = 0.

3. Proof in the case ® =0

We start by proving the main theorem in the case when w; = w; = 0. Note that
if w; = 0 then w-upper semicontinuity is equivalent to upper semicontinuity.

In the following we assume ¢ is anusc L/, function and ¢, is a psh function
on a complex manifold X. We define the function ¢ : X — [—00, +00] by

p1(x) — @a2(x) if p2(x) # —00
) = limsup ¢1(y) —2(y) if @2(x) = —o0.

@7 (—00)Fy—x

Define &/x as the set of all closed analytic discs in X, that is holomorphic
functions from a neighbourhood of the closed unit disc in Cinto X. The Poisson
disc functional H, : olx — [—00, 4+00] of ¢ is defined as H,(f) = fT Qo
fdo for f € oy, and the envelope EH, : X — [—00, +00] of H,, is defined

as
EH,(x) = inf{H,(f); f € s/x, f(0) = x).

The definition of the function ¢ should be viewed alongside Lemma 3.3,
which states roughly that it suffices to look at discs not lying entirely in

¢~ ({—o0}).
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Note that ¢ is a Llloc function and that the Poisson functional satisfies H, =
H, — H,,, when H, (f) # —oo or Hy,(f) # —ooc.

We start by showing that Theorem 1.1 holds true on an open subset X of C"
using convolution.

Let p : C" — R be a non-negative C* radial function with support in the
unit ball B in C" such that fB pdXl = 1, where A is the Lebesgue measure in
C".Foranopenset X C C"welet X5 = {x € X;d(x, X°) > 8} and if x isin
LIIOC(X) we define the convolution ys(x) = fB x(x —38y)p(y) dr(y) which is
a C* function on X;. It is well known that if x € ¥ (X) then xs > x and

Xs N\ x asé N\ 0.

LEMMA 3.1. Assume X C C"isopenand ¢ = @1 — @y asabove. If f € x,,
then there exists g € Sfx such that f(0) = g(0) and H,(g) < H,,(f), and
consequently, EH,|x, < EH,,.

PRrROOF. Since ¢ is usc and ¢, is psh the function (¢, y) — @(f(¢) — §y)
is integrable on T x B. By using the change of variables y — ty where r € T
and that p is radial we see that

H,,(f) = / / o(f (1) — 8y)p(y) di(y) do (1)
TJB

=//90(f(t) —8ty)p(y)dr(y)do(t)
TJB

= /(/w(f(t) —6ty)do(t)>p(y) dr(y).
B T

From measure theory we know that for every measurable function we can find
a point where the function is less than or equal to its integral with respect to a
probability measure. Applying this to the function y +— fT o(f(@)—45ty)do(t)
and the measure p dA we can find yo € B such that

Hy,(f) = f o(f(t) = 8ty0) dor (1) = H, (2),
T

if g € Ay is defined by g(¢) = f(¢t) — Styp. It is clear that g(0) = f(0).
By taking the infimum over f, we see that EH,|x, < EH,,.

Note that EH,|x, is the restriction of the function EH,, to X, but not the
envelope of the functional H, restricted to ./x,. There is a subtle difference
between these two, and in general they are different. The function EH,,, how-
ever, is only defined on X since the disc functional H,, is defined on .y .
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LEMMA 3.2. If ¢ = @1 — @, as above, then for every f € A there is a limit
lims_,0 Hy, (f) < H,(f) and it follows that for every x € X,

lim EH,, (x) = EH, (x).

PrOOF. Let f € oy, B > H,(f), and & be such that f(D) € Xj,, and
assume ¢, o f # —o0. Since ¢; is plurisubharmonic we know that ¢, 5 > ¢,
on X, for all § < §, so

Hyy(f) = Hyy,(f) — Hyp, (f) < / sup @1 do(r) — H,,(f).
T B(f(1),8)

The upper semicontinuity of ¢; implies that the integrand on the right side is
bounded above on T and also that it decreases to ¢;(f(¢)) when § — 0. It
follows from monotone convergence that the integral tends to fT pro fdo =
H, (f) when § — 0, that is the right side tends to H,(f) < B. We can
therefore find §; < §; such that

/ sup @i o fdo — Hy,(f) < B, forevery 6 < §.
T B(f(1).8)

However, if ¢, o f = —o0, then by monotone convergence

Hy, (f) =//§0(f(t) —8y)p(y) dr(y)do(t)
TJB

5/ sup wda(t)=/ sup (91 — @) do(t)
T B(f(1),0) T B(f(1),8)\¢; ' (—0)

29 [ 1im sup(p1(y) — @2(y)) do (t) = Hy(f).
T y=>f@®)

This along with the fact that EH,(x) < EH,, (x) by Lemma 3.1 shows that
hmg_,o EH% = EHW

LEMMA 3.3. If ¢ = @ — @, as before, f € slx, f(D) C ¢;'(—00),
and ¢ > 0, then there is a disc g € x such that g(D) ¢ (p{l(—oo) and
Hy(g) < H,(f) +e.

Proor. By Lemma 3.2 we can find 6 > 0 such that H,, (f) < H,(f) + «.
Let B = {y € B; {p(f (1) — 8ty);t €D} ¢ goz_l(—oo)}, then B \ B is a zero
set and as before there is yy € B such that

/ o(f (1) — Sty0) do (1) < / /B o(f (1) — 819)p () dA(y) do(t) = Hy, (f).
T T
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We define g € /x by g(t) = f(t) — 8tyo. Then H,(g) < H,(f) + ¢.

LEMMA 3.4. Let ¢ be usc on a complex manifold X and F € O(D, x Y, X),
where v > 1 and Y is a complex manifold, then y — H,(F(-,y)) is usc.
Furthermore, if ¢ is psh then this function is also psh.

Proor. Fix a point xy € Y and a compact neigbourhood V of xy. The
function ¢ o F is usc and therefore bounded above on T x V so by Fatou’s
lemma

lim sup H, (F (-, x)) < /limsupgo(F(t,x)) do (1)
T

Z/f/’(F(hxo))dU(l)
T
= H(p(F('9x0))1

which shows that the function is usc.
Assume ¢ is psh and let 4 € Ay. Then

/Hw(F(',h(S)))dG(S) =//w(F(t,h(S)))dU(t)dU(S)
T TJT
=//GO(F(t,h(S)))dG(S)dO(t)
TJT

> /(ﬂ(F(t,h(O)))dG(t)
T
= Hy(F (-, h(0))),

because for fixed ¢, the function s — @ (F (¢, h(s))) is subharmonic.

PROOF OF THEOREM 1.1 FOR AN OPEN SUBSET X OF C" AND w = 0. We
start by showing that the envelope is usc.

Since ¢; is continuous we have by Poletsky’s result [8] that EH,, is psh, in
particular it is usc and does not take the value 4-o0o.

Now, assume x € X and let § > 0 be so small that x € X;. By the fact that
EH, < +oocand EH,|x, < EH, we see that EH,, is finite.

For every B > EH,(x), we let § > 0 be such that EH,,(x) < B. Since
EH,, is upper semicontinuous there is a neighbourhood V' C X; of x where
EH,, < B.ByLemma 3.1 we see that EH, < 8 on V, which shows that EH,,
isS upper semicontinuous.

Now we only have to show that £H,, satisfies the sub-average property.

Fix a point x € X, an analytic disc & € &y, h(0) = x and find §; such that
h(D) C Xs,. Note that the function EH,, is psh by Poletsky’s result [8] since
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s is continuous. Then Lemma 3.1 and the plurisubharmonicity of EH,, gives
that for every § < o,

EH,(x) < EH,,(x) < / EH,, o hdo.
T

When § — 0 Lebesgue’s theorem along with Lemma 3.2 implies that
EH,(x) < [, EH, o hdo.

Since EH,(x) < H,(x) = ¢(x), where H,(x) is the functional H, evalu-
ated at the constant disc # — x, we see that EH, < sup Z,.

Also, if u € #, and f € oy, then

u(f ) < /u o fdo < /wo fdo = Hy(f).
T T

Taking supremum over u € %, and infimum over f € .%/x we get the opposite

inequality, sup #, < EH,, and therefore an equality.

For the case when X is a manifold we need the following theorem of Larus-
son and Sigurdsson (Theorem 1.2 in [6]).

THEOREM 3.5. A disc functional H on a complex manifold X has a plur-
isubharmonic envelope if it satisfies the following three conditions.

(1) The envelope E®*H is plurisubharmonic for every holomorphic sub-
mersion ® from a domain of holomorphy in affine space into X, where
the pull-back ®* H is defined as ®*H (f) = H(® o f) for a closed disc
f in the domain of .

(i1) Thereis an open cover of X by subsets U with a pluripolar subset Z C U
such that for every h € oy with h(D) ¢ Z, the function w +— H (h(w))
is dominated by an integrable function on T.

(iii) If h € Ax, w € T, and € > 0, then w has a neighbourhood U in C such
that for every sufficiently small closed arc J in T containing w there is
a holomorphic map F : D, x U — X, r > 1, such that F(0, ) = h|y
and

1

2 o)

/H(F(‘, 1)) do(t) < EH(h(w)) + &,
JJ

where the integral on the left hand side is the lower integral, i.e. the
supremum of the integrals of all integrable Borel functions dominated
by the integrand.

PrROOF OF THEOREM 1.1 FOR A GENERAL COMPLEX MANIFOLD X ANDw = 0.
We have to show that H,, satisfies the three condition in Theorem 3.5. Condition
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(i) follows from the case above when X C C" and condition (ii) if we take
U= XandZ = ¢~ ' ({+00}). Then H,(h(w)) = ¢(h(w)) which is integrable
since h(0) ¢ Z.

To verify condition (iii), let 2 € o/x, w € T and 8 > EH,(h(w)). Then
there is a disc f € &y, f(0) = h(w) such that H,(f) < . Now look at the
graph {(z, f(t))} of f in C x X and let & denote the projection from C x X
to X. As in the proof of Lemma 2.3 in [5] there is, by restricting the graph to
adisc D,, r > 1, a bijection ® from a neighbourhood of the graph onto D"*!
such that (¢, f(¢)) = (¢, 0). In order to clarify the notation we write 0 for
the zero vector in C".

If we define ¢ = ¢ o o @', then H,(f) = H;((-,0)), where (-, 0)
represents the analytic disc t — (¢, 0, ..., 0). The function ¢ is defined on an
open subset of C"*! which enables us to smooth it using convolution as in the
first part of this section.

By Lemma 3.2, there is § € 10, 1[ such that Hg, ((:, 0)) < B. Since @ is
continuous, the function x — Hg, ((-, 0) + x) is continuous. Then there is a
neighbourhood U of 0 in D7 _;, such that Hg, ((-, 0)+x) <Bforx e U. Let
J C Tbe a closed arc such that 1(J) C U, where h(t) = ®(0, h(r)).

With the same argument as in the proof of Lemma 3.1, we find yp € B C
C"*! such that

1 ~
B> T])/]H@((-,O)Jrh(t))dﬂ(t)

1
= —f(/ /@((&0) + h(1) —5sy)dG(S)d0(t))p(y)dk(y)
o(J) Je\Js Jr

> L//‘ﬁ((s,owrfz(t) —3sy0)do (s) do (1).
o) J; )¢

We define the function F € O(D, x U, X) by
F(s,t) =m o ®7'((s,0) + ®(0, h(t)) — 85Y0)
and the set U = h~' (w (@~ (0))).
Then ¢((s, 0) + h(t) — 8syg) = @(F (s, t), and we conclude that

! 1
B> W/J/;w(F(s’t))dd(s)dG(t) = m/JHw(F('J))dU(t).
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4. Proof in the case of a global potential

We now look at the case when w = w; — w; has a global potential, and show
how Theorem 1.1 then follows from the results in Section 3. We first assume
¢, = 0, that is the weight ¢ = ¢ is an w;-usc function.

The Poisson disc functional from Section 3 is obviously not appropriate
here since it fails to take into account the current w. The remedy is to look at
the pullback of w by an analytic disc. If f is an analytic disc we define a closed
(1, 1)-current f*w on D in exactly the same way as in [7].

Assume f(0) ¢ sing(w) and let ¥ be a local potential of w. We define
f*w locally by dd“(¥ o f). Because the difference of two local potentials
is pluriharmonic then this is independent of the choice of ¥, so it gives a
definition of f*w on all of D. Note that ¥ o f is not identically £o0 since
£(0) ¢ sing().

We could as well define the positive currents f*w; and f*w,, using ¥; and
Y, respectively, and then define f*ow = f*w; — f*w,. This gives the same
result since ¥ o f = Y; o f — ¥, o f almost everywhere.

It is also possible to look at f*w as a real measure on D, and as before, we
let Ry« be its Riesz potential,

3) Ry (2) =fGD(Z,')d(f*w),
D

where Gp is the Green function for the unit disc, Gp(z, w) = % log %
Since f is a closed analytic disc not lying in sing(w) it follows that f*w is a
Radon measure in a neighbourhood of the unit disc, therefore with finite mass
on D and not identically Fo00.

It is important to note that if we have a local potential ¥ defined in a
neighbourhood of f (D), then the Riesz representation formula, Theorem 3.3.6

in [4], at the point O gives

“4) ¥ (f(0)) = R+ (0) +/T¢ o fdo.

Next we define the disc functional. We let ¢ be an w;-usc function on X
and fix a point x € X \ sing(w). Let f € “x, f(0) = x and letu € %, ,,
where #,, , = {u € PSIH (X, ); u < ¢}. By Proposition 2.8, u o f is f*w-
subharmonic on D, and since the Riesz potential Ry, is a global potential for
f*w on D we have, by the subaverage property of u o f + Ry+,, that

u(f(O) + Ry (0) < / wo fdo + / Ry, do.
T T
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Since, Ry+, = 0on T and u < ¢, we conclude that

u(x) < =Ry, (0) + /(p o fdo.
T

The right hand side is independent of u so we can define the functional
H,,: dx — [—00, +00] by

Hooy(f) = —Ryo(0) + f vo fdo.
T

By taking the supremum on the left hand side over all u € ¥ (X, w),
u < @, and the infimum on the right hand side over all f € &y, f(0) = x we
get the inequality

(5) sup #,.o < EH, ,, on X \ sing(w).
We wish to show that this is an equality. By applying H,, , to the constant discs

in X \ sing(w) we see that the right hand side is not greater than ¢. If we show
that EH,, , is w-psh then it is in #,, , and we have an equality above.

LEmMMA 4.1. If f € x and ¥ = | — Y, is a potential for w in a
neighbourhood of f (D) then

Hy o (f) + ¥ (f(0) = Hpyy (f)-

Proor. By the linearity of Ry, and Riesz representation (4) of f*vr; and
[ we get

oy (F) + ¥ (F(0)) = — Ry (0) + / 0o fdo+(fO)
T
T
+ R (0) + / W1 — ) o fdo
T

:/T((p+1/;1—1p2)ofdG:H¢+w(f)-

PrROOF OF THEOREM 1.1 IN THE CASE WHEN w; AND w; HAVE GLOBAL
POTENTIALS AND ¢, = 0. By Lemma 4.1 for x € X \ sing(w),

EH, o (x)+V (x) = inf{H, o (/) +V (x); f € Zx, f(0) =x} = EHypy (x).
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Since ¢ + ¥ = (¢ + ¥1) — ¥, is the difference of an usc function and a
plurisubharmonic function, the result from Section 3 gives that EH,, ., is psh
and equivalently EH,, y is w-psh.

5. Reduction to global potentials and end of proof

The purpose of this section is to generalize the reduction theorem presented in
[7] and simplify the proof of it. Then we apply it to the result in Section 4 to
finish the proof of Theorem 1.1.

The proof of the Reduction Theorem here does not directly rely on the
construction of a Stein manifold in C* x X, instead we use Lemma 5.1 below
to define a local potential around the graphs of the appropriate discs in C* x X.

It should be pointed out that Theorem 5.3 does not work specifically with
the Poisson functional but a general disc functional H. We will however apply
the results here to the Poisson functional from Section 4, so it is of no harm to
think of it in the role of H.

If H is a disc functional defined for discs f € fx, with f(D) ¢ sing(w),
then we define the envelope EH of H on X \ sing(w) by

EH(x) = inf{H(f); f € x, f(0) = x}.
We then extend EH to a function on X by

(6) EH(x) = limsup EH(y), for x € sing(w),
sing(w)Fy—x

in accordance with Definition 2.3 of w-usc functions.

If ® : ¥ — X is a holomorphic function and H a disc functional on #/x,
then we can define the pullback ®*H of H by ®*H(f) = H(®P o f), for
f € fy. Every disc f € &y gives a push-forward ® o f € Ay and it is easy
to see that

(7 d*EH < E®*H,

where ®*FEH = EH o ® is the pullback of EH. We have an equality in (7) if
every disc f € /x has a lifting f € oy, f = P o f.

If ® : Y — X isasubmersion the currents ®*w; and ®*w, are well-defined
on Y. The core in showing the w-plurisubharmonicity of EH is the following
lemma. It produces a local potential of the currents ®*w; and ®*w, in a
neighbourhood of the graphs of the discs from condition (iii) in Theorem 5.3
below.

LEmMA 5.1. Let X be a complex manifold and @ a positive closed (1, 1)-
current on C* x X. Assume h € O(D,,X), r > 1 and for j = 1,...,m
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assume J; C T are disjoint arcs and U; C D, are pairwise disjoint open discs
containing J;. Furthermore, assume there are functions F; € O (Dy x U;, X),
s>1,forj=1,...,m, such that F;(0, w) = h(w), w € U;.

If Ko = {(w,0, h(w)); w € D} and K; = {(w, z, Fi(z,w));z € D,w €
J;} then there is an open neighbourhood of K = U;"zo K; where @ has a
global potential .

ProOF. For convenience we let Uy = D, and Fy(z, w) = h(z), also 0
will denote the zero vector in C". The graphs of the F;’s are biholomorphic
to polydiscs, hence Stein. By slightly shrinking the U;’s and s we can, just as
in the proof of Theorem 1.2 in [6], use Siu’s Theorem [10] and the proof of
Lemma 2.3 in [5] to define biholomorphisms ®; from the polydisc U; x D"*!
onto a neighbourhood of the K such that

®) ®;(w, z,0) = (w, z, Fj(z, w)), w € Uj, z € Dy,
forj=1,...,mand
9) do(w, 0,0) = (w, 0, h(w)), w € Up.

Furthermore, we may assume that the maps ®; are continuous on the closure
of Uy x D" for j =0, ...,m.
For j =1,...,mlet U} and U/ be open discs concentric to U; such that

JjccU/ ccUjccu,
and B; a neighbourhood of ®; (ij x {(0, 0)}) defined by
Bj = ®;(U; x Dy™")
for §; > 0 small enough so that
B; C ®o(Uy x DI,

and
B; N Ky =0, when k # j and k > 1.

This is possible since ®;(U; x {(0,0)})) C Po(Uy x D;'H) and ®;(U; x
{0, 0D NK,=0ifk # jandk > 1. L

The compact sets @y (Up \ UJT x {(0,0)}) and b, (Uj” x Dy x {0}) are disjoint
by (9) and (8), and likewise d>0(7j’ x {(0,0)}) cc Bj. Sothereisag; > 0

such that
®o(Up \ U] x ng+1) N®; (U] x Dy x D) =1



312 BENEDIKT STEINAR MAGNUSSON

and , el
CIDO(U]- X Ds/ ) C B;.

Let g = min{ey, ..., &,} and define Vy = Py(Uy x ngl) and V; =
<I>j(Uj” X Dy x D;’j).

Furthermore, since the graphs of the F;’s, ®;(U; x Dy x {0}), are disjoint
for j > 1 we may assume V; N Vi = ¢, and similarly that B; N B, = ) when
j#kand j, k> 1.

What this technical construction has achieved is to ensure the intersection
Vo N V; is contained in B;, while still letting all the sets V; and B; be biholo-
morphic to polydiscs. Then both V = (Ji_, V; and B = |J;_, B; are disjoint
unions of polydiscs.

By Proposition 2.1 there are local potentials v; of @ on each of the sets
Q;(U; x DY, j=1,...,m.

Define n" = dyp on Vo U B and n” on V U B by n” = d°y;j on V; U B;,
this is well defined because the V; U B;’s are pairwise disjoint and V; U B; C
®;(U; x D). Since dn’ —dn” = @ — & = 0 on B there is a distribution
on B satisfyingdu = n' — n”.

Let x1, x» be a partition of unity subordinate to the covering {Vy, V} of

Vo U V. Then ,
{n—duww on Vo

n" +d(xap) onV

is well defined on Vy U V with dn = .

If we repeat the topological construction above for Vy, ..., V,, instead of
®;(U; x D;’“) we can define sets V..., V, and B, ..., B;, biholomorphic
to polydiscs such that V/ C V;, B C B; and

VoNV/C B, CVonV,

and both the B}’s and the V/’s are pairwise disjoint. Define V' = U}n:1 v/

Let v/’ be a real distribution defined on Vj satisfying d“¢' = n' — dyi1 1t
and let ¥” be a real distribution defined on V satisfying d“v” = n” — d o 1.
Thend(Y' —¥") =n' —n”" —d(u + xoau) = 0. Therefore, on each of the
connected sets B; we have /' — ¢ = ¢;, for some constant c;. Consequently
the distribution ¢ is well defined on V; U V' by

/d on V
U=
¥ +c; on Vj’
since Vg N'V' C B" and the V/’s are disjoint. It is clear that dd“yy = dn = @
and since @ is positive we may assume  is a plurisubharmonic function.
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‘We now turn our attention back to the w-plurisubharmonicity of the envelope
EH. We start by showing that it is w-usc, but this is done separately because it
needs weaker assumptions than those needed in Theorem 5.3 where we show
that EH is w-psh.

LEMMA 5.2. Let X be an n-dimensional complex manifold, H a disc func-
tional on Sy, and w = w; — w; the difference of two positive, closed (1, 1)-
currents on X. The envelope EH is w-usc if E®*H is ®*w-usc for every
submersion ® from a set biholomorphic to a (n + 1)-dimensional polydisc
info X.

PrOOF. To show that EH + does not take the value +ocoatx € X\sing(w),
let U be a coordinate polydisc in X centered at x and v a local potential of w
on U C X. Then by (7),

EH(x) + ¢ (x) = EH(®(0, x)) + ¢ (2(0, x)))
< EP*H((0,x)) + ¢ ((0, x)) < 00,

where @ : D x U — U is the projection.

Let 8 > EH(x) and g € Ay such that H(g) < B. By a now familiar
argument in Lemma 2.3 in [5] there is a biholomorphism ¥ from a neigh-
bourhood of the graph {(w, g(w)); w € D} into Df“, s > 1 such that
Y(w, g(w)) = (w, 0). If @ is the projection C x X — X then ®*yr = ¢y o
is a local potential of ®*w on C x U. Now, if g € Hcxx is the lifting
w — (w, g(w)) of g then by (7),

E®*H((0,x)) + ¢¥(P((0,x))) = ®*H () + ¥ (P((0, x)))
=H() +v¥(x) <B.

By assumption there is a neighbourhood Wy x W C C x U of (0, x) such that
for (zp,z) € Wo x W,

E®*H((z0,2)) + ¥ (P((20, 2))) < B

Then by (7), EH (z) + ¥ (z) < B for z € W which shows that EH + i is usc
outside of sing(w) and by (6), the definition of EH at sing(w), we have shown
that EH is w-usc.

The following theorem shows that an envelope EH is w-psh if it satisfies
some conditions which are almost identical to those in Theorem 4.5 in [7].
These conditions are very similar to those posed upon the envelope in The-
orem 3.5 when o = 0.

THEOREM 5.3 (Reduction theorem). Let X be a complex manifold, H a disc
functional on fx and w = w, — w, the difference of two positive, closed
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(1, 1)-currents on X. The envelope EH is w-plurisubharmonic if it satisfies
the following.

(i) E®*H is ®*w-plurisubharmonic for every holomorphic submersion ®
from a complex manifold where ®*w has a global potential.

(ii) There is an open cover of X by subsets U, with w-pluripolar subsets
Z C U and local potentials  on U, ¥~ ({—o0}) C Z, such that for
every h € ofy with h(D) ¢ Z, the function t +—> (H(h(t)) + 1ﬂ(h(t)))T
is dominated by an integrable function on T.

(iii) If h € <y, h(0) ¢ sing(w), to € T\ h~!(sing(w)) and ¢ > 0, then
to has a neighbourhood U in C and there is a local potential { in a
neighbourhood of h(U) such that for all sufficiently small arcs J in T
containing ty there is a holomorphic map F : D, x U — X, r > 1,
such that F(0, ) = h|y and

Sy [ w000 do ) < B+ B +

Proofr. By Proposition 2.8 we need to show that EH oh is h*w-subharmonic
for every h € fx, h(D) ¢ sing(w) and that EH is w-usc.

The w-upper semicontinuity of EH follows from Lemma 5.2 so we turn
our attention to the subaverage property. We assume ¥ = 1; — 1, is a local
potential of w defined on an open set U. As with plurisubharmonicity, w-
plurisubharmonicity is a local property so it is enough to prove the subaverage
property for i € .y, h(0) ¢ sing(w). Our goal is therefore to show that

(10) EH((O) +4h(O) = [(EHoh+y o) do,
T

This is automatically satisfied if EH (h(0)) = —oo, and since EH is w-usc it
can only take the value +o00 on sing(w). We may therefore assume EH (h(0))
is finite. It is sufficient to show that for every ¢ > 0 and every continuous
function v : U — R with v > (EH + )7, there exists g € ./x such that
£2(0) = h(0) and

(11) H(g) + ¥ (h(0)) §/vohd0—|—s.
T

Then by definition of the envelope, EH (h(0)) + ¥ (h(0)) < fT vohdo +¢
for every v and ¢, and (10) follows.

Let7 > 1 such that 4 is holomorphic on D,. In the proof of Theorem 1.2 in
[6], Larusson and Sigurdsson show that a function satisfying the subaverage
property for all holomorphic discs in X not lying in a pluripolar set Z is
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plurisubharmonic not only on X \ Z but on X. We may therefore assume that
h(D) ¢ Z.

Since h(0) ¢ sing(w), we have ¥; o h(0) # —oo and V¥, o h(0) # —oo.
Then, by the subaverage property of the subharmonic functions y; o A and
V5 o h, the set h~! (sing(w)) is of measure zero with respect to the arc length
measure o on T. The set i£(T) \ sing(w) is therefore dense in 4(T) and by a
compactness argument along with property (iii) we can find a finite number
of closed arcs Ji, ..., J,, in T, each contained in an open disc U; centered on
T \ sing(w) and holomorphic maps F; : Dy x U; — X, s € ]1, r[ such that
F;(0,-) = h|y, and, using the continuity of v, such that

(12) /(H(Fj(-,t)) + Y (F (0, 1)) do (1) 5/ vohdo + 20(1,).
Jj Jj

We can shrink the discs U; such that they are relatively compact in D, and
have mutually disjoint closure. Furthermore, by the continuity of v we may
assume

(13) / woh|do < %
U, 4

and by condition (ii) we may assume

(14) / H(h(w)) + ¥ (h(w)) do(w) < &
T\U,‘ Jj 4

Our submersion ® will be the projection C> x X — X. The manifold in
C? x X where ®*w has a global potential will be a neighbourhood of the union
of the graphs of £,

Ko = {(w,0, h(w)); w € D},
and the graphs of the F;’s,
K; ={(w,z, Fj(z,w)); we J;,z€D}.

By applying Lemma 5.1 to both w; and w, there is neighbourhood V of
K = U}":O K; with a potentials ¥, of ®*w; and W, of ®*w,. Then ¥ =
W, — W, is a potential of ®*w. The ®*w-plurisubharmonicity of £E®* H given
by condition (i) ensures

(15)  E®*H(h(0)) + * ¢ (h(0)) < /(ECD*H oh+ ®*y oh) do,
T

where £ is the lifting w > (w, 0, h(w)) of hto V C C* x X.



316 BENEDIKT STEINAR MAGNUSSON

We know ®*EH(h(0)) < E®*H(h(0)) and since ®*EH (h(0))

= EH(h(0)) # —oo there is a disc g¢ € &y such that g(0) = h(0) and
(16) O*H(Z) < E®*H(h(0)) + Z.
Let g = ® o g be the projection of g to X, then g(0) = h(0) and H(g) =

®*H (g). Because the local potential ®*y of ®*w satisfies ®*v (h) = ¥ (h).
The inequalities (15) and (16) above then imply that

17) H(g) + v (h(0)) 5/(E<I>*Hoﬁ+woh)da+2.
T
Forevery j =1,...,mand w € J; we have
E®*H(h(w)) < ®*H((w, -, F;(-,w))) = H(F;(-, w)),

because z — (w, z, Fj(z, w)) is a disc in K with center fz(w).
This means, by (12),

(18) /J(ECD*H(E)—I—Woh)dG §fj vohdo + ZG(Jj).
Butif w € T\ U, J; then

E®*H(h(w)) < ®*H (h(w)) = H(h(w)),

where fz(w) and /(w) on the right are the constant discs at fz(w) and h(w).
This means, by (14),

(19) / (E®*H(h) + ¥ oh)do <
U, J

Blo

Then, first by combining inequality (17) with (18) and (19), and then by
(13), we see that

& e e
H(g)_'_W(h(O))S/UjJ/-UOh—FZG(LjJJj)-’_Z—FZ

5/v0h+8.
.

This shows that the disc g satisfies (12) and we are done.

ProOF OF THEOREM 1.1 WHEN ¢, = 0. Finally, we can prove Theorem 1.1
when ¢, = 0 by showing that H,, , satisfies the three condition in Theorem 5.3.
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Condition (i) in 5.3 follows from the proof in Section 4. If h € &/x and ¢
is local potential as in Theorem 5.3, then condition (ii) follows from the fact
that H(h(t)) + v (h(t)) = (e(h(®)) + Y1 (h(2))) — Y2 (h(2)) is the difference
of an usc function and a psh function. The first term is bounded above on T
and the second one is integrable since (D) ¢ sing(w).

Leth € ox, e > 0and 1ty € T\ h~!(sing(w)) be as in condition (iii)
and ¥ a local potential for w in a neighbourhood V' of x = h(#). Let 8 >
EH, ,(x)+v¥(x)and & > Osuchthat EH,, ,(x)+¥ (x)+& < B. Then there is
a f € 9x suchthat f(0) = x and H, ,(f)+v¥(x) < B—¢e/2. By Lemma2.3
in [5] there is a neighbourhood V of x in X, r > 1 and a holomorphic map
F:D, xV — X suchthat F(-, x) = fon D, andF(O z) = zon V. Define
U=h""(V'NV)and F : D, xU — Xby F(s,t) = F(s,h(t)),thenby(4),

(20)  (Hyo(F(, 1)+ ¥ (F0,0))" = / (@ +v) o F(s,t)do(s).
T

Since the integrand is usc on D, x U, then (20) is an usc function of ¢ on U
by Lemma 3.4. That allows us by shrinking U to assume that

(Hyy (F(, 1)) + Y (F0,0)" < Hy o (F(, 1)) + ¥ (F(0, 1)) + %
for t € U. Then by the definition of f = F(-, ty)
(Hyo(FCo 1) + Y (FO,0)" < EH,y(x) +¥(x) +e,  for teU.

Condition (iii) is then satisfied for all arcs J in TN U.

We now finish the proof of our main theorem by showing how the function
¢, can be integrated into w and then previous result applied. So, subtracting
the function ¢, from ¢; can be thought of as just shifting the class L7 (X, w)
by —dd ;.

END OF PROOF OF THEOREM 1.1. We define the current ' = w—dd“¢, and
use the bijection, u’ — u’ — ¢, = u between PF# (X, ') and PLI (X, w)
from Proposition 2.5. Since the positive part of w and ' is the same, it is
equivalent for ¢; to be w;-usc and w)-usc. Then Theorem 1.1 can be applied
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to ' and gy, and for every x ¢ sing(w’) = sing(w) C @5 ' (—o0) we infer
sup{u(x); u € PS¥H (X, w), u < ¢1 — @2}
= sup{u'(x) — @2 (x); u’ € PFH (X, ), u' — @2 < @1 — 02}
= sup{u'(x); u' € PIH (X, ), u" < g1} — @2(x)

= inf{—Rf*wr(O) + /(,01 o fdo; f e sx, f(O) = X} — @2(x)
T
_ inf {_Rf*ww) + Ryt 0) — 9a(x)
+/<p1 o fda: f € sty f(0) =x}
T

= inf:—Rf*w(O) —f—/(gﬂl — @) o de’; f € Ay, f(O) :x}.
T

The last equality follows from the Riesz representation (4) applied to the psh
function ¢,, which gives @2 (x) = Ry+g4c4,(0) + fT ¢ o fdo. We also used
the fact that Ry, is linear in w.

To finish the proof we need to show that the equality

(21)  sup{u(x);u € PLH (X, w), u < @1 — @2}
= inf{_Rf*w(O) + /(‘Pl —@)o fdo; f e dy, f(0) = X},
T

holds also on (pz_l(—oo) \ sing(w).

The right hand side of (21) is w-usc by Lemma 5.2, and it is equal to the
function EH,y ,, —¢> on X \ sing(w’). Now assume y is a local potential of w,
then —¢, + v is alocal potential for «'. The functions (EH,, ,, —¢>+ ¥)" and
(EH, , + ¥)" are then two usc functions which are equal almost everywhere,
thus the same. Furthermore, since EH,, ,, is @'-psh we see that EH,, , is w-
psh. This shows that EH,, , is in the family {u € PS9 (X, w), u < ¢}, and
since sup{u € P¥H (X, w); u < ¢} < EH, , by (5) we have an equality not
only on X \ sing(®’) but on X \ sing(w), i.e. (21) holds on X \ sing(w).
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