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MORITA EQUIVALENCE OF NEST ALGEBRAS

G. K. ELEFTHERAKIS

Abstract
Let N1 (resp. N2) be a nest, A (resp. B) be the corresponding nest algebra, A0 (resp. B0) be the
subalgebra of compact operators. We prove that the nests N1,N2 are isomorphic if and only if
A and B are weakly-∗ Morita equivalent if and only if A0 and B0 are strongly Morita equival-
ent. We characterize the nest isomorphisms which implement stable isomorphism between the
corresponding nest algebras.

1. Introduction

Rieffel introduced the idea of Morita equivalence in Operator Theory, devel-
oping the theory of Morita equivalence for C∗ and W ∗ algebras [17]. After
the advent of the theory of operator spaces and operator algebras a parallel
Morita theory for non-selfadjoint algebras was developed by Blecher, Muhly
and Paulsen [6], [2]. We call this equivalence strong Morita equivalence.

Recently, two approaches have been suggested for Morita equivalence of
dual operator algebras. The first one, called �-equivalence, was introduced
[11] by the present author and is equivalent to the notion of stable isomorph-
ism of dual operator algebras [13]. The second one, called weak-∗ Morita
equivalence was introduced by Blecher and Kashyap [3], [14] and is strictly
weaker than�-equivalence. It is interesting that ifA andB are strongly Morita
equivalent approximately unital operator algebras then the second dual oper-
ator algebras A∗∗, B∗∗ are weakly-∗ Morita equivalent [3]. New results on
weak-∗ Morita equivalence and �-equivalence can be found in [4].

The present paper is concerned mainly about seeing what these new notions
mean when specialized to the case of nest algebras. As we show the case of nest
algebras is very useful to illuminate the above theories of Morita equivalence.
For example, several natural questions are answered here, and the importance
of weak-∗ Morita equivalence is displayed.

More precisely, we prove that strong and weak-∗ Morita equivalence are
lattice properties: If A and B are nest algebras and A0 and B0 are the asso-
siated subalgebras of compact operators then A0 and B0 are strongly Morita
equivalent if and only if A and B are weakly-∗ Morita equivalent if and only
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if the nests Lat(A) and Lat(B) are isomorphic. The main tool of the proof is
that if θ : Lat(A) → Lat(B) is a nest isomorphism, then we can construct a
dual operator A− B bimodule Y and a dual operator B − A bimodule X. As
we prove, the identity operator ofA is the limit in the strong operator topology
of a net of finite rank contractions (fλ) where every fλ can be approximately
decomposed into the product of a row with entries in Y and a column with
entries in X. Similarly, we can decompose the identity operator of the algebra
B. This can be considered as a generalization of the Erdős density theorem for
nest algebras [7].

In Section 3 we prove that two nest algebras are weakly-∗ Morita equivalent
if and only if they are spatially Morita equivalent (Definition 3.1). We also
prove that if A is a nest algebra, spatially Morita equivalent to an algebra B,
then A and B are weakly-∗ Morita equivalent.

In Section 4 we present a measure theoretic result which describes when
two separably acting nest algebras are stably isomorphic. As it was pointed
out in [3] Example 3.7 in [12] is an example of weakly-∗ Morita equivalent
algebras which are not stably isomorphic. Using the results of this paper we
give a new proof of the fact that weak-∗ Morita equivalence is strictly weaker
than �-equivalence.

In Section 5 we present a counterexample which shows that the second
duals of two unital strongly Morita equivalent algebras are not necessarily
stably isomorphic.

In the following paragraphs we describe the notions used in this paper;
since we use extensively the basics of Operator Space Theory, we refer the
reader to the monographs [5], [9], [15] and [16] for further details. A (normal)
representation of a (dual) operator algebra A is a (w∗-continuous) completely
contractive homomorphism α : A → B(H) on a Hilbert space H . In case A
is unital, we assume that α is unital.

Let H,K be Hilbert spaces and A ⊂ B(H) be an algebra. A subspace
X ⊂ B(K,H) is called a left module over A if AX ⊂ X. Similarly we can
define the right modules over A. A left and right module over A is called a
bimodule overA. An operator spaceY is an abstract left (right) operator module
over an abstract operator algebra A if there exists a completely contractive
bilinear mapA×Y → Y (Y ×A → Y ). A left and right operator module over
A is called an operator bimodule over A.

Let A be a dual operator algebra and Y be a dual operator space. We say
that Y is a left (right) dual operator module over A, if the above completely
contractive bilinear map is separately w∗-continuous. A left and right dual
operator module over A is called a dual operator bimodule over A.

Two operator bimodules Y and Z over an operator algebraA are called iso-
morphic as operator bimodules if there exists a completely isometric and onto
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A-bimodule map π : Y → Z. We write Y ∼= Z as operator A-bimodules. In
caseA is a dual operator algebra andY andZ are dual operatorA-bimodules we
write Y ∼= Z as dual operator A-bimodules if the above completely isometric
and onto A-bimodule map π is w∗-(bi)continuous.

If Y is a right operator module over an operator algebra A and X is a left
operator module over A we denote by Y ⊗h

A X the balanced Haagerup tensor
product of Y and X which linearizes the completely bounded A-balanced
bilinear maps [5, 3.4]. If Y (resp.X) is a left (resp. right) operator module over
an operator algebra B then Y ⊗h

A X is also a left (resp. right) operator module
over B, [6, Lemma 2.4].

If Y is a dual right operator module over a dual operator algebra A and X
is a left dual operator module over A we denote by Y ⊗σh

A X the balanced
normal Haagerup tensor product of Y and X which linearizes the separately
w∗-continuous completely boundedA-balanced bilinear maps [13]. In the case
Y (resp. X) is a left (resp. right) dual operator module over a dual operator
algebra B then Y ⊗σh

A X is also a left (resp. right) dual operator module over
B, [13].

The following are the two definitions of Morita equivalence used in this
paper:

Definition 1.1 ([6]). The operator algebrasA,B are called strongly Mor-
ita equivalent if there exist anA−B operator moduleX and a B−A operator
module Y such that A ∼= X ⊗h

B Y and B ∼= Y ⊗h
A X as A and B operator

bimodules respectively.

Definition 1.2 ([3]). The dual operator algebrasA,B are called weakly-∗
Morita equivalent if there exist anA−B dual operator moduleX and a B−A
dual operator module Y such that A ∼= X ⊗σh

B Y and B ∼= Y ⊗σh
A X as A and

B dual operator bimodules respectively.

IfX is a subspace ofB(H,K), whereH andK are Hilbert spaces, we denote
by Rfin∞ (X) (resp. Cfin∞ (X)) the space of operators (x1, x2, . . .) : H∞ → K

(resp. (x1, x2, . . .)
T : H → K∞) such that xi ∈ X for all i and there exists

n0 ∈ N for which xn = 0 for all n ≥ n0.
If

s1 = (s1
1 , s

1
2 , . . . , s

1
n1
, 0, 0, . . .), s1

n1

= 0

and
s2 = (s2

1 , s
2
2 , . . . , s

2
n2
, 0, 0, . . .), s2

n2

= 0

are operators in Rfin∞ (X) we denote by (s1, s2) the operator

(s1
1 , s

1
2 , . . . , s

1
n1
, s2

1 , s
2
2 , . . . , s

2
n2
, 0, 0, . . .)
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which also belongs to Rfin∞ (X). In the same way if s1, s2, . . . , sn ∈ Rfin∞ (X)
we define the operator (s1, s2, . . . , sn) ∈ Rfin∞ (X). Similarly if t1, t2, . . . , tn ∈
Cfin∞ (X) we define the operator (t1, t2, . . . , tn)T ∈ Cfin∞ (X).

A nest N is a totally ordered set of projections of a Hilbert spaceH contain-
ing the zero and identity operators which is closed under arbitrary intersections
and closed spans. The corresponding nest algebra is

Alg(N ) = {x ∈ B(H) : N⊥xN = 0 ∀ N ∈ N }.
If N ∈ N we denote by N− the projection onto the closed span of the union⋃

M<N
M∈N

(M(H)). IfN− < N we call the projectionN N− an atom. If the

nest has no atoms it is called a continuous nest. If the atoms span the identity
operator the nest is called a totally atomic nest. An order preserving 1-1 and
onto map between two nests is called a nest isomorphism.

If N1 and N2 are nests acting on the Hilbert spacesH1, H2 respectively and
θ : N1 → N2 is a nest isomorphism we denote by Op(θ) the space of operators
x ∈ B(H1, H2) satisfying θ(N)⊥xN = 0 for all N ∈ N1. Observe that Op(θ)
is an Alg(N2)− Alg(N1) bimodule.

Finally, ifX is a normed space we denote by Ball(X) the unit ball ofX and
by X∗ its dual space. If Y is a vector space then Mn(Y ), n ∈ N, is the space
of n× n matrices with entries in Y . If H1, H2 are Hilbert spaces and ξ ∈ H2,
η ∈ H1 are vectors we denote by ξ ⊗ η∗ the rank 1 operator sending every
ω ∈ H1 to 〈ω, η〉ξ ∈ H2, where 〈·, ·〉 is the inner product ofH1. We also write
SOT for the strong operator topology.

2. Morita equivalence of nest algebras

In this section we fix nests N1,N2 acting on the Hilbert spaces H1, H2 re-
spectively, and a nest isomorphism θ : N1 → N2. We denote A = Alg N1,
B = Alg N2, X = Op(θ), Y = Op(θ−1). If Z is a space of operators we
denote its subspace of compact operators by Z0. Observe that

AYB ⊂ Y, BXA ⊂ X, YX ⊂ A, XY ⊂ B,

A0Y0B0 ⊂ Y0, B0X0A0 ⊂ X0, Y0X0 ⊂ A0, X0Y0 ⊂ B0.

The main result of this section is Theorem 2.9. In particular we are going
to prove that

A0
∼= Y0⊗h

B0
X0, B0

∼= X0⊗h
A0
Y0, A ∼= Y⊗σh

B X, B ∼= X⊗σh
A Y.

Throughout this section, p denoted the projection ∨{N N− : N ∈ N1}. The
following lemmas are used in Theorem 2.5, where we are going to prove a
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variant of the Erdős density theorem for nest algebras: There exists a net of
finite rank contractions (fλ) ⊂ A converging in the strong operator topology
to the identity operator of H1, where every fλ is the norm limit of a sequence
(yλi x

λ
i )i∈N with yλi ∈ Ball(Rfin∞ (Y0)), xλi ∈ Ball(Cfin∞ (X0)) for all i, λ.

Lemma 2.1. There exists a net (lλ) of finite rank contractions converging
in the strong operator topology to the projection p such that lλ = sλtλ where
sλ ∈ Ball(Rfin∞ (Y0)), tλ ∈ Ball(Cfin∞ (X0)) for all λ.

Proof. Suppose that p = ∨k∈J pk where pk = Nk  (Nk)− for Nk ∈
N1, k ∈ J . Choose a net of finite rank contractions (fi)i∈I converging in
the strong operator topology to the identity operator of H1. If F = {F :
F finite subset of J } the family (gF,i)(F,i) indexed by F × I where gF,i =∑

k∈F pkfipk is a net. Observe that every gF,i is a finite rank contraction
belonging to A. We can easily check that SOT − lim(F,i) gF,i = ∨kpk = p.

Let f = pkfipk for some k ∈ J, i ∈ I with polar decomposition f = u|f |.
Suppose that

|f | =
n∑
j=1

λjξj ⊗ ξ ∗
j

for λj ≥ 0 and ξj pairwise orthogonal vectors of pk(H1). Choose a unit vector
η in (θ(Nk) θ(Nk)−)(H2). Now we have

|f | =
n∑
j=1

λjξj ⊗ η∗ · η ⊗ ξ ∗
j = yy∗

where y = (
√
λ1 ξ1 ⊗ η∗, . . . ,

√
λn ξn ⊗ η∗). Observe that f = uyy∗ and

uy ∈ Ball(Rfin∞ (Y0)), y∗ ∈ Ball(Cfin∞ (X0)).
Suppose now that F = {j1, . . . , jn} ⊂ J , i ∈ I and gF,i = ∑n

k=1 pjkfipjk .
By the above arguments pjkfipjk = sktk where sk ∈ Ball(Rfin∞ (Y0)), tk ∈
Ball(Cfin∞ (X0)). So gF,i = st where

s = (s1, . . . , sn) ∈ Rfin
∞ (Y0), t = (t1, . . . , tn)

T ∈ Cfin
∞ (X0).

Also, since the projections (pk)k∈J are pairwise orthogonal and ‖sks∗k ‖ ≤ 1
for all k we have that

‖s‖2 =
∥∥∥ n∑
k=1

sks
∗
k

∥∥∥ =
∥∥∥ n∑
k=1

pjk sks
∗
k pjk

∥∥∥ ≤ 1.

Similarly we can prove ‖t‖ ≤ 1 and this completes the proof.

Lemma 2.2. Suppose that p⊥ 
= 0, ξ, η ∈ Ball(H1) and N ∈ N1 such that
ξ = p⊥N(ξ), η = p⊥N⊥(η). There exist rank 1 operators (sn)n∈N ⊂ Ball(Y ),
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(tn)n∈N ⊂ Ball(X), such that the operator ξ ⊗ η∗ is the norm limit of the
sequence (sntn)n∈N.

Proof. We define the continuous order preserving map

φ : p⊥N1 → [0, ‖ξ‖2] : p⊥M → ‖p⊥M(ξ)‖2.

The nest p⊥N1 is continuous, so φ is onto [0, ‖ξ‖2]. Suppose that (λn) is a
strictly increasing sequence such that λn → ‖ξ‖2. Choose Nn ∈ N1 such that
φ(p⊥Nn) = λn. It follows thatNn < Nn+1 < N for alln ∈ N andp⊥Nn(ξ) →
ξ . Similarly we can find a sequence (Mn)n∈N such that N < Mn+1 < Mn for
all n ∈ N and p⊥(I −Mn)(η) → η. For every n ∈ N we choose ωn ∈ H2 such
that ‖θ(Mn) θ(Nn)(ωn)‖ = 1. The operator

sn = p⊥Nn(ξ)⊗ (θ(Mn) θ(Nn)(ωn))
∗

satisfies sn = Nnsnθ(Nn)
⊥ and so sn ∈ Ball(Y0). Similarly the operator

tn = (θ(Mn) θ(Nn)(ωn))⊗ p⊥(I −Mn)(η)
∗

satisfies tn = θ(Mn)tnM
⊥
n and so tn ∈ Ball(X0). Now we have

sntn = p⊥Nn(ξ)⊗ p⊥(I −Mn)(η)
∗

which clearly converges in norm to the operator ξ ⊗ η∗.

Lemma 2.3. Suppose that p⊥ 
= 0, ξ ∈ H1 such that ‖p⊥(ξ)‖ = 1 and
q is the projection onto the space p⊥N ′′

1 ξ . There exists a sequence of finite
rank contractions (rn)n∈N ⊂ A converging in the strong operator topology to
the projection q such that rn = ‖ · ‖ − limi∈N s

n
i t
n
i where sni ∈ Ball(Rfin∞ (Y0)),

tni ∈ Ball(Cfin∞ (X0)) for all i, n ∈ N.

Proof. We define the continuous order preserving map

φ : N1p
⊥ → [0, 1], φ(Np⊥) = ‖Np⊥(ξ)‖2.

Since the nest N1p
⊥ is continuous φ is onto [0, 1]. Choose Nk,np⊥ the least

element in N1p
⊥ such that φ(Nk,np⊥) = k

2n , k = 0, 1, . . . , 2n.
We denote

Ek,n = (Nk,n Nk−1,n)p
⊥, ξk,n = 2

n
2Ek,n(ξ), rn =

2n∑
k=2

fk,n

where fk,n = ξk−1,n ⊗ ξ ∗
k,n.

As in [7, Lemma 3.9] we can prove that ‖rn‖ ≤ 1 and the sequence (rn)n∈N

SOT-converges to the operator q.
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Using Lemma 2.2 we find sequences of rank 1 operators (sk,ni )i∈N⊂ Ball(Y0),

(t
k,n
i )i∈N ⊂ Ball(X0), such that sk,ni t

k,n
i

‖·‖−→ fk,n, i → ∞ for all k, n. We de-
note

sni = (s
2,n
i , s

3,n
i , . . . , s

2n,n
i ), tni = (t

2,n
i , t

3,n
i , . . . , t

2n,n
i )T

and we have rn = ‖ · ‖ − limi s
n
i t
n
i . Also

‖sni ‖2 =
∥∥∥ 2n∑
k=2

s
k,n
i (s

k,n
i )∗

∥∥∥.
We may assume that sk,ni = Ek−1,ns

k,n
i so

‖sni ‖2 =
∥∥∥ 2n∑
k=2

Ek−1,ns
k,n
i (s

k,n
i )∗Ek−1,n

∥∥∥.
Since ‖sk,ni ‖ ≤ 1 and the projections (Ek−1,n)k are pairwise orthogonal we
have ‖sni ‖ ≤ 1. Similarly we can prove ‖tni ‖ ≤ 1.

Lemma 2.4. Suppose that p⊥ 
= 0. There exists a net (gλ) of finite rank
contractions in A converging in the strong operator topology to p⊥ such that
gλ = ‖·‖−limi∈N s

λ
i t
λ
i for allλwhere sλi ∈ Ball(Rfin∞ (Y0)), t

λ
i ∈ Ball(Cfin∞ (X0))

for all i ∈ N.

Proof. Using Zorn’s Lemma we find a family of vectors ξk : k ∈ L such
that the projections qk onto p⊥N ′′

1 ξk , k ∈ L are pairwise orthogonal and they
span p⊥. We assume that ‖p⊥(ξk)‖ = 1 for all k ∈ L. From Lemma 2.3
there exist finite rank contractions (rkn)n∈N such that qk = SOT − limn∈N r

k
n

and rkn = ‖ · ‖ − limi∈N s
n,k
i t

n,k
i for sequences

(s
n,k
i )i∈N ⊂ Ball(Rfin

∞ (Y0)), (t
n,k
i )i∈N ⊂ Ball(Cfin

∞ (X0)).

We define F = {F : F finite subset of L}. If F ∈ F and n ∈ N we define
the finite rank contraction gn,F = ∑

k∈F rkn . The family (gn,F )n,F indexed by
N × F is a net. Fix ξ ∈ H1.

Observe that for all n ∈ N

‖rkn(ξ)− qk(ξ)‖2 = ‖qk(rkn − IH1)qk(ξ)‖2 ≤ 2‖qk(ξ)‖2

and so ∑
k∈L

‖rkn(ξ)− qk(ξ)‖2 ≤ 2
∑
k∈L

‖qk(ξ)‖2 < ∞.
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If n ∈ N and F ∈ F we have

(2.1)

‖gn,F (ξ)− p⊥(ξ)‖2

=
∥∥∥gn,F (ξ)−

∑
k∈L

qk(ξ)

∥∥∥2

=
∑
k∈F

‖rkn(ξ)− qk(ξ)‖2 + ‖p⊥(ξ)‖2 −
∑
k∈F

‖qk(ξ)‖2

≤
∑
k∈L

‖rkn(ξ)− qk(ξ)‖2 + ‖p⊥(ξ)‖2 −
∑
k∈F

‖qk(ξ)‖2

Since limn∈N ‖rkn(ξ)− qk(ξ)‖2 = 0 it follows from (2.1) that

lim
(n,F )

‖gn,F (ξ)− p⊥(ξ)‖2 = 0.

We have shown that SOT − lim(n,F ) gn,F = p⊥.
If F = {k1, . . . , kr} ⊂ L then gn,F = ∑r

m=1 r
km
n where rkmn = ‖ · ‖ −

limi∈N s
n,km
i t

n,km
i . So gn,F=‖·‖− limi∈N s

n,F
i t

n,F
i where sn,Fi =(sn,k1

i , . . . , s
n,kr
i ),

t
n,F
i = (t

n,k1
i , . . . , t

n,kr
i )T . Since s

n,kj
i = qkj s

n,kj
i , t

n,kj
i = t

n,kj
i qkj and the pro-

jections (qkj ) are pairwise orthogonal we conclude that sn,Fi ∈ Ball(Rfin∞ (Y0)),
t
n,F
i ∈ Ball(Cfin∞ (X0)) for all (n, F ). This completes the proof.

Theorem 2.5. There exists a net of finite rank contractions (fλ)λ∈� conver-
ging in the strong operator topology to the identity operator IH1 such that fλ =
‖ · ‖ − limi∈N v

λ
i u

λ
i where (vλi )i∈N ⊂ Ball(Rfin∞ (Y0)), (uλi )i∈N ⊂ Ball(Cfin∞ (X0))

for all λ ∈ �.

Proof. If p⊥ = 0 the conclusion follows from Lemma 2.1. So we may
assume that p⊥ 
= 0. From Lemmas 2.1, 2.4 there exists a net (lλ)λ∈� of finite
rank contractions SOT-converging to the projectionp such that lλ = sλtλ where
sλ ∈ Ball(Rfin∞ (Y0)), tλ ∈ Ball(Cfin∞ (X0)) for all λ ∈ �, and a net (gλ)λ∈� of
finite rank contractions converging in the strong operator topology to p⊥ such
that gλ = ‖ · ‖ − limi∈N y

λ
i x

λ
i for all λ ∈ � where

yλi ∈ Ball(Rfin
∞ (Y0)), xλi ∈ Ball(Cfin

∞ (X0))

for all i ∈ N.
We denote fλ = lλ+gλ, vλi = (sλ, y

λ
i ), u

λ
i = (tλ, x

λ
i )
T for all λ ∈ �, i ∈ N.

Observe that IH1 = SOT − limλ∈� fλ and fλ = ‖ · ‖ − limi∈N v
λ
i u

λ
i . Now we

have

‖vλi ‖2 = ‖sλs∗λ + yλi (y
λ
i )

∗‖ = ‖psλs∗λp + p⊥yλi (y
λ
i )

∗p⊥‖ ≤ 1.

Similarly ‖uλi ‖ ≤ 1 for all λ ∈ �, i ∈ N.
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Theorem 2.6. The algebras A0, B0 are strongly Morita equivalent. Partic-
ularly A0

∼= Y0 ⊗h
B0
X0, B0

∼= X0 ⊗h
A0
Y0 as operator modules.

Proof. We define the bilinear map Y0 × X0 → A0 : (y, x) → yx. This
map is completely contractive and B0-balanced. So induces a completely con-
tractive A0-module map π : Y0 ⊗h

B0
X0 → A0 : y ⊗B0 x → yx. We shall

prove that π is completely isometric. It suffices to prove that if

zi,j =
mi,j∑
k=1

y
i,j

k ⊗B0 x
i,j

k , i, j = 1, . . . , n

then

‖(zi,j )i,j‖ ≤
∥∥∥(mi,j∑

k=1

y
i,j

k x
i,j

k

)
i,j

∥∥∥.
We recall the contractions fλ, (vλs )s∈N, (uλs )s∈N, λ ∈ � from Theorem 2.5.

If x is a compact operator then x = ‖·‖− limλ xfλ ([7, Proposition 1.18]).It
follows that zi,j = ‖ · ‖ − limλ

∑mi,j
k=1 y

i,j

k ⊗B0 (x
i,j

k fλ). If ε > 0 there exists
λ ∈ � such that

‖(zi,j )i,j‖ − ε <

∥∥∥(mi,j∑
k=1

y
i,j

k ⊗B0 (x
i,j

k fλ)
)
i,j

∥∥∥−ε
2
.

Since xi,jk fλ = ‖ · ‖ − lims∈N x
i,j

k v
λ
s u

λ
s there exists s ∈ N such that

∥∥∥(mi,j∑
k=1

y
i,j

k ⊗B0 (x
i,j

k fλ)
)
i,j

∥∥∥ − ε

2
<

∥∥∥(mi,j∑
k=1

y
i,j

k ⊗B0 (x
i,j

k v
λ
s u

λ
s )

)
i,j

∥∥∥.
But xi,jk v

λ
s ∈ Rfin∞ (B0), so we have

‖(zi,j )i,j‖ − ε <

∥∥∥(mi,j∑
k=1

(y
i,j

k x
i,j

k v
λ
s )⊗B0 u

λ
s

)
i,j

∥∥∥
=

∥∥∥(mi,j∑
k=1

y
i,j

k x
i,j

k

)
i,j

(
vλs ⊗B0 u

λ
s ⊕ · · · ⊕ vλs ⊗B0 u

λ
s

)∥∥∥
≤

∥∥∥(mi,j∑
k=1

y
i,j

k x
i,j

k

)
i,j

∥∥∥∥∥vλs ⊗B0 u
λ
s

∥∥
≤

∥∥∥(mi,j∑
k=1

y
i,j

k x
i,j

k

)
i,j

∥∥∥‖vλs ‖‖uλs ‖ ≤
∥∥∥(mi,j∑

k=1

y
i,j

k x
i,j

k

)
i,j

∥∥∥
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Since ε was arbitrary we have

‖(zi,j )i,j‖ ≤
∥∥∥(mi,j∑

k=1

y
i,j

k ⊗B0 x
i,j

k

)
i,j

∥∥∥.
We proved that π is completely isometric. It remains to prove that π is onto
A0. It suffices to prove that the space Imπ is dense in A0.

Let a ∈ Ball(A0) and ε > 0. Since a = ‖ · ‖ − limλ fλa there exists λ ∈ �
such that ‖a − fλa‖ < ε

2 . But fλ = ‖ · ‖ − lims v
λ
s u

λ
s , so there exists s ∈ N

such that

‖fλ − vλs u
λ
s ‖ <

ε

2
.

It follows that

‖a − vλs u
λ
s a‖ = ‖a − π(vλs ⊗B0 (u

λ
s a))‖ < ε.

The proof is complete. Likewise we can prove that B0
∼= X0 ⊗h

A0
Y0.

We define the bilinear map Y × X → A : (y, x) → yx. This map is
completely contractive B-balanced and separately w∗-continuous, so induces
a completely contractivew∗-continuous mapρ : Y⊗σh

B X → A : y⊗Bx → yx

which is also anA-module map. We shall prove that the restriction of ρ on the
space Y⊗h

B X is completely isometric and we shall use this fact in Theorem 2.9
to prove that A ∼= Y ⊗σh

B X.

Lemma 2.7. The restriction ofρ on the spaceY⊗h
BX is completely isometric.

Proof. It suffices to prove that if

zi,j =
mi,j∑
k=1

y
i,j

k ⊗B x
i,j

k , i, j = 1, . . . , n

then

‖(zi,j )i,j‖ ≤
∥∥∥(mi,j∑

k=1

y
i,j

k x
i,j

k

)
i,j

∥∥∥.
We recall the contractions fλ, (vλs )s∈N, (uλs )s∈N, λ ∈ � from Theorem 2.5. Fix
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λ ∈ �. If ε > 0 there exists s ∈ N such that∥∥∥(mi,j∑
k=1

y
i,j

k ⊗B (x
i,j

k fλ)
)
i,j

∥∥∥ − ε

<

∥∥∥(mi,j∑
k=1

y
i,j

k ⊗B (x
i,j

k v
λ
s u

λ
s )

)
i,j

∥∥∥ =
∥∥∥(mi,j∑

k=1

(y
i,j

k x
i,j

k v
λ
s )⊗B u

λ
s

)
i,j

∥∥∥
=

∥∥∥(mi,j∑
k=1

y
i,j

k x
i,j

k

)
i,j
(vλs ⊗B u

λ
s ⊕ · · · ⊕ vλs ⊗B u

λ
s )

∥∥∥
≤

∥∥∥(mi,j∑
k=1

y
i,j

k x
i,j

k

)
i,j

∥∥∥
It follows that∥∥∥(mi,j∑

k=1

y
i,j

k ⊗B (x
i,j

k fλ)
)
i,j

∥∥∥ ≤
∥∥∥(mi,j∑

k=1

y
i,j

k x
i,j

k

)
i,j

∥∥∥
for all λ ∈ �. Since

(mi,j∑
k=1

y
i,j

k ⊗B x
i,j

k

)
i,j

= w∗ − lim
λ

(mi,j∑
k=1

y
i,j

k ⊗B (x
i,j

k fλ)
)
i,j

we have ∥∥∥(mi,j∑
k=1

y
i,j

k ⊗B x
i,j

k

)
i,j

∥∥∥ ≤
∥∥∥(mi,j∑

k=1

y
i,j

k x
i,j

k

)
i,j

∥∥∥.
The second dual operator space A∗∗

0 of the operator algebra A0 is also an
operator algebra with product describing in [5, Section 2.5]. The product on
A∗∗

0 extends the product on A0. With this we mean that if ι : A0 → A∗∗
0 is the

canonical embedding then ι(ab) = ι(a)ι(b) for all a, b ∈ A0. The following
lemma is well known, so we omit the proof.

Lemma 2.8. The operator algebra A, (resp. B) is isomorphic as dual oper-
ator algebra with A∗∗

0 (resp. B∗∗
0 ).

We are now ready to present the main theorem of this paper:

Theorem 2.9. (A) The following are equivalent:

(i) The nests N1,N2 are isomorphic.

(ii) The algebras A0, B0 are strongly Morita equivalent.

(iii) The algebras A,B are weakly-∗ Morita equivalent.
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(B) If θ : N1 → N2 is a nest isomorphism, X = Op(θ), Y = Op(θ−1) then:

(i) A0
∼= Y0 ⊗h

B0
X0, B0

∼= X0 ⊗h
A0
Y0, as operator bimodules,

(ii) A ∼= Y ⊗σh
B X, B ∼= X ⊗σh

A Y , as dual operator bimodules.

Proof. (A) (i) ⇒ (ii). This is Theorem 2.6.
(ii) ⇒ (iii). If A0 and B0 are strongly Morita equivalent then the operator

algebras A∗∗
0 and B∗∗

0 are weakly-∗ Morita equivalent, [3, Section 3]. So by
Lemma 2.8 A and B are weakly-∗ Morita equivalent.

(iii) ⇒ (i). Let (A,B, V,U) be a weak-∗ Morita context [3]. It follows
that there exist completely contractive separatelyw∗-continuous bilinear maps
(·, ·) : V × U → A which is A-module and B-balanced map and [·, ·] :
U × V → B which is B-module and A-balanced map satisfying

(y, x)y ′ = y[x, y ′], x ′(y, x) = [x ′, y]x, ∀ x, x ′ ∈ U, y, y ′ ∈ V,
and A = spanw

∗
({(y, x) : x ∈ U, y ∈ V }), B = spanw

∗
({[x, y] : x ∈ U, y ∈

V }).
IfN ∈ N1 we define θ(N) the projection onto the space generated by vectors

of the form [xN, y](ω), x ∈ U, y ∈ V,ω ∈ H2. Since b[xN, y] = [bxN, y]
for all b ∈ B we have θ(N)⊥Bθ(N) = 0 so θ(N) ∈ N2. Also ifN1 ≤ N2 then
θ(N1) ≤ θ(N2) and so θ is an order preserving map from N1 into N2.

Similarly ifM ∈ N1 we defineσ(M) the projection onto the space generated
by vectors of the form (yM, x)(ξ), x ∈ U, y ∈ V, ξ ∈ H1. The map σ : N2 →
N1 is an order preserving map.

If x, x ′ ∈ U , y ∈ V and N ∈ N1 then

θ(N)⊥[xN, y] = 0 ⇒ [θ(N)⊥xN, y] = 0

⇒ [θ(N)⊥xN, y]x ′ = 0 ⇒ θ(N)⊥xN(y, x ′) = 0.

But the operators of the form (y, x ′) span the algebra A. So we have

(2.2) θ(N)⊥xN = 0 ⇒ xN = θ(N)xN, ∀ x ∈ U, N ∈ N1.

Similarly

(2.3) yM = σ(M)yM, ∀ y ∈ V, M ∈ N2.

If x, x ′ ∈ U , y, y ′ ∈ V , N ∈ N1 we have

[xN⊥, y][x ′N, y ′] = [[xN⊥, y]x ′N, y ′]
= [xN⊥(y, x ′)N, y ′] = 0 because (y, x ′) ∈ Alg(N1).
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It follows that [xN⊥, y]θ(N) = 0 ⇒ [x,N⊥yθ(N)] = 0 for all x ∈ U, y ∈
V , and so

(2.4) N⊥yθ(N) = 0 ⇒ yθ(N) = Nyθ(N), ∀ y ∈ V, N ∈ N1

Likewise we can prove

(2.5) xσ (M) = Mxσ(M), ∀ x ∈ U, M ∈ N2

IfN ∈ N1 and x ∈ U, y ∈ V then (y, x)N = (y, xN) = (y, θ(N)xN) be-
cause of (2.2). The last operator is equal to (yθ(N), xN) = σ(θ(N))(y, x)N .
It follows that N ≤ σ(θ(N)).

Similarly (y, x)∗N⊥ = (N⊥(y, x))∗ = (N⊥y, x)∗ = (N⊥yθ(N)⊥, x)∗
because of (2.4). On the other hand

(N⊥y, θ(N)⊥x)∗ = (N⊥y, θ(N)⊥xσ(θ(N))⊥)∗

= σ(θ(N))⊥(N⊥y, θ(N)⊥x)∗.

Since IH1 = w∗ − limi

∑ni
k=1(y

i
k, x

i
k)

∗ for (yik) ⊂ V, (xik) ⊂ U we have
N⊥ ≤ σ(θ(N))⊥ and so N = σ(θ(N)).

Likewise we can prove thatM = θ(σ (M)) for allM ∈ N2. This completes
the proof of the fact that θ is a nest isomorphism.

(B) Let θ : N1 → N2 be a nest isomorphism and X = Op(θ), Y =
Op(θ−1). Claim B(i) follows from Theorem 2.6.

Let ρ : Y ⊗σh
B X → A be the map which was defined above Lemma 2.7.

Let z ∈ Ball(Mn(Y ⊗σh
B X)) for a fixed n ∈ N. By [3, Corollary 2.8] there

exists a net (zi) ⊂ Ball(Mn(Y ⊗h
B X)) converging in the w∗ topology to z. It

follows that ρ(zi)
w∗−→ ρ(z) in Mn(A). If f, g are finite rank operators in A

we denote f n = f ⊕ f ⊕ · · · ⊕ f and similarly for gn. We have that

f nρ(zi)g
n ‖·‖−→ f nρ(z)gn �⇒ ρ(f nzig

n)
‖·‖−→ ρ(f nzgn).

From Lemma 2.7 it follows that f nzgn ∈ Mn(Y ⊗h
B X) and ‖ρ(f nzgn)‖ =

‖f nzgn‖ for all finite rank operators f, g in A. We recall the finite rank con-
tractions (fλ)λ∈� from Theorem 2.5. For λ,μ ∈ � we have

‖f nλ zf nμ‖ = ‖ρ(f nλ zf nμ)‖ = ‖f nλ ρ(z)f nμ‖ ≤ ‖ρ(z)‖.

Since zf nμ = w∗ − limλ f
n
λ zf

n
μ we have ‖zf nμ‖ ≤ ‖ρ(z)‖ for all μ ∈ �.

Now taking thew∗-limit of (zf nμ)μ∈� we obtain ‖z‖ ≤ ‖ρ(z)‖. We proved that
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the map ρ : Y ⊗σh
B X → A is a complete isometry. From Theorem 2.6 and its

proof we have that A0 = span(Y0X0). The equality A = A0
w∗

implies

A = spanw
∗
(YX) = spanw

∗
({ρ(y ⊗B x) : y ∈ Y, x ∈ X}).

By the Krein-Smulian Theorem the space Imρ is w∗-closed and so ρ is onto
A. Similarly we can prove that B ∼= X ⊗σh

A Y , as dual operator modules.

3. Spatial Morita equivalence and nest algebras

In this section we shall investigate the relation between weak-∗ and spatial
Morita equivalence for nest algebras. We give the definition of spatial Morita
equivalence:

Definition 3.1 (I. G. Todorov). Let C,D be w∗-closed algebras acting
on the Hilbert spaces K1,K2 respectively. We say that C and D are spatially
Morita equivalent if there exists aD−C bimoduleV ⊂ B(K1,K2) and aC−D
bimodule U ⊂ B(K2,K1) such that C = spanw

∗
(UV ),D = spanw

∗
(VU).

We also need the following notions: If L is a set of projections acting on
the Hilbert space H the set

Alg(L ) = {x ∈ B(H) : p⊥xp = 0,∀ p ∈ L }
is an algebra. An algebraA is called reflexive if there exists a set of projections
L such thatA = Alg(L ). In the special case where L is a complete lattice of
commuting projections containing the zero and identity operators the algebra
Alg(L ) is called a CSL algebra and the lattice L is called a CSL lattice.
Obviously, nest algebras are CSL algebras. If A is an algebra acting on the
Hilbert space H the lattice

{p ∈ pr(B(H)) : p⊥xp = 0,∀ x ∈ A}
is called the lattice ofA and we denote it by Lat(A). If L is a CSL lattice then
Lat(Alg(L )) = L , [1], [8].

Two spatially Morita equivalent algebras are not always weakly-∗ Morita
equivalent even in the case one of them is a CSL algebra:

Example 3.2. Let C be a nest algebra. We denote the algebrasA = C⊕C
and

B =
{(

a b − a

0 b

)
: a, b ∈ C

}
.

Observe that A is a CSL algebra whose lattice is

Lat(A) = {p ⊕ q : p, q ∈ Lat(C)}.
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Since the center of C is trivial [7, Corollary 19.5] the center of A is Z(A) =
C ⊕ C and the center of B is

Z(B) =
{(

λ μ− λ

0 μ

)
: λ,μ ∈ C

}
.

We also denote the spaces

X =
{(

a −a
0 b

)
: a, b ∈ C

}
, Y =

{(
a b

0 b

)
: a, b ∈ C

}
.

We can check that X is an A − B bimodule, Y is a B − A bimodule and
XY = A, YX = B. So the algebras A,B are spatially Morita equivalent. If
A and B were weakly-∗ Morita equivalent by [3, Theorem 3.7] they would
have isomorphic centers through a completely isometric homomorphism. This
is a contradiction because Z(A) is a von Neumann algebra and Z(B) is a
non-selfadjoint algebra.

Despite the above example, in [10] we proved that two CSL algebras are
spatially Morita equivalent if and only if their lattices are isomorphic, so by
Theorem 2.9 we conclude the following theorem:

Theorem 3.3. Two nest algebras are spatially Morita equivalent if and only
if they are weakly-∗ Morita equivalent.

Also despite Example 3.2 we have the following theorem:

Theorem 3.4. LetA be a nest algebra, B be a unital dual operator algebra
and β be a completely isometric normal representation of B such that A and
β(B) are spatially Morita equivalent. It follows that A and B are weakly-∗
Morita equivalent.

Proof. By [10, Theorem 4.1, Remark 4.2]β(B) is a nest algebra whose nest
is isomorphic with the nest of A. The conclusion follows from Theorems 2.9
and 3.3.

Theorem 3.5 (Blecher-Kashyap). If A,B are weakly-∗ Morita equivalent
unital dual operator algebras, for every completely isometric normal repres-
entation α ofA there exists a completely isometric normal representation β of
B such that the algebras α(A), β(B) are spatially Morita equivalent.

Proof. Suppose that (A,B,X, Y ) is a weak-∗ Morita context [3]. We con-
struct the proof by using arguments and ideas which appeared in [3]. If α is a
completely isometric normal representation of A on the Hilbert space H the
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tensor product K = Y ⊗σh
A H with its norm is a Hilbert space on which B is

represented through the w∗-continuous complete isometry β given by

β(b)(y ⊗ h) = (by)⊗ h ∀ b ∈ B, y ∈ Y, h ∈ H.
Also Blecher and Kashyap prove that the maps φ : Y → B(H,K),ψ : X →
B(K,H) given by φ(y)(h) = y ⊗ h and ψ(x)(y ⊗ h) = α((x, y))(h) are
w∗-continuous complete isometries. See [3] for the properties of the bilinear
map (·, ·) : X × Y → A. We can easily check that ψ(X) is an α(A) − β(B)

bimodule, φ(Y ) is a β(B)− α(A) bimodule and

α(A) = spanw
∗
(ψ(X)φ(Y )), β(B) = spanw

∗
(φ(Y )ψ(X)).

Corollary 3.6. If A is a nest algebra and if A and B are weakly-∗ Morita
equivalent then there exists a completely isometric normal representation β of
B such that β(B) is a nest algebra.

Proof. Theorem 3.5 implies that there exists a completely isometric normal
representation β of B such that the algebras A and β(B) are spatially Morita
equivalent. From [10, Remark 4.1] the algebra β(B) is reflexive and from [10,
Theorem 4.2] the lattice of β(B) is isomorphic with the nest of A. So β(B) is
a nest algebra.

Corollary 3.7. If A is a CSL algebra which is not a nest algebra then A
is not weakly-∗ Morita equivalent with a nest algebra.

Proof. Corollary 3.6 implies that ifAwas weakly-∗ Morita equivalent with
a nest algebra then it would have a normal completely isometric representation
α such that α(A) is a nest algebra. This is a contradiction since as we can easily
check α(Lat(A)) = Lat(α(A)).

4. A stable isomorphism theorem for nest algebras

In this section we are going to present a new theorem which characterizes the
stable isomorphism of separably acting nest algebras.

Definition 4.1. Two dual operator algebras C,D are called stably iso-
morphic if there exists a Hilbert space H and a completely isometric, w∗-
bicontinuous isomorphism from the algebra C ⊗̄ B(H) onto the algebra D ⊗̄
B(H), where ⊗̄ is the normal spatial tensor product.

We give two relevant definitions:

Definition 4.2 ([10]). Let C,D be w∗ closed algebras acting on Hilbert
spaces H1 and H2 respectively. If there exists a TRO M ⊂ B(H1, H2), i.e.
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a subspace satisfying MM∗M ⊂ M, such that C = spanw
∗
(M∗DM) and

D = spanw
∗
(MCM∗) we write C

M∼ D. We say that the algebras C,D are

TRO-equivalent if there exists a TRO M such that C
M∼ D.

Definition 4.3 ([11]). Let C,D be abstract dual operator algebras. These
algebras are called �-equivalent if they have completely isometric normal
representations φ,ψ such that the algebras φ(C), ψ(D) are TRO-equivalent.

In [13] we proved the following theorem:

Theorem 4.4. Two unital dual operator algebras are stably isomorphic if
and only if they are �-equivalent.

Blecher and Kashyap have shown that�-equivalence implies weak-∗ Mor-
ita equivalence [3, Section 3]. The converse does not hold. The counterexample
is [12, Example 3.7]. We shall give a new proof of this fact in Example 4.10.

Theorem 3.2 in [12] implies the following corollary:

Corollary 4.5. Two nest algebras are�-equivalent if and only if they are
TRO-equivalent.

In what follows if X is a subset of B(H) where H is a Hilbert space we
denote by X′ the commutant of X and by X′′ the algebra (X′)′. In [10] we
proved the following criterion of TRO-equivalence for reflexive algebras:

Theorem 4.6. Two reflexive algebras C,D are TRO-equivalent if and
only if there exists a ∗-isomorphism δ : (C ∩ C∗)′ → (D ∩ D∗)′ such that
δ(LatC) = LatD.

Comparing Theorems 4.4, 4.6 and Corollary 4.5 we get the following:

Corollary 4.7. The nest algebras Alg N1,Alg N2 are stably isomorphic if
and only if there exists a ∗-isomorphism δ : N ′′

1 → N ′′
2 such that δ(N1) = N2.

In the rest of this section we fix two nests N1,N2 acting on the separable
Hilbert spaces H1, H2 respectively and we denote A = Alg N1, B = Alg N2.
We use now extensively notions from [7, Section 7]. If ξ (resp. ω) is a unit
separating vector for the algebra N ′′

1 (resp. N ′′
2 )we define the order isomorph-

ism φξ (resp.ψω) from N1 (resp. N2) onto a closed subset of the interval [0, 1]
given by φξ (N) = ‖N(ξ)‖2 (resp. ψω(M) = ‖M(ω)‖2).

Suppose that [0, 1]\φξ (N1) = ⋃
n(ln, rn) and [0, 1]\ψω(N2) = ⋃

n(tn, sn).
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If m is the Lebesgue measure we define the measures μξ , νω given by

μξ(S) = m(S ∩ φξ (N1))+
∑
rn∈S

(rn − ln)

νω(S) = m(S ∩ ψω(N2))+
∑
sn∈S

(sn − tn),

for every Borel subset S of [0, 1]. We denote M1 (resp. M2) the nest {Ms : 0 ≤
s ≤ 1} ⊂ B(L2([0, 1], μξ )) (resp. {Ns : 0 ≤ s ≤ 1} ⊂ B(L2([0, 1], νω)))
where Ms (resp. Ns) is the projection onto the space L2([0, s], μξ ) (resp.
L2([0, s], νω)).

The algebra N ′′
1 is ∗-isomorphic with the algebra L∞([0, 1], μξ ) (resp.

L∞([0, 1], νω)) acting on the Hilbert spaceL2([0, 1], μξ ) (resp.L2([0, 1], νω))
through an isomorphism mapping the nest N1 (resp. N2) onto M1 (resp. M2).

We denote by AbsHom([0, 1]) the set of order homeomorphisms α : [0, 1]
→ [0, 1] which satisfy the property m(S) = 0 ⇒ m(α(S)) = 0. The theorem
below describes when two separably acting nest algebras are stably isomorphic.

Theorem 4.8. The algebras A,B are stably isomorphic if and only if there
exist separating unit vectors ξ for N ′′

1 , ω for N ′′
2 and α ∈ AbsHom([0, 1])

such that α(φξ (N1)) = ψω(N2).

Proof. Suppose that the algebrasA,B are stably isomorphic. From Corol-
lary 4.7 there exists a ∗-isomorphism δ : N ′′

1 → N ′′
2 such that δ(N1) = N2.

Fix separating unit vectors ξ for N ′′
1 , and ω for N ′′

2 . Taking compositions we
obtain a ∗-isomorphism

δ̃ : L∞([0, 1], μξ ) → L∞([0, 1], νω)

such that δ̃(M1) = M2. Every isomorphism between maximal abelian selfad-
joint algebras is implementing by a unitary. So the nests M1,M2 are unitarily
equivalent. By [7, Theorem 7.23] there exists α ∈ AbsHom([0, 1]) such that
α(φξ (N1)) = ψω(N2).

Conversely if there exist such ξ , ω and α, by the same theorem there exists
a unitary u ∈ B(L2([0, 1], μξ ), L2([0, 1], νω)) such that u∗M2u = M1. It
follows that L∞([0, 1], μξ ) = u∗L∞([0, 1], νω)u. Taking compositions we
take a ∗-isomorphism δ : N ′′

1 → N ′′
2 such that δ(N1) = N2. Again from

Corollary 4.7 we conclude that the algebras A and B are stably isomorphic.

Remark 4.9. If there exist separating unit vectors ξ for N ′′
1 , ω for N ′′

2 and
α ∈ AbsHom([0, 1]) such that α(φξ (N1)) = ψω(N2) then for all separating
unit vectors ξ1 for N ′′

1 and ω1 for N ′′
2 there exists α1 ∈ AbsHom([0, 1]) such

that α1(φξ1(N1)) = ψω1(N2). This is a consequence of [7, Proposition 7.22].
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The next example shows that weak-∗ Morita equivalence is strictly weaker
than �-equivalence.

Example 4.10. Let C be the Cantor set, γ be an order homeomorphism
of [0, 1] such that m(γ (C)) > 0. Suppose that [0, 1] \ C = ⋃

n(ln, rn) and
[0, 1] \ γ (C) = ⋃

n(tn, sn). We denote by μ the measure

μ(S) =
∑
rn∈S

(rn − ln)

and by ν the measure

ν(S) = m(S ∩ γ (C))+
∑
sn∈S

(sn − tn).

We denote M1 (resp. M2) the nest {Ms : 0 ≤ s ≤ 1} ⊂ B(L2([0, 1], μ)) (resp.
{Ns : 0 ≤ s ≤ 1} ⊂ B(L2([0, 1], ν))) where Ms (resp. Ns) is the projection
onto the space L2([0, s], μ) (resp. L2([0, s], ν)).

The map θ : M1 → M2 : Ms → Nγ(s) is a nest isomorphism, so by
Theorem 2.9 the algebras A = Alg M1, B = Alg M2 are weakly-∗ Morita
equivalent. If the algebrasA,B were�-equivalent by Theorem 4.8 there would
exist unit vectors ξ for M ′′

1 , ω for M ′′
2 and α ∈ AbsHom([0, 1]) such that

α(φξ (M1)) = ψω(M2). From [7, Proposition 7.22] we have thatm(φξ (M1)) =
m(C) = 0 and since m(γ (C)) > 0 we have that m(ψω(M2)) > 0. This is a
contradiction.

5. A counterexample in Morita equivalence

In this section we shall use the notions of TRO equivalence, of�-equivalence,
of stable isomorphism and we shall consider nest and CSL algebras. See the
appropriate definitions in Sections 1, 3 and 4. If C and D are unital operator
algebras which are strongly Morita equivalent then for every ε > 0 there
exists a completely bounded isomorphism from C ⊗min K onto D ⊗min K

with ‖ρ‖cb < 1 + ε and ‖ρ−1‖cb < 1 + ε, where K is the C∗-algebra of
compact operators on a separable infinite dimensional Hilbert space H and
⊗min is the spatial tensor product [6, Corollary 7.10]. It follows that for every
ε > 0 there exists a completely bounded w∗-continuous isomorphism σ from
C∗∗ ⊗̄ B(H) onto D∗∗ ⊗̄ B(H) with ‖σ‖cb < 1 + ε and ‖σ−1‖cb < 1 + ε,
where ⊗̄ is the normal spatial tensor product. One may wonder, if the operator
algebras C∗∗ and D∗∗ are stably isomorphic.

In this section we give a negative answer to this question. We present a
counterexample of unital strongly Morita equivalent algebras C andD whose
second duals are not stably isomorphic. Moreover for these algebras there



102 g. k. eleftherakis

exist normal completely isometric representations φ and ψ such that for every
ε > 0 there exists an invertible bounded operator Tε satisfying ‖Tε‖ < 1 + ε,
‖T −1

ε ‖ < 1 + ε, φ(C∗∗) = T −1
ε ψ(D∗∗)Tε and φ(C) = T −1

ε ψ(D)Tε .
Two nests N and M acting on the separable Hilbert spaces H and K

respectively are called similar if there exists an order isomorphism θ : N →
M which preserves dimension of intervals. We say that an invertible operator
S ∈ B(H,K) implements θ if θ(N) is the projection onto SN(H) for all
N ∈ N . In what follows if C is an operator algebra, �(C) is its diagonal
C ∩ C∗.

We fix similar nests N and M with corresponding nest algebras A =
Alg(N ) and B = Alg(M). We also assume that �(A) is a totally atomic
maximal abelian selfadjoint algebra (masa in sequel) and�(B) is a masa with
a nontrivial continuous part, [7, Example 13.15]. Suppose that θ : N → M

is an order isomorphism implementing similarity for N ,M. We denote by A0

(resp. B0) the algebra of compact operators belonging to A (resp. B) and by
A1 (resp. B1) the operator algebra A0 + CIH (resp. B0 + CIK ). We denote by
X the space Op(θ) and by Y the space Op(θ−1).

Theorem 5.1 (Davidson, [7, Theorem 13.20]). For every ε > 0 there exists
an invertible bounded operator Sε which implements θ such that ‖Sε‖ < 1+ε,
‖S−1

ε ‖ < 1 + ε. (Observe that Sε ∈ X and S−1
ε ∈ Y for all ε > 0.)

Suppose that j : A1 → A∗∗
1 is the canonical embedding. We denote by JA

the space j (A0)
w∗

.

Lemma 5.2.
(i) A∗∗

1 = JA + CI

(ii) JA ∩ CI = 0.

Proof. (i) Since |λ| ≤ ‖a+λIH‖ for all compact operatorsa the functional

ρ : A1 → C : a + λIH → λ

belongs to A∗
1. If x ∈ A∗∗

1 by the Goldstine Theorem there exists a net (ai +
λiIH ) ⊂ A0 + CI converging in thew∗-topology to x. Since (λi) converges to
ρ(x) the net (ai) converges to a ∈ JA and so x = a + ρ(x) ∈ JA + CI .

(ii) Since ρ|A0 = 0 if λI ∈ JA then λ = 0. So JA ∩ CI = 0.

Suppose that ι : A0 → A∗∗
0 is the canonical embedding. There exists a w∗-

continuous completely isometric onto homomorphismφ : A → A∗∗
0 extending

ι.
The map φ|A1 : A1 → A∗∗

0 extends to a w∗-continuous completely con-
tractive map φ̂ : A∗∗

1 → A∗∗
0 satisfying φ̂(j (a)) = φ(a) for all a ∈ A1. Also
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the completely contractive map j |A0 : A0 → A∗∗
1 extends to a w∗-continuous

completely contractive map κ̂ : A∗∗
0 → A∗∗

1 such that κ̂(ι(a)) = j (a) for all
a ∈ A0. So the map φ̂ ◦ κ̂ : A∗∗

0 → A∗∗
0 satisfies

φ̂ ◦ κ̂(ι(a)) = φ̂(j (a)) = φ(a) = ι(a)

for all a ∈ A0. It follows that φ̂◦κ̂ = idA∗∗
0

. Therefore κ̂ is a complete isometry.
We denote by θ the w∗-continuous completely isometric homomorphism

κ̂ ◦ φ : A → A∗∗
1 . Observe that

θ(A) = κ̂(φ(A)) = κ̂(ι(A0)
w∗
) = j (A0)

w∗ = JA.

Suppose that p is the projection θ(IH ). Lemma 5.2 implies that p⊥ 
= 0 and
A∗∗

1 = JA ⊕ Cp⊥.

Lemma 5.3. The algebra A∗∗
1 is completely isometric and w∗- continuously

isomorphic with the algebra A⊕ C acting on the Hilbert space H ⊕ C.

Proof. We define the map θ and the projectionp as in the above discussion.
We also define the completely isometric normal representation

π : A∗∗
1 = JA ⊕ Cp⊥ → B(H ⊕ C) : a ⊕ λp⊥ → θ−1(a)⊕ λ

which is onto A⊕ C.

For every ε > 0 we denote by Tε the bounded invertible operator Sε⊕ idC ∈
B(H ⊕C,K⊕C). We also denote the spacesU = X⊕C ⊂ B(H ⊕C,K⊕C)
and V = Y ⊕C ⊂ B(K⊕C, H ⊕C). Note thatU is aB⊕C−A⊕C bimodule
and V is an A⊕ C − B ⊕ C bimodule.

By the above lemma π(A∗∗
1 ) = A ⊕ C. If j : A1 → A∗∗

1 is the canonical
embedding we deduce π(j (a)) = a ⊕ 0 for all a ∈ A0 and π(j (idA1)) =
idH⊕C. Thus,

π(j (A1)) = span{a ⊕ 0, idH⊕C, a ∈ A0}.
Similarly if j2 : B1 → B∗∗

1 is the canonical embedding there exists a normal
completely isometric onto homomorphism ρ : B∗∗

1 → B ⊕ C such that

ρ(j2(B1)) = span{b ⊕ 0, idK⊕C, b ∈ B0}.
Since S−1

ε B0Sε = A0 and S−1
ε BSε = A we conclude that

T −1
ε ρ(j2(B1))Tε = π(j (A1)), T −1

ε ρ(B∗∗
1 )Tε = π(A∗∗

1 )

for all ε > 0.
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In the following Lemmas 5.4, 5.5 we identify the algebras A∗∗
1 with A⊕ C,

B∗∗
1 with B ⊕ C, A1 with π(j (A1)) and B1 with ρ(j2(B1)).

Lemma 5.4. The algebras A∗∗
1 and B∗∗

1 are weakly-∗ Morita equivalent.

Proof. Let U , V and Tε, ε > 0 be as in the above discussion. The com-
pletely contractive bilinear map V × U → A∗∗

1 : (v, u) → vu is separately
w∗-continuous, B∗∗

1 -balanced andA∗∗
1 -module map. Hence, it induces thew∗-

continuous completely contractive and A∗∗
1 -module map

τ : V ⊗σh
B∗∗

1
U → A∗∗

1 : v ⊗B∗∗
1
u → vu.

We shall prove that τ is isometric: If (vi) ⊂ V, (ui) ⊂ U and ε > 0 we have:

∥∥∥ n∑
i=1

vi ⊗B∗∗
1
ui

∥∥∥ =
∥∥∥ n∑
i=1

(T −1
ε Tεvi)⊗B∗∗

1
ui

∥∥∥.
Since Tεvi ∈ UV ⊂ B∗∗

1 the last norm is equal with

∥∥∥ n∑
i=1

T −1
ε ⊗B∗∗

1
(Tεviui)

∥∥∥ =
∥∥∥(T −1

ε ⊗B∗∗
1
Tε)

( n∑
i=1

viui

)∥∥∥
≤ ‖T −1

ε ‖‖Tε‖
∥∥∥ n∑
i=1

viui

∥∥∥ ≤ (1 + ε)2
∥∥∥ n∑
i=1

viui

∥∥∥.
We let ε → 0 and we have that

∥∥∥ n∑
i=1

vi ⊗B∗∗
1
ui

∥∥∥ =
∥∥∥ n∑
i=1

viui

∥∥∥.
Similarly we can prove that τ is completely isometric. The equality A =
spanw

∗
(YX) implies that A∗∗

1 = spanw
∗
(VU). Therefore, by the Krein-Smu-

lian Theorem τ is onto A∗∗
1 . The proof of the fact B∗∗

1
∼= U ⊗σh

A∗∗
1
V is similar.

Lemma 5.5. The algebras A1 and B1 are strongly Morita equivalent.

Proof. It suffices to prove that they have equivalent categories of left oper-
ator modules [2]. If C is an operator algebra we denote by Cmod the category
of left operator modules over C. We assume that every Z ∈ Cmod is essential,
i.e. the linear span of CZ is dense inZ. IfZ1, Z2 ∈ Cmod the space of morph-
isms HomC(Z1, Z2) is the space of completely bounded maps F : Z1 → Z2

which are C-module maps.
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We fix an operator T = Tε0 for ε0 > 0. If Z ∈ A1 mod then Z∗∗ is a left dual
operator module over A∗∗

1 in a canonical way [5, 3.8.9]. We denote by F (Z)

the subspace of U ⊗σh
A∗∗

1
Z∗∗

F (Z) = span(T a ⊗A∗∗
1
z : a ∈ A1, z ∈ Z).

Since U ⊗σh
A∗∗

1
Z∗∗ is a left operator module over B∗∗

1 and

b(T a ⊗A∗∗
1
z) = (bT a)⊗A∗∗

1
z = T (T −1bT a)⊗A∗∗

1
z

with T −1bT ∈ A1 for all b ∈ B1, we deduce that F (Z) is a left operator
B1-module.

If W ∈ B1 mod, we denote by G(W) the subspace of V ⊗σh
B∗∗

1
W ∗∗

G(W) = span(aT −1 ⊗B∗∗
1
w : a ∈ A1, w ∈ W).

Since V ⊗σh
B∗∗

1
W ∗∗ is a left operator module over A∗∗

1 , G(W) clearly belongs
to A1 mod.

The space

G(F (Z)) = span(a2T
−1 ⊗B∗∗

1
T a1 ⊗A∗∗

1
z : a1, a2 ∈ A1, z ∈ Z)

is a left operator module overA1 and subspace of the space V ⊗σh
B∗∗

1
U⊗σh

A∗∗
1
Z∗∗.

The w∗-Morita equivalence A∗∗
1

∼= V ⊗σh
B∗∗

1
U , B∗∗

1
∼= U ⊗σh

A∗∗
1
V induces ([3,

Theorem 3.5]) a complete isometry

V ⊗σh
B∗∗

1
U ⊗σh

A∗∗
1
Z∗∗ → Z∗∗ : v ⊗B∗∗

1
u⊗A∗∗

1
z → vuz

which restricts to a completely isometric map

RZ : G(F (Z)) → Z : a2T
−1 ⊗B∗∗

1
T a1 ⊗A∗∗

1
z → a2a1z

for all a1, a2 ∈ A1, z ∈ Z. This map is clearly onto Z.
Every morphism F ∈ HomA1(Z1, Z2) can be extended to a morphism

F̂ belonging to Homσ
A∗∗

1
(Z∗∗

1 , Z
∗∗
2 ), the space of w∗-continuous completely

bounded A∗∗
1 -module maps. (The paragraph [5, 1.4.8] can be used as a proof).

Due to weak-∗ Morita equivalenceA∗∗
1

∼= V ⊗σh
B∗∗

1
U ,B∗∗

1
∼= U⊗σh

A∗∗
1
V , there

exists ([3, Theorem 3.5]) a normal completely contractive functor F̂ between
the left dual operator modules of A∗∗

1 and B∗∗
1 such that

F̂ (F̂ ) : U ⊗σh
A∗∗

1
Z∗∗

1 → U ⊗σh
A∗∗

1
Z∗∗

2 : u⊗A∗∗
1
z → u⊗A∗∗

1
F̂ (z).

Since
F̂ (F̂ )(T a ⊗A∗∗

1
z) = T a ⊗A∗∗

1
F(z)
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for all a ∈ A1, z ∈ Z1 the operator F̂ (F̂ )maps F (Z1) into F (Z2). As a result
we are enabled to define

F (F ) = F̂ (F̂ )|F (Z1) : F (Z1) → F (Z2).

We can easily check that F (F ) ∈ HomB1(F (Z1),F (Z2)).
This way we define functors F : A1 mod → B1 mod and G : B1 mod →

A1 mod. Using the above complete isometries {RZ : Z ∈ A1 mod} we prove that
the functor GF is equivalent to the identity functor 1

A1 mod and the functor FG

is equivalent to the identity functor 1
B1 mod.

Theorem 5.6. Strong Morita equivalence of unital operator algebras doe-
sn’t imply �-equivalence of the second dual operator algebras.

Proof. We recall the unital operator algebrasA1 andB1 which are strongly
Morita equivalent by the above lemma. We shall prove that the algebras A∗∗

1
and B∗∗

1 are not �-equivalent. Suppose that they are �-equivalent. We define
the completely isometric normal representation (see Lemma 5.3)

π : A∗∗
1 → B(H ⊕ C) : a ⊕ λp⊥ → θ−1(a)⊕ λ.

The algebra π(A∗∗
1 ) = A⊕ C is a CSL algebra with lattice

{N ⊕ 0, N ⊕ C : N ∈ N }.
Suppose thatB∗∗

1 = JB⊕Cq⊥ where q is the identity of the algebraJB andJB is
isomorphic with the algebraB. By [12, Theorem 2.7] there exists a completely
isometric normal representation σ of B∗∗

1 on a Hilbert space K1 ⊕ K2 of the
form σ(b⊕ λq⊥) = σ1(b)⊕ λIK2 for all b ∈ JB, λ ∈ C such that the algebras
π(A∗∗

1 ), σ (B
∗∗
1 ) are TRO equivalent. Since π(A∗∗

1 ) is a CSL algebra, σ(B∗∗
1 )

is also a CSL algebra, [10, Remark 5.5]. Thus the algebra σ(B∗∗
1 ) contains a

masa and hence dimK2 = 1. Therefore we are enabled to assume that σ(B∗∗
1 )

is a CSL algebra acting on K1 ⊕ C.
Since �(A) (resp. �(B)) is a masa, then �(π(A∗∗

1 )) (resp. �(σ(B∗∗
1 )))

is also a masa. The algebras �(π(A∗∗
1 )),�(σ(B

∗∗
1 )) are TRO equivalent [10,

Proposition 2.5], but TRO equivalence between masas is a unitary equival-
ence (use for example [10, Theorem 3.2]). This is a contradiction because
�(π(A∗∗

1 )) = �(A)⊕ C is a totally atomic masa and the masa �(σ(B∗∗
1 ))

∼=
�(B) ⊕ C has a nontrivial continuous part. As a result the algebras A∗∗

1 , B
∗∗
1

are not �-equivalent.
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