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SQUARE FUNCTIONS FOR RITT OPERATORS ON
NONCOMMUTATIVE Lp-SPACES

CÉDRIC ARHANCET∗

Abstract
For any Ritt operator T acting on a noncommutative Lp-space, we define the notion of completely
bounded functional calculus H∞(Bγ ) where Bγ is a Stolz domain. Moreover, we introduce the
‘column square functions’

‖x‖p,T ,c,α =
∥∥∥∥
(+∞∑

k=1

k2α−1|T k−1(I − T )α(x)|2
) 1

2
∥∥∥∥

Lp(M)

and the ‘row square functions’

‖x‖p,T ,r,α =
∥∥∥∥
(+∞∑

k=1

k2α−1|(T k−1(I − T )α(x))∗|2
) 1

2
∥∥∥∥

Lp(M)

for any α > 0 and any x ∈ Lp(M). Then, we provide an example of Ritt operator which
admits a completely bounded H∞(Bγ ) functional calculus for some γ ∈ ]

0, π
2

[
such that the

square functions ‖·‖p,T ,c,α (or ‖·‖p,T ,r,α) are not equivalent to the usual norm ‖·‖Lp(M). Moreover,
assuming 1 < p < 2 and α > 0, we prove that if Ran(I − T ) is dense and T admits a completely
bounded H∞(Bγ ) functional calculus for some γ ∈ ]

0, π
2

[
then there exists a positive constant

C such that for any x ∈ Lp(M), there exists x1, x2 ∈ Lp(M) satisfying x = x1 + x2 and
‖x1‖p,T ,c,α + ‖x2‖p,T ,r,α � C‖x‖Lp(M). Finally, we observe that this result applies to a suitable
class of selfadjoint Markov maps on noncommutative Lp-spaces.

1. Introduction

Let M be a semifinite von Neumann algebra equipped with a normal semifinite
faithful trace. For any 1 � p < ∞, we let Lp(M) denote the associated (non-
commutative) Lp-space. Let T be a bounded operator on Lp(M). Consider
the following ‘square function’

(1) ‖x‖p,T ,1 = inf

{∥∥∥∥
(+∞∑

k=1

|uk|2
) 1

2
∥∥∥∥

Lp

+
∥∥∥∥
(+∞∑

k=1

|v∗
k |2

) 1
2
∥∥∥∥

Lp

: uk + vk = k
1
2
(
T k(x) − T k−1(x)

)
for any integer k

}
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if 1 < p � 2 and

(2) ‖x‖p,T ,1 = max

{∥∥∥∥
(+∞∑

k=1

k|T k(x) − T k−1(x)|2
) 1

2
∥∥∥∥

Lp(M)

,

∥∥∥∥
(+∞∑

k=1

k
∣∣(T k(x) − T k−1(x))∗

∣∣2
) 1

2
∥∥∥∥

Lp(M)

}

if 2 � p < ∞, defined for any x ∈ Lp(M). Such quantities were introduced in
[13] and studied in this paper and in [2]. Similar square functions for continuous
semigroups played a key role in the recent development of H∞-calculus and its
applications. See in particular the paper [9], the survey [12] and the references
therein.

For any γ ∈ ]
0, π

2

[
, let Bγ be the interior of the convex hull of 1 and the disc

D(0, sin γ ). Suppose 1 < p < ∞. Let T be a Ritt operator with Ran(I − T )

dense in Lp(M) which admits a bounded H∞(Bγ ) functional calculus for
some γ ∈ ]

0, π
2

[
, i.e. there exists an angle γ ∈ ]

0, π
2

[
and a positive constant

K such that ‖ϕ(T )‖Lp(M)→Lp(M) � K‖ϕ‖H∞(Bγ ) for any complex polynomial
ϕ. A result of [13] essentially says that

(3) ‖x‖Lp(M) ≈ ‖x‖p,T ,1, x ∈ Lp(M)

(see also [2, Remark 6.4]). Now, consider the following ‘column and row
square functions’

(4) ‖x‖p,T ,c,1 =
∥∥∥∥
( +∞∑

k=1

k
∣∣T k(x) − T k−1(x)

∣∣2
) 1

2
∥∥∥∥

Lp(M)

and

(5) ‖x‖p,T ,r,1 =
∥∥∥∥
( +∞∑

k=1

k

∣∣∣(T k(x) − T k−1(x)
)∗∣∣∣2

) 1
2
∥∥∥∥

Lp(M)

defined for any x ∈ Lp(M). Assume 1 < p < 2. In this context, if x ∈ Lp(M),
it is natural to search sufficient conditions to find a decomposition x = x1 +x2

such that ‖x1‖p,T ,c,1 and ‖x2‖p,T ,r,1 are finite. The first main result of this paper
is the next theorem. It strengthens the above equivalence (3) in the case where
T actually admits a completely bounded H∞(Bγ ) functional calculus, i.e. there
exists a positive constant K such that ‖ϕ(T )‖cb,Lp(M)→Lp(M) � K‖ϕ‖H∞(Bγ )

for any complex polynomial ϕ.
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Theorem 1.1. Suppose 1 < p < 2. Let T be a Ritt operator on Lp(M)

with Ran(I −T ) dense in Lp(M). Assume that T admits a completely bounded
H∞(Bγ ) functional calculus for some γ ∈ ]

0, π
2

[
. Then we have

‖x‖Lp(M) ≈ inf
{‖x1‖p,T ,c,1 + ‖x2‖p,T ,r,1 : x = x1 + x2

}
, x ∈ Lp(M).

In this context, it is natural to compare the both quantities of (4) and (5).
The second principal result of this paper is the following theorem. It says that
in general, ‘column and row square functions’ are not equivalent.

Theorem 1.2. Suppose 1 < p �= 2 < ∞. Then there exists a Ritt operator
T on the Schatten space Sp, with Ran(I − T ) dense in Sp, which admits a
completely bounded H∞(Bγ ) functional calculus for some γ ∈ ]

0, π
2

[
such

that
sup

{‖x‖p,T ,c,1

‖x‖p,T ,r,1
: x ∈ Sp

}
= ∞ if 2 < p < ∞

and
sup

{ ‖x‖p,T ,r,1

‖x‖p,T ,c,1
: x ∈ Sp

}
= ∞ if 1 < p < 2.

Moreover, the same result holds with ‖·‖p,T ,c,1 and ‖·‖p,T ,r,1 switched.

The paper is organized as follows. Section 2 gives a brief presentation of
noncommutative Lp-spaces and Ritt operators and we introduce the notions of
Col-Ritt and Row-Ritt operators and completely bounded H∞(Bγ ) functional
calculus which are relevant to our paper. The next section 3 mostly contains
preliminary results concerning Col-Ritt and Row-Ritt operators. Section 4 is
devoted to prove Theorems 1.2. In section 5, we present a proof of Theorem 1.1.
We end this section by giving some natural examples to which this result can
be applied.

In the above presentation and later on in the paper we will use <∼ to indicate
an inequality up to a constant which does not depend to the particular element to
which it applies. Then A(x) ≈ B(x) will mean that we both have A(x) <∼ B(x)

and B(x) <∼ A(x).

2. Background and preliminaries

We start with a few preliminaries on noncommutative Lp-spaces. Let M be a
von Neumann algebra equipped with a normal semifinite faithful trace τ . Let
M+ be the set of all positive elements of M and let S+ be the set of all x in M+
such that τ(x) < ∞. Then let S be the linear span of S+. For any 1 � p < ∞,
define ‖x‖Lp(M) = (

τ(|x|p)
) 1

p , x ∈ S,
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where |x| = (x∗x)
1
2 is the modulus of x. Then (S, ‖·‖Lp(M)) is a normed space.

The corresponding completion is the noncommutative Lp-space associated
with (M, τ) and is denoted by Lp(M). By convention, we set L∞(M) = M ,
equipped with the operator norm. The elements of Lp(M) can also be de-
scribed as measurable operators with respect to (M, τ). Further multiplication
of measurable operators leads to contractive bilinear maps Lp(M)×Lq(M) →
Lr(M) for any 1 � p, q, r � ∞ such that 1

p
+ 1

q
= 1

r
(noncommutative

Hölder’s inequality). Using trace duality, we then have Lp(M)∗ = Lp∗
(M)

isometrically for any 1 � p < ∞. Moreover, complex interpolation yields
Lp(M) = [L∞(M), L1(M)] 1

p
for any 1 � p � ∞. We refer the reader to [25]

for details and complements.
Let 1 � p < ∞. If we equip the space B(�2) with the operator norm

and the canonical trace tr, the space Lp(B(�2)) identifies to the Schatten-von
Neumann class Sp. This is the space of those compact operators x from �2

into �2 such that ‖x‖Sp = (
tr(x∗x)

p

2
) 1

p < ∞. Elements of B(�2) or Sp are
regarded as matrices A = [aij ]i,j�1 in the usual way.

If the von Neumann algebra B(�2) ⊗ M is equipped with the semifinite
normal faithful trace tr ⊗τ , the space Lp(B(�2)⊗M) canonically identifies to
a space Sp(Lp(M)) of matrices with entries in Lp(M). Moreover, under this
identification, the algebraic tensor product Sp⊗Lp(M) is dense in Sp(Lp(M)).
We refer to [22] for more about these spaces and complements.

If 1 � p < ∞, we say that a linear map on Lp(M) is completely bounded
if ISp ⊗ T extends to a bounded operator on Sp(Lp(M)). In this case, the
completely bounded norm ‖T ‖cb,Lp(M)→Lp(M) of T is defined by

‖T ‖cb,Lp(M)→Lp(M) = ‖ISp ⊗ T ‖Sp(Lp(M))→Sp(Lp(M)).

We use the convention to define ‖T ‖cb,Lp(M)→Lp(M) by +∞ if T is not com-
pletely bounded.

We shall use various �2-valued noncommutative Lp spaces. We refer to [9,
Chapter 2] for more information on these spaces. For any

∑n
k=1 xk ⊗ ak ∈

Lp(M) ⊗ �2, we set

∥∥∥∥
n∑

k=1

xk ⊗ ak

∥∥∥∥
Lp(M,�2

c )

=
∥∥∥∥
( n∑

i,j=1

〈aj , ai〉x∗
i xj

) 1
2
∥∥∥∥

Lp(M)

.

We have for any family (xk)k�1 in Lp(M)

(6)

∥∥∥∥
n∑

k=1

xk ⊗ ek

∥∥∥∥
Lp(M,�2

c )

=
∥∥∥∥
( n∑

k=1

|xk|2
) 1

2
∥∥∥∥

Lp(M)

=
∥∥∥∥

n∑
k=1

ek1 ⊗ xk

∥∥∥∥
Sp(Lp(M))

.
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The space Lp(M, �2
c) is the completion of Lp(M) ⊗ �2 for this norm. It iden-

tifies to the space of sequences (xk)k�1 in Lp(M) such that
∑+∞

k=1 xk ⊗ ek is
convergent for the above norm. We define Lp(M, �2

r ) similarly. For any finite
family (xk)1�k�n in Lp(M), we have

∥∥∥∥
n∑

k=1

xk ⊗ ek

∥∥∥∥
Lp(M,�2

r )

=
∥∥∥∥
( n∑

k=1

|x∗
k |2

) 1
2
∥∥∥∥

Lp(M)

=
∥∥∥∥

n∑
k=1

e1k ⊗ xk

∥∥∥∥
Sp(Lp(M))

.

For any 1 � p < ∞ and for any x1, . . . , xn ∈ Lp(M), we have

(7)

∥∥∥∥
n∑

k=1

xk ⊗ ek

∥∥∥∥
Lp(M,�2

c )

= sup

{∣∣∣∣
n∑

k=1

〈xk, yk〉Lp(M),Lp∗
(M)

∣∣∣∣ :

∥∥∥∥
n∑

k=1

yk ⊗ ek

∥∥∥∥
Lp∗

(M,�2
r )

� 1

}
.

A similar formula holds for the space Lp(M, �2
r ). For simplicity, we write

Sp(�2
c) for Lp(B(�2), �2

c). If 2 � p < ∞ we define the Banach space Lp(M,

�2
rad) = Lp(M, �2

c) ∩ Lp(M, �2
r ). For any u ∈ Lp(M, �2

rad), we have

‖u‖Lp(�2
rad)

= max
{‖u‖Lp(M,�2

c )
, ‖u‖Lp(M,�2

r )

}
.

If 1 � p � 2 we define the Banach space Lp(M, �2
rad) = Lp(M, �2

c) +
Lp(M, �2

r ). For any u ∈ Lp(M, �2
rad), we have

‖u‖Lp(M,�2
rad)

= inf
{‖u1‖Lp(M,�2

c )
+ ‖u2‖Lp(M,�2

r )

}
.

where the infimum runs over all possible decompositions u = u1 + u2 with
u1 ∈ Lp(M, �2

c) and u2 ∈ Lp(M, �2
r ). Recall that, if 1 < p < ∞, we have an

isometric identification

(8) Lp(M, �2
rad)

∗ = Lp∗
(M, �2

rad).

Let X be a Banach space and let (εk)k�1 be a sequence of independent Rade-
macher variables on some probability space 	. Let Rad(X) ⊂ L2(	; X) be
the closure of Span{εk ⊗ x : k � 1, x ∈ X} in the Bochner space L2(	; X).
Thus for any finite family x1, . . . , xn in X, we have

∥∥∥∥
n∑

k=1

εk ⊗ xk

∥∥∥∥
Rad(X)

=
(∫

	

∥∥∥∥
n∑

k=1

εk(ω)xk

∥∥∥∥
2

X

dω

) 1
2

.
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If 1 � p < ∞, the noncommutative Khintchine’s inequalities (see [15] and
[25]) implies

(9) Rad(Lp(M)) ≈ Lp(M, �2
rad).

We say that a set F ⊂ B(X) is R-bounded if there is a constant C � 0 such
that for any finite families T1, . . . , Tn in F , and x1, . . . , xn in X, we have

∥∥∥∥
n∑

k=1

εk ⊗ Tk(xk)

∥∥∥∥
Rad(X)

� C

∥∥∥∥
n∑

k=1

εk ⊗ xk

∥∥∥∥
Rad(X)

.

In this case, we let R(F ) denote the smallest possible C, which is called the
R-bound of F . R-boundedness was introduced in [3] and then developed in
the fundamental paper [6]. We refer to the latter paper and to [11, Section 2]
for a detailed presentation.

On noncommutative Lp-spaces, it will be convenient to consider two nat-
urals variants of this notion, introduced in [9, Chapter 4]. Let 1 < p < ∞.
A subset F of B

(
Lp(M)

)
is Col-bounded (resp. Row-bounded) if there ex-

ists a constant C � 0 such that for any finite families T1, . . . , Tn in F , and
x1, . . . , xn in Lp(M), we have

∥∥∥∥
( n∑

k=1

|Tk(xk)|2
) 1

2
∥∥∥∥

Lp(M)

� C

∥∥∥∥
( n∑

k=1

|xk|2
) 1

2
∥∥∥∥

Lp(M)

(10)

(
resp.

∥∥∥∥
( n∑

k=1

|Tk(xk)
∗|2

) 1
2
∥∥∥∥

Lp(M)

� C

∥∥∥∥
( n∑

k=1

|x∗
k |2

) 1
2
∥∥∥∥

Lp(M)

)
.(11)

The least constant C satisfying (10) will be denoted by Col(F ). Obviously
any Rad-bounded (resp. Col-bounded, resp. Row-bounded) set is bounded. It
follows from (9) that if a subset F of B(Lp(M)) is both Col-bounded and
Row-bounded, then it is Rad-bounded.

Note that contrary to the case of R-boundedness, a singleton {T } is not
automatically Col-bounded or Row-bounded. Indeed, {T } is Col-bounded
(resp. Row-bounded) if and only if T ⊗ I�2 extends to a bounded operator
on Lp(M, �2

c) (resp. Lp(M, �2
r )). And it turns out that if 1 < p �= 2 < ∞,

according to [9, Example 4.1], there exists a bounded operator T on Sp such
that T ⊗ I�2 does not extend to a bounded operator on Sp(�2

c). Moreover,
T ⊗ I�2 extends to a bounded operator on Sp(�2

r ). Then, we also deduce
that there are sets F which are Rad-bounded and Col-bounded without be-
ing Row-bounded. Similarly, one may find sets which are Rad-bounded and
Row-bounded without being Col-bounded, or which are Rad-bounded without
being either Row-bounded or Col-bounded.
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We turn to Ritt operators, the key class of this paper, and recall some of
their main features. Details and complements can be found in [2], [4], [5], [13],
[16], [18], [19] and [27]. Let X be a Banach space. We say that an operator
T ∈ B(X) is a Ritt operator if the two sets

(12) {T n : n � 0} and {n(T n − T n−1) : n � 1}
are bounded. This is equivalent to the spectral inclusion

(13) σ (T ) ⊂ D

and the boundedness of the set

(14) {(λ − 1)R(λ, T ) : |λ| > 1}
where R(λ, T ) = (λI − T )−1 denotes the resolvent operator and D denotes
the open unit disc centered at 0. Likewise we say that T is an R-Ritt operator
if the two sets in (12) are R-bounded. This is equivalent to the inclusion (13)
and the R-boundedness of the set (14).

Let T be a Ritt operator. The boundedness of (14) implies the existence of
a constant K � 0 such that |λ− 1|‖R(λ, T )‖X→X � K whenever Re(λ) > 1.
This means that I − T is a sectorial operator. Thus for any α > 0, one can
consider the fractional power (I −T )α . We refer to [8, Chapter 3], [11] and [17]
for various definitions of these (bounded) operators and their basic properties.

We will use the following two naturals variants of the notion of R-Ritt
operator.

Definition 2.1. Suppose 1 < p < ∞. Let T be a bounded operator on
Lp(M). We say that T is a Col-Ritt (resp. Row-Ritt) operator if the two sets
(12) are Col-bounded (resp. Row-bounded).

Remark 2.2. Assume that 1 < p < ∞. Let T be a bounded operator on
Lp(M). Using (7), it is easy to see that T is Col-Ritt if and only if T ∗ is
Row-Ritt on Lp∗

(M).

We let P denote the algebra of all complex polynomials. Let T be a bounded
operator on a Banach space X. Let γ ∈ ]

0, π
2

[
. Accordingly with [13], we say

that T has a bounded H∞(Bγ ) functional calculus if and only if there exists a
constant K � 1 such that

‖ϕ(T )‖X→X � K‖ϕ‖H∞(Bγ )

for any ϕ ∈ P . Naturally, we let:

Definition 2.3. Suppose 1 < p < ∞. Let T be a bounded operator on
Lp(M). Let γ ∈ ]

0, π
2

[
. We say that T admits a completely bounded H∞(Bγ )
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functional calculus if T is completely bounded and if ISp ⊗T admits a bounded
H∞(Bγ ) functional calculus on Sp(Lp(M)).

Let T be a bounded operator on Lp(M) and γ ∈ ]
0, π

2

[
. Note that T admits

a completely bounded H∞(Bγ ) functional calculus if and only if there exists
a constant K � 1 such that

‖ϕ(T )‖cb,Lp(M)→Lp(M) � K‖ϕ‖H∞(Bγ )

for any ϕ ∈ P .

3. Results related to Col-Ritt or Row-Ritt operators

In the subsequent sections, we need some preliminary results on Col-Ritt or
Row-Ritt operators that we present here. Some of them are analogues of exist-
ing results in the context of R-Ritt operators, for which we will omit proofs.

We start with a variant of [2, Proposition 2.8] suitable with our context. The
proof is similar, using [9, Lemma 4.2] instead of [2, Lemma 2.1].

Proposition 3.1. Suppose 1 < p < ∞. Let T be a Col-Ritt operator on
Lp(M). For any α > 0, the set

{
nα(
T )n−1(I − 
T )α : n � 1, 
 ∈ ]0, 1]

}
is Col-bounded. Moreover, a similar result holds for Row-Ritt operators.

Moreover, we need the following result [13].

Theorem 3.2. Suppose 1 < p < ∞. Let T be a bounded operator on
Lp(M) with a bounded H∞(Bγ ) functional calculus for some γ ∈ ]

0, π
2

[
.

Then T is R-Ritt.

In the next statement, we establish a variant of the above result.

Theorem 3.3. Suppose 1 < p < ∞. Let T be a bounded operator on
Lp(M). Assume that T admits a completely bounded H∞(Bγ ) functional cal-
culus for some γ ∈ ]

0, π
2

[
. Then the operator T is both Col-Ritt and Row-Ritt.

Proof. We will only show the ‘column’ result, the proof for the ‘row’ one
being the same. We wish to show that the sets

F = {T m : m � 0} and G = {m(T m − T m−1) : m � 1}
are Col-bounded. We consider the operator I ⊗ T on the noncommutative
Lp-space Sp(Lp(M)). Then, applying Theorem 3.2, we obtain that the sets

T = {ISp ⊗ T m : m � 0} and K = {mISp ⊗ (T m − T m−1) : m � 1}
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are Rad-bounded. Now consider x1, . . . , xn in Lp(M) and T1, . . . , Tn in F .
For any finite sequence (εk)1�k�n valued in {−1, 1}, we have

∥∥∥∥
( n∑

k=1

|xk|2
) 1

2
∥∥∥∥

Lp(M)

=
∥∥∥∥
( n∑

k=1

(εkxk)
∗(εkxk)

) 1
2
∥∥∥∥

Lp(M)

=
∥∥∥∥

n∑
k=1

εkek1 ⊗ xk

∥∥∥∥
Sp(Lp(M))

.

Then passing to the average over all possible choices of εk = ±1, we obtain
that ∥∥∥∥

( n∑
k=1

|xk|2
) 1

2
∥∥∥∥

Lp(M)

=
∥∥∥∥

n∑
k=1

εk ⊗ ek1 ⊗ xk

∥∥∥∥
Rad(Sp(Lp(M)))

.

By a similar computation, we have

∥∥∥∥
( n∑

k=1

|Tk(xk)|2
) 1

2
∥∥∥∥

Lp(M)

=
∥∥∥∥

n∑
k=1

εk ⊗ (ISp ⊗ Tk)(ek1 ⊗ xk)

∥∥∥∥
Rad(Sp(Lp(M)))

.

It follows that

∥∥∥∥
( n∑

k=1

|Tk(xk)|2
) 1

2
∥∥∥∥

Lp(M)

� Rad(T )

∥∥∥∥
( n∑

k=1

|xk|2
) 1

2
∥∥∥∥

Lp(M)

.

This concludes the proof of Col-boundedness of F with Col(F ) � Rad(T ).
The proof for the set G is identical.

Remark 3.4. Suppose 1 < p �= 2 < ∞. The complete boundedness
assumption in Theorem 3.3 cannot be replaced by a boundedness assumption.

Proof. We have already recalled that, there exists a bounded operator T

on Sp such that {T } is not Col-bounded. Let us fix γ ∈ ]
0, π

2

[
. We may

clearly assume that σ(T ) is included in the open set Bγ . Using the Dunford
calculus, it is easy to prove that T is a Ritt operator which admits a bounded
H∞(Bγ ) functional calculus. The set {T } is not Col-bounded. Hence T cannot
be Col-Ritt.

Now, we give a precise definition of ‘square functions’ which clarifies (1),
(2), (4) and (5) and a few comments. Let T a Ritt operator on Lp(M). For any
α > 0, let us consider

xk = kα− 1
2 T k−1(I − T )α(x)
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for any k � 1. If the sequence belongs to the spaceLp(M, �2
c), then‖x‖p,T ,c,α is

defined as the norm of (xk)k�1 in that space. Otherwise, we set ‖x‖p,T ,c,α = ∞.
In particular, ‖x‖p,T ,c,α can be infinite. We define the quantities ‖x‖p,T ,r,α by
the same way. The quantities ‖x‖p,T ,α are defined similarly in [2], using the
space Lp(M, �2

rad) instead of Lp(M, �2
c).

Finally, note that, if 2 � p < ∞, we have

‖x‖p,T ,α = max{‖x‖p,T ,c,α, ‖x‖p,T ,r,α}.
and if 1 � p � 2, we have

‖x‖p,T ,α

= inf
{‖u‖Lp(M,�2

c )
+ ‖v‖Lp(M,�2

r )
: uk + vk = kα− 1

2 T k−1(I − T )αx, k � 1
}
.

In [13], the following connection between the boundedness of square functions
and functional calculus is established.

Theorem 3.5. Suppose 1 < p < ∞. Let T be a bounded operator on
Lp(M). The following assertions are equivalent.

(1) The operator T is R-Ritt and T and its adjoint T ∗ both satisfy uniform
estimates

‖x‖p,T ,1 <∼ ‖x‖Lp(M) and ‖y‖p∗,T ∗,1 <∼ ‖y‖Lp∗
(M)

for any x ∈ Lp(M) and y ∈ Lp∗
(M).

(2) The operator T admits a bounded H∞(Bγ ) functional calculus for some
γ ∈ ]

0, π
2

[
.

Recall a special case of the principal result of [2].

Theorem 3.6. Let T be an R-Ritt operator on Lp(M) with 1 < p < ∞.
For any α, β > 0 we have an equivalence

‖x‖p,T ,α ≈ ‖x‖p,T ,β, x ∈ Lp(M).

We shall now present a variant suitable to our context.
For any integer n � 1, we identify the algebra Mn of all n × n matrices

with the space of linear maps �2
n → �2

n. For any infinite matrix [cij ]i,j�1, we
set ‖[cij ]‖reg = sup

n�1

∥∥[|cij |]1�i,j�n

∥∥
B(�2

n)

This is the so-called ‘regular norm’. We refer to [20] and [24] for more inform-
ation on regular norms.
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The next proposition will be useful. This result is similar to [2, Proposi-
tion 2.6].

Proposition 3.7. Suppose 1 < p < ∞. Let [cij ]i,j�1 be an infinite matrix
with ‖[cij ]‖reg < ∞. Suppose that {Tij : i, j � 1} is a Col-bounded set of
operators on Lp(M). Then the linear map

[cijTij ] :

Lp
(
M, �2

c

) −→ Lp(M, �2
c)

+∞∑
j=1

xj ⊗ ej �−→
+∞∑
i=1

(+∞∑
j=1

cijTij (xj )

)
⊗ ei

is well-defined and bounded. Moreover, we have a similar result for Row-
bounded sets.

Proof. We shall only prove the ‘Col’result. We can assume that‖[cij ]‖reg �
1. Let n � 1. By [2, Lemma 2.2], we can write cij = aij bij for any 1 � i, j � n

with

sup
1�i�n

n∑
j=1

|aij |2 � 1 and sup
1�j�n

n∑
i=1

|bij |2 � 1.

Let x1, . . . , xn ∈ Lp(M) and y1, . . . , yn ∈ Lp∗
(M). Since the set {Tij | i, j �

1} is Col-bounded, there exists a positive constant C such that
∣∣∣∣

n∑
i=1

〈 n∑
j=1

cijTij (xj ), yi

〉
Lp(M),Lp∗

(M)

∣∣∣∣

=
∣∣∣∣

n∑
i,j=1

〈
aij bijTij (xj ), yi

〉
Lp(M),Lp∗

(M)

∣∣∣∣

=
∣∣∣∣

n∑
i,j=1

〈
Tij (bij xj ), aij yi

〉
Lp(M),Lp∗

(M)

∣∣∣∣

�
∥∥∥∥
( n∑

i,j=1

|Tij (bij xj )|2
) 1

2
∥∥∥∥

Lp(M)

∥∥∥∥
( n∑

i,j=1

|(aij yi)
∗|2

) 1
2
∥∥∥∥

Lp∗
(M)

� C

∥∥∥∥
( n∑

i,j=1

|bij xj |2
) 1

2
∥∥∥∥

Lp(M)

∥∥∥∥
( n∑

i,j=1

|aij y
∗
i |2

) 1
2
∥∥∥∥

Lp∗
(M)

.

Now, we have

n∑
i,j=1

|bij xj |2 =
n∑

j=1

|xj |2
( n∑

i=1

|bij |2
)

�
n∑

j=1

|xj |2.
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Similarly, we have
n∑

i,j=1

|aij y
∗
i |2 �

n∑
i=1

|y∗
i |2.

Consequently

∣∣∣∣
n∑

i=1

〈 n∑
j=1

cijTij (xj ), yi

〉
Lp(M),Lp∗

(M)

∣∣∣∣

� C

∥∥∥∥
( n∑

j=1

|xj |2
) 1

2
∥∥∥∥

Lp

∥∥∥∥
( n∑

i=1

|y∗
i |2

) 1
2
∥∥∥∥

Lp∗
.

Taking the supremum over all y1, . . . , yn ∈ Lp∗
(M) such that∥∥(∑n

i=1 |y∗
i |2) 1

2
∥∥

Lp∗
(M)

� 1, we obtain

∥∥∥∥
n∑

i=1

( n∑
j=1

cijTij (xj )

)
⊗ ei

∥∥∥∥
Lp(M,�2

c )

� C

∥∥∥∥
n∑

j=1

xj ⊗ ej

∥∥∥∥
Lp(M,�2

c )

by (7). We conclude with [9, Corollary 2.12].

Now, we state a result which allows to estimate square functions ‖·‖p,T ,c,α

and ‖·‖p,T ,r,α by means of approximation processes, whose proof is similar to
[2, Lemma 3.2].

Lemma 3.8. Suppose 1 < p < ∞. Assume that T is a Col-Ritt operator on
Lp(M). Let α > 0.

(1) Let V be an operator on Lp(M) such that T V = V T with {V } Col-
bounded. Then, for any x ∈ Lp(M), we have

‖V (x)‖p,T ,c,α � Col({V })‖x‖p,T ,c,α.

(2) Let ν � α + 1 be an integer and let x ∈ Ran((I − T )ν). Then

‖x‖p,
T ,c,α


→1−−−−→ ‖x‖p,T ,c,α.

Moreover, the same result holds with ‖·‖p,T ,c,α replaced by ‖·‖p,T ,r,α for Row-
Ritt operators.

Now we state an equivalence result in our context similar to Theorem 3.6.

Theorem 3.9. Let T be a bounded operator on Lp(M) with 1 < p < ∞.
Let α, β > 0.
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(1) If T is Col-Ritt, we have an equivalence

‖x‖p,T ,c,α ≈ ‖x‖p,T ,c,β, x ∈ Lp(M).

(2) If T is Row-Ritt, we have an equivalence

‖x‖p,T ,r,α ≈ ‖x‖p,T ,r,β , x ∈ Lp(M).

Proof. The proof is similar to the one of [2, Theorem 3.3], using Proposi-
tion 3.1, Proposition 3.7, Lemma 3.8 and [9, Corollary 2.12].

4. Comparison between squares functions and the usual norm

We aim at showing Theorem 1.2. We will provide an example on the Schatten
space Sp. This example also prove that in general, row and column square
functions are not equivalent (Theorem 4.3).

Let a a bounded operator on �2. Assume 1 < p < ∞. We let La : Sp → Sp

the left multiplication by a on Sp defined by La(x) = ax and we denote
Ra : Sp → Sp the right multiplication. It is clear that L ∗

a and R∗
a are the

right multiplication and the left multiplication by a on Sp∗
. Note that, by [9,

Proposition 8.4 (4)], if I − a has dense range then Ran(I − La) is dense in
Sp. The next statement gives a link between properties of a and its associated
multiplication operators.

Proposition 4.1. Suppose 1 < p < ∞. Assume that a is a bounded
operator on �2.

(1) If a is a Ritt operator then the left multiplication La is a Ritt operator
on Sp.

(2) Let γ ∈ ]
0, π

2

[
. Then La has a bounded H∞(Bγ ) functional calculus if

and only if a has one. In that case, La actually has a completely bounded
H∞(Bγ ) functional calculus.

Moreover, we have a similar result for right multiplication.

Proof. We have σ(La) ⊂ σ(a). Moreover, if λ ∈ ρ(a) we have R(λ, La)

= LR(λ,a). The first assertion clearly follows. The statement (2) is a straight-
forward consequence of

ISp ⊗ La = LI�2 ⊗a and f (La) = Lf (a), f ∈ P .

The proof of the ‘right’ result is identical.
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We denote by (ek)k�1 the canonical basis of �2. Now, for any integer k � 1,
we fix ak = 1 − 1

2k . We consider the selfadjoint bounded diagonal operator a

on �2 defined by

(15) a

(+∞∑
k=1

xkek

)
=

+∞∑
k=1

akxkek.

It follows from the Spectral Theorem for normal operators, that the operator
a admits a bounded H∞(Bγ ) functional calculus for any γ ∈ ]

0, π
2

[
. Thus La

and Ra admit a completely bounded H∞(Bγ ) functional calculus for any
γ ∈ ]

0, π
2

[
(hence La and Ra are Ritt operators).

Lemma 4.2. Assume that 2 � p < ∞. Let a be the bounded operator on
�2 defined by (15). If La : Sp → Sp and Ra : Sp → Sp are the left and right
multiplication operators associated to a, we have

(16) ‖x‖p,La ,c,1 ≈ ‖x‖Sp and ‖x‖p,Ra ,r,1 ≈ ‖x‖Sp , x ∈ Sp.

Proof. We will only show the result for the operator La , the proof for Ra

being the same. For any x ∈ Sp and any 
 ∈ ]0, 1[, we have

k
(
(
La)

k−1(I − 
La)(x)
)∗(

(
La)
k−1(I − 
La)(x)

)
= k

(
(
a)k−1(I − 
a)x

)∗(
(
a)k−1(I − 
a)x

)
= kx∗(I − 
a)(
a)2(k−1)(I − 
a)x

= kx∗(I − 
La)
2(
La)

2(k−1)(x).

Now, for any z ∈ D, we have

(17)

+∞∑
k=1

kzk−1 = (1 − z)−2.

Since the operator La is a contraction, we deduce that, for every 
 ∈ ]0, 1[,
the operator I − (
La)

2 is invertible and that we have

(18)

+∞∑
k=1

k(
La)
2(k−1) = (

I − (
La)
2
)−2

,

the series being absolutely convergent. Then we deduce that the series

+∞∑
k=1

k
(
(
La)

k−1(I − 
La)(x)
)∗(

(
La)
k−1(I − 
La)(x)

)
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is convergent in the Banach space S
p

2 and that

+∞∑
k=1

k
(
(
La)

k−1(I − 
La)(x)
)∗(

(
La)
k−1(I − 
La)(x)

)
= x∗(I − 
La)

2
(
I − (
La)

2
)−2

x

= x∗(I + 
a)−2x.

We deduce that

‖x‖
La ,c,1 = ∥∥(
x∗(I + 
a)−2x

) 1
2
∥∥

Sp = ∥∥(I + 
a)−1x
∥∥

Sp .

Then, for any x ∈ Sp, we obtain the estimate

‖x‖p,
La ,c,1 � ‖(I + 
a)−1‖B(�2)‖x‖Sp � ‖x‖Sp .

By a similar computation, for any x ∈ Sp, we have

1
2‖x‖Sp � ‖x‖p,
La ,c,1.

Applying Lemma 3.8 (2), we deduce an equivalence

1
2‖x‖Sp � ‖x‖p,La ,c,1 � ‖x‖Sp , x ∈ Ran((I − La)

2).

For any integer n � 1, we let dn the bounded diagonal operator on �2 defined
by the matrix diag(1, . . . , 1, 0, . . .). It is not difficult to see that, for any integer
n � 1, the range of Ldn

is a subspace of Ran
(
(I − La)

2
)
. Hence we actually

have

1
2‖Ldn

(x)‖Sp � ‖Ldn
(x)‖p,La ,c,1 � ‖Ldn

(x)‖Sp , x ∈ Sp, n � 1.

Then, on the one hand, we obtain

‖Ldn
(x)‖p,La ,c,1 � ‖x‖Sp , x ∈ Sp, n � 1.

By [9, Corollary 2.12] and (6), this latter inequality is equivalent to

∥∥∥∥
l∑

k=1

ek1 ⊗k
1
2 L k−1

a (I −La)(Ldn
(x))

∥∥∥∥
Sp(Sp)

<∼ ‖x‖Sp , x ∈ Sp, n � 1, l � 1.

Passing to the limit in the above inequality, we infer that

∥∥∥∥
l∑

k=1

ek1 ⊗ k
1
2 L k−1

a (I − La)(x)

∥∥∥∥
Sp(Sp)

<∼ ‖x‖Sp , x ∈ Sp, l � 1.
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Using again [9, Corollary 2.12], we obtain that

‖x‖p,La ,c,1 � ‖x‖Sp , x ∈ Sp.

Note, in particular that, for any x ∈ Sp, we have ‖x‖p,La ,c,1 < ∞. On the other
hand, note that, for any integer n � 1, the operators La and Ldn

commute.
Hence, for any x ∈ Sp and any integer n � 1, we have

‖Ldn
(x)‖Sp <∼

∥∥Ldn
(x)

∥∥
p,La ,c,1

=
∥∥∥∥

+∞∑
k=1

ek1 ⊗ k
1
2 L k−1

a (I − La)(Ldn
(x))

∥∥∥∥
Sp(Sp)

=
∥∥∥∥(ISp ⊗ Ldn

)

(+∞∑
k=1

ek1 ⊗ k
1
2 L k−1

a (I − La)(x)

)∥∥∥∥
Sp(Sp)

.

Letting n to the infinity, we deduce that

‖x‖Sp <∼ ‖x‖p,La ,c,1, x ∈ Sp.

The proof is complete.

Theorem 4.3. Let α > 0. Let a be the bounded operator on �2 defined by
(15). Let La : Sp → Sp and Ra : Sp → Sp be the left and right multiplication
operators associated to a. Assume that 2 < p < ∞. Then

(19)

sup

{‖x‖p,La ,c,α

‖x‖p,La ,r,α

: x ∈ Sp

}
= ∞ and

sup

{ ‖x‖p,Ra ,r,α

‖x‖p,Ra ,c,α

: x ∈ Sp

}
= ∞.

Assume that 1 < p < 2. Then

(20)

sup

{ ‖x‖p,La ,r,α

‖x‖p,La ,c,α

: x ∈ Sp

}
= ∞ and

sup

{‖x‖p,Ra ,c,α

‖x‖p,Ra ,r,α

: x ∈ Sp

}
= ∞.

Proof. By Theorem 3.9, it suffices to prove the result for one specific real
α. Throughout the proof, we will use α = 1. We first assume that 2 < p < ∞.
Given an integer n � 1, we consider e = e1 +· · ·+en ∈ �2

n and x = 1√
n
e⊗e ∈

Sp. Clearly, we have

xx∗ =
n∑

i,j=1

eij .
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Now, we have

k
(
L k−1

a (I − La)(x)
)(

L k−1
a (I − La)(x)

)∗

= k
(
ak−1(I − a)x

)(
ak−1(I − a)x

)∗

= kak−1(I − a)xx∗(I − a)ak−1

=
n∑

i,j=1

kak−1(I − a)eij (I − a)ak−1

=
n∑

i,j=1

(1 − ai)(1 − aj )k(aiaj )
k−1eij .

Using the equality (17), we obtain that the series

+∞∑
k=1

k
(
L k−1

a (I − La)(x)
)(

L k−1
a (I − La)(x)

)∗

is convergent in S
p

2 and that

+∞∑
k=1

k
(
L k−1

a (I − La)(x)
)(

L k−1
a (I − La)(x)

)∗

=
n∑

i,j=1

(1 − ai)(1 − aj )(1 − aiaj )
−2eij .

Now, note that

(1 − ai)(1 − aj )(1 − aiaj )
−2 = 2i+j

(2i + 2j − 1)2
.

We deduce that

‖x‖p,La ,r,1 =
∥∥∥∥
( n∑

i,j=1

2i+j

(2i + 2j − 1)2
eij

) 1
2
∥∥∥∥

Sp

=
∥∥∥∥

n∑
i,j=1

2i+j

(2i + 2j − 1)2
eij

∥∥∥∥
1
2

S
p
2

.

We let A = [
2i+j

(2i+2j −1)2

]
1�i,j�n

be the n × n matrix in the last right member of
the above equations. We have

‖A‖2
S2

n
=

n∑
i,j=1

(
2i+j

(2i + 2j − 1)2

)2

=
n∑

i,j=1

4i+j

(2i + 2j − 1)4
.
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Moreover, note that

4i+j

(2i + 2j − 1)4
� 16

4i+j

(2i + 2j )4
= 16

(
1

2i−j + 2j−i + 2

)2

� 16

4|i−j | .

Thus we have
‖A‖2

S2
n

� 32

(∑
k∈Z

1

4|k|

)
n ≈ n.

If 4 � p < ∞, we obtain

‖x‖p,La ,r,1 = ‖A‖ 1
2

S
p
2

n

� ‖A‖ 1
2

S2
n

<∼ n
1
4 .

Since x = 1√
n
e ⊗ e is rank one, its norm in Sp does not depend on p, and it

is equal to 1√
n
‖e‖2

�2
n

= √
n. Then, by Lemma 4.2, we have ‖x‖p,La ,c,1 ≈ √

n.
We obtain the first equality of (19) in that case.

If 2 < p � 4, we can write 1
p

2
= 1−θ

1 + θ
2 with 0 < θ � 1. Then

‖x‖2
p,La ,r,1 = ‖A‖

S
p
2

n

� ‖A‖1−θ
S1

n
‖A‖θ

S2
n
.

By construction, we have A � 0, hence we have

‖A‖S1
n

= tr

( n∑
i,j=1

2i+j

(2i + 2j − 1)2
eij

)
=

n∑
i=1

4i

(2i+1 − 1)2
�

n∑
i=1

4i

(2i )2
= n.

Thus
‖x‖2

p,La ,r,1
<∼ n1−θn

θ
2 = n1− θ

2 .

Recall that ‖x‖p,La ,c,1 ≈ √
n. We obtain that

‖x‖p,La ,c,1

‖x‖p,La ,r,1

>∼
n

1
2

n
1
2 − θ

4

= n
θ
4 .

Since n was arbitrary and θ > 0, we obtain the first part of (19) in this case.
Likewise, the above proof has a ‘right analog’which proves the second equality
of (19).

We now turn to the proof of (20). We assume that 1 < p < 2. The second
part of (19) says

(21) sup

{ ‖y‖p∗,L ∗
a ,r,1

‖y‖p∗,L ∗
a ,c,1

: y ∈ Sp∗
}

= ∞.
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To prove the first equality of (20), assume on the contrary that there is a constant
K > 0 such that for any x ∈ Sp

(22) ‖x‖p,La ,r,1 � K‖x‖p,La ,c,1.

We begin by showing a duality relation between ‖·‖p∗,L ∗
a ,c,1 and ‖·‖p,La ,r,1.

Let y ∈ Sp∗
and x ∈ Sp. For any integer n � 1, recall that dn is the bounded

diagonal operator on �2 defined by the matrix diag(1, . . . , 1, 0, . . .). By (18),
for any 0 < 
 < 1 and any integer n � 1, we have
∣∣〈y, Ldn

(x)〉Sp∗
,Sp

∣∣
=

∣∣∣∣
〈
y,

+∞∑
k=1

k(
La)
2(k−1)(I − (
La)

2)2Ldn
(x)

〉
Sp∗

,Sp

∣∣∣∣

=
∣∣∣∣
+∞∑
k=1

〈
y, k(
La)

2(k−1)(I − (
La)
2)2Ldn

(x)
〉
Sp∗

,Sp

∣∣∣∣

=
∣∣∣∣
+∞∑
k=1

〈
k

1
2 (
L ∗

a )k−1(I − 
L ∗
a )(I + 
L ∗

a )2y,

k
1
2 (
La)

k−1(I − 
La)Ldn
(x)

〉∣∣∣∣
�

∥∥(
k

1
2 (
L ∗

a )k−1(I − 
L ∗
a )(I + 
L ∗

a )2y
)
k�1

∥∥
Sp(�2

c )
‖Ldn

(x)‖p,
La ,r,1.

Now, it is easy to see that {L ∗
a } is Col-bounded. We infer that

∣∣〈y, Ldn
(x)〉Sp∗

,Sp

∣∣
<∼

∥∥(
k

1
2 (
L ∗

a )k−1(I − 
L ∗
a )y

)
k�1

∥∥
Sp(�2

c )
‖Ldn

(x)‖p,
La ,r,1

= ‖y‖p∗,
L ∗
a ,c,1‖Ldn

(x)‖p,
La ,r,1.

Assume for a while that y ∈ Ran((I − L ∗
a )2). By Lemma 3.8 (2), letting 
 to

1, we obtain
∣∣〈y, Ldn

(x)〉Sp∗
,Sp

∣∣ <∼ ‖y‖p∗,L ∗
a ,c,1‖Ldn

(x)‖p,La ,r,1.

Letting n to the infinity, we obtain
∣∣〈y, x〉Sp∗

,Sp

∣∣ <∼ ‖y‖p∗,L ∗
a ,c,1‖x‖p,La ,r,1.

According to (22) and the first part of (16), we deduce that
∣∣〈y, x〉Sp∗

,Sp

∣∣ <∼ ‖y‖p∗,L ∗
a ,c,1‖x‖p,La ,c,1

<∼ ‖y‖p∗,L ∗
a ,c,1‖x‖Sp .
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By duality, we finally obtain that

(23) ‖y‖Sp∗ <∼ ‖y‖p∗,L ∗
a ,c,1.

For an arbitrary y ∈ Sp∗
, we also obtain (23) by applying it to L ∗

dn
(y) and then

passing to the limit. The second equivalence of (16) says that ‖y‖p∗,L ∗
a ,r,1 ≈

‖y‖Sp∗ for any y ∈ Sp∗
. This contradicts (21) and completes the proof of the

first part of (20). The proof of the second part is similar.

For an operator admitting a completely bounded H∞(Bγ ) functional cal-
culus, it also seems interesting, in view of the equivalence (3), to compare
the column and row square functions with the usual norm ‖·‖Lp(M). If T is a
operator with Ran(I − T ) dense in Lp(M) which admits a bounded H∞(Bγ )

functional calculus for some γ ∈ ]
0, π

2

[
, the equivalence (3) and Theorems 3.5

and 3.6 implies that

‖x‖Lp(M)
<∼ ‖x‖p,T ,c,1 and ‖x‖Lp(M)

<∼ ‖x‖p,T ,r,1

if 1 < p � 2 and

‖x‖p,T ,c,1 <∼ ‖x‖Lp(M) and ‖x‖p,T ,r,1 <∼ ‖x‖Lp(M)

if 2 � p < ∞, for any x ∈ Lp(M). The following result says that except for
p = 2, these estimates cannot be reversed:

Corollary 4.4. Suppose that 2 < p < ∞ (resp. 1 < p < 2). Let α > 0.
There exists a Ritt operator T on the Schatten space Sp, with Ran(I − T )

dense in Sp, which admits a completely bounded H∞(Bγ ) functional calculus
with γ ∈ ]

0, π
2

[
such that

sup

{ ‖x‖Sp

‖x‖p,T ,c,α

: x ∈ Sp

}
= ∞

(
resp. sup

{‖x‖p,T ,c,α

‖x‖Sp

: x ∈ Sp

}
= ∞

)
.

Moreover, the same result holds with ‖·‖p,T ,c,α replaced by ‖·‖p,T ,r,α .

Proof. One more time, we only need to prove this result for α = 1. Then,
this follows from Lemma 4.2 and Theorem 4.3.

5. An alternative square function for 1 < p < 2

Let T be a Ritt operator on Lp(M), with 1 < p < 2. For any α > 0, we may
consider an alternative square function by letting

‖x‖p,T ,0,α = inf
{‖x1‖p,T ,c,α + ‖x2‖p,T ,r,α : x = x1 + x2

}
for any x ∈ Lp(M).
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Note that if T is both Col-Ritt and Row-Ritt, by Theorem 3.9, the square
functions ‖x‖p,T ,0,α and ‖x‖p,T ,0,β are equivalent for any α, β > 0.

Suppose that ‖x‖p,T ,0,α is finite and that we have a decomposition x = x1 +
x2 with ‖x1‖p,T ,c,α < ∞ and ‖x2‖p,T ,r,α < ∞. Letting uk = kα− 1

2 T k−1(I −
T )αx1 and vk = kα− 1

2 T k−1(I − T )αx2, we have

kα− 1
2 T k−1(I − T )αx = uk + vk, k � 1.

Moreover, the sequences u and v belong to Lp(M, �2
c) and Lp(M, �2

r ) respect-
ively. We deduce that

‖x‖p,T ,α � ‖x‖p,T ,0,α, x ∈ Lp(M).

We do not know if the two square functions‖·‖p,T ,α and‖·‖p,T ,0,α are equivalent
in general. In the next statement, we give a sufficient condition for an such
equivalence to hold true.

Theorem 5.1. Suppose 1 < p < 2. Let T be a bounded operator on Lp(M)

with Ran(I −T ) dense in Lp(M). Assume that T is both Col-Ritt and Row-Ritt.
Let α, η > 0. Suppose that T satisfies a ‘dual square function estimate’

(24) ‖y‖p∗,T ∗,η <∼ ‖y‖Lp∗
(M), y ∈ Lp∗

(M).

Then we have an equivalence

‖x‖p,T ,α ≈ ‖x‖p,T ,0,α, x ∈ Lp(M).

Indeed, there is a positive constant C such that whenever x ∈ Lp(M) satisfies
‖x‖p,T ,α < ∞, then there exists x1, x2 ∈ Lp(M) such that

x = x1 + x2 and ‖x1‖p,T ,c,α + ‖x2‖p,T ,r,α � C‖x‖p,T ,α.

Proof. Since T is both Col-Ritt and Row-Ritt, it is also an R-Ritt operator.
Then, by Theorem 3.6 and Theorem 3.9, we only need to prove this result for
α = 1 and η = 1. Observe that, for any y ∈ Lp∗

(M), we have

∥∥(
k

1
2 (T ∗)k−1(I + T ∗)2(I − T ∗)y

)
k�1

∥∥
Lp∗

(M,�2
rad)

<∼
∥∥(I + T ∗)2

∥∥
Lp∗

(M)→Lp∗
(M)

∥∥(
k

1
2 (T ∗)k−1(I − T ∗)y

)
k�1

∥∥
Lp∗

(M,�2
rad)

<∼ ‖y‖Lp∗
(M)



square functions for ritt operators 313

by (24). We let

Z :
Lp∗

(M) −→ Lp∗(
M, �2

rad

)
y �−→ (

k
1
2 (T ∗)k−1(I + T ∗)2(I − T ∗)y

)
k�1

denote the resulting bounded map. Let x ∈ Lp(M) such that ‖x‖p,T ,1 < ∞.
There exists two elements u ∈ Lp(M, �2

c) and v ∈ Lp(M, �2
r ) such that for

any positive integer k

(25) uk + vk = k
1
2 T k−1(I − T )x

and such that ‖u‖Lp(M,�2
c )

+ ‖v‖Lp(M,�2
r )

� 2‖x‖p,T ,1.

Recall that we have contractive inclusions Lp(M, �2
c) ⊂ Lp(M, �2

rad) and
Lp(M, �2

r ) ⊂ Lp(M, �2
rad). Thus, by (8), we can define x1 and x2 of Lp(M)

by
x1 = Z∗u and x2 = Z∗v.

We will show that x = x1 + x2. Since T is a Col-Ritt-operator, by Proposi-
tion 3.1 (or by [2, Proposition 2.8]), we infer that there exists a positive constant
C such that

+∞∑
k=1

∥∥k
1
2 T k−1(I − T )2

∥∥2
Lp(M)→Lp(M)

=
+∞∑
k=1

k
∥∥T k−1(I − T )2

∥∥2
Lp(M)→Lp(M)

� C2
+∞∑
k=1

1

k3
< ∞.

For any 1 < p < 2, by [9, Proposition 2.5], we have the contractive inclusion
Lp(M, �2

c) ⊂ �2(Lp(M)). We deduce that
∑+∞

k=1 ‖uk‖2
Lp(M) < ∞. According

to the Cauchy-Schwarz inequality, we deduce that the series

+∞∑
k=1

k
1
2 T k−1(I − T 2)2uk = (I + T )2

+∞∑
k=1

k
1
2 T k−1(I − T )2uk

converges absolutely in Lp(M). Now, for any y ∈ Lp∗
(M), we have

〈
(I − T )x1, y

〉
Lp(M),Lp∗

(M)

= 〈
(I − T )Z∗u, y

〉
Lp(M),Lp∗

(M)

= 〈
u, Z(I − T ∗)y

〉
Lp(M,�2

rad),L
p∗

(M,�2
rad)
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= 〈
u,

(
k

1
2 (T ∗)k−1(I + T ∗)2(I − T ∗)2y

)
k�1

〉
Lp(M,�2

rad),L
p∗

(M,�2
rad)

=
+∞∑
k=1

〈
uk, k

1
2 (T ∗)k−1(I − (T ∗)2)2y

〉
Lp(M),Lp∗

(M)

=
〈+∞∑

k=1

k
1
2 T k−1(I − T 2)2uk, y

〉
Lp(M),Lp∗

(M)

.

Thus, we deduce that

(26) (I − T )x1 =
+∞∑
k=1

k
1
2 T k−1(I − T 2)2uk.

Similarly we have

(I − T )x2 =
+∞∑
k=1

k
1
2 T k−1(I − T 2)2vk.

Now, we infer that

(I − T )(x1 + x2) =
+∞∑
k=1

k
1
2 T k−1(I − T 2)2uk +

+∞∑
k=1

k
1
2 T k−1(I − T 2)2vk

=
+∞∑
k=1

k
1
2 T k−1(I − T 2)2(uk + vk)

=
+∞∑
k=1

k
1
2 T k−1(I − T 2)2k

1
2 T k−1(I − T )x by (25)

=
+∞∑
k=1

kT 2k−2(I + T )2(I − T )3x.

By (17), for any z ∈ D, we have

+∞∑
k=1

kz2k−2(1 − z2)2 = 1.

Since the operator T is power bounded, we note that for every 
 ∈ ]0, 1[ we
have

(27) I =
+∞∑
k=1

k(
T )2k−2(I − (
T )2)2,
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the series being absolutely convergent. Hence, for any 
 ∈ ]0, 1[, we have

(I − 
T )x = (I − 
T )

+∞∑
k=1

k(
T )2k−2(I − (
T )2)2x

=
+∞∑
k=1

k(
T )2k−2(I + 
T )2(I − 
T )3x.

It is not difficult to see that the latter series is normally convergent on [0, 1].
Hence, letting 
 to 1, we deduce that

(I − T )x =
+∞∑
k=1

kT 2k−2(I + T )2(I − T )3x.

Then we obtain
(I − T )x = (I − T )(x1 + x2).

Since the space Ran(I −T ) is dense in Lp(M), by the Mean Ergodic Theorem
(see [10, Section 2.1]), the operator I − T is injective. Consequently, we have
x = x1 +x2. Now, it remains to estimate ‖x1‖p,T ,1,c and ‖x2‖p,T ,1,r . According
to (26), we have

m
1
2 T m−1(I − T )x1 =

+∞∑
k=1

k
1
2 m

1
2 T k+m−2(I − T 2)2uk

for any integer m � 1. It is convenient to write this as m
1
2 T m−1(I − T )x1 =

(I + T )2ym with

(28) ym =
+∞∑
k=1

k
1
2 m

1
2 T k+m−2(I − T )2uk.

Now, observe that

k
1
2 m

1
2 T k+m−2(I − T )2 = k

1
2 m

1
2

(k + m − 1)2
· (k + m − 1)2T k+m−2(I − T )2.

According to [2, Proposition 2.3] and [2, Lemma 2.4], the matrix

[
k

1
2 m

1
2

(k + m − 1)2

]
k,m�1
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represents an element of B(�2). Moreover, by Proposition 3.1, the set

{
(k + m − 1)2T k+m−2(I − T )2 : k, m � 1

}

is Col-bounded. By Proposition 3.7, we deduce that (ym)m�1 ∈ Lp(M, �2
c)

and that
‖(ym)m�1‖Lp(M,�2

c )
<∼ ‖u‖Lp(M,�2

c )
.

Since {T } is Col-bounded, we have

‖x1‖p,T ,c,1 = ∥∥(
m

1
2 T m−1(I − T )x1

)
m�1

∥∥
Lp(M,�2

c )

= ∥∥(
(I + T )2ym

)
m�1

∥∥
Lp(M,�2

c )
by (28)

<∼
∥∥(ym)m�1

∥∥
Lp(M,�2

c )
.

Finally, we deduce that there exists a positive constant C such that

‖x1‖p,T ,c,1 � C‖u‖Lp(M,�2
c )
.

Moreover, we have a similar result for x2. Finally, we have

‖x1‖p,T ,c,1 + ‖x2‖p,T ,r,1 � C‖u‖Lp(M,�2
c )

+ C‖v‖Lp(M,�2
r )

� C‖x‖p,T ,1.

Corollary 5.2. Suppose 1 < p < 2. Let T be a bounded operator on
Lp(M) with Ran(I −T ) dense in Lp(M) and let α > 0. Assume that T admits
a completely bounded H∞(Bγ ) functional calculus for some γ ∈ ]

0, π
2

[
. Then

we have an equivalence

inf
{‖x1‖p,T ,c,α + ‖x2‖p,T ,r,α : x = x1 + x2

} ≈ ‖x‖Lp(M), x ∈ Lp(M).

Proof. By Theorem 3.3, the operator T is both Col-Ritt and Row-Ritt
(hence R-Ritt). Moreover, by Theorem 3.5, it satisfies a ‘dual square estimate’

‖y‖p∗,T ∗,1 <∼ ‖y‖Lp∗
(M), y ∈ Lp∗

(M).

Then, by Theorem 5.1 above, the norms ‖·‖p,T ,α and ‖·‖p,T ,0,α are equivalent.
Furthermore, by Theorem 3.6 and (3), ‖·‖p,T ,α is equivalent to the usual norm
‖·‖Lp(M), which proves the result.

Assume now that τ is finite and normalized, that is, τ(1) = 1. Following
[7] and [26] (see also [1]), we say that a linear map T on M is a Markov map if
T is unital, completely positive and trace preserving. As is well known, such a
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map is necessarily normal and for any 1 � p < ∞, it extends to a contraction
Tp on Lp(M). We say that T is selfadjoint if, for any x, x ′ ∈ M , we have

τ(T (x)x ′) = τ(xT (x ′)).

This is equivalent to T2 being selfadjoint in the Hilbertian sense. We also
consider the operator

Ap = I − Tp.

The following result is proved in the proof of [13, Proposition 8.7] with
bounded instead of completely bounded. But a careful reading of the proof
shows that we have this stronger result. We refer to [8], [9], [12] and [13] for
information on H∞(�θ) functional calculus.

Proposition 5.3. Suppose 1 < p < ∞. Let T be a selfadjoint Markov map
on M . Then the operator Ap is sectorial and admits a completely bounded
H∞(�θ) functional calculus for some θ ∈ ]

0, π
2

[
.

Assume 1 < p < ∞. At this point, it is crucial to recall that Lp-realizations
Tp of Markov maps T on M such that −1 /∈ σ(T2) are Ritt operators, as noticed
by C. Le Merdy in [13]. Let T be a selfadjoint Markov map on M . According
to [13] and Proposition 5.3, we obtain that Tp admits a completely bounded
H∞(Bγ ) functional calculus for some γ ∈ ]

0, π
2

[
. Hence, by Corollary 5.2,

we deduce the following result which strengthens a result of [13].

Corollary 5.4. Suppose 1 < p < 2. Let T be a selfadjoint Markov map
on M such that −1 /∈ σ(T2) with Ran(I − Tp) dense in Lp(M). Then, for any
α > 0 there exists a positive constant C such that for any x ∈ Lp(M), there
exists x1, x2 ∈ Lp(M) satisfying x = x1 + x2 and

∥∥∥∥
(+∞∑

k=1

k2α−1
∣∣T k−1(I − T )α(x1)

∣∣2
) 1

2
∥∥∥∥

Lp(M)

+
∥∥∥∥
(+∞∑

k=1

k2α−1
∣∣(T k−1(I − T )α(x2)

)∗∣∣2
) 1

2
∥∥∥∥

Lp(M)

� C‖x‖Lp(M).
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