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PERTURBATIONS OF PLANAR ALGEBRAS

PARAMITA DAS, SHAMINDRA KUMAR GHOSH and VED PRAKASH GUPTA*

(Dedicated to Sunder on the occasion of his 60th birthday)

Abstract

‘We analyze the effect of pivotal structures (on a 2-category) on the planar algebra associated to a 1-
cell as in [8] and come up with the notion of perturbations of planar algebras by weights (a concept
that appeared earlier in Michael Burns’ thesis [6]); we establish a one-to-one correspondence
between weights and pivotal structures. Using the construction of [8], to each bifinite bimodule
over I1-factors, we associate a bimodule planar algebra in such a way that extremality of the
bimodule corresponds to sphericality of the planar algebra. As a consequence of this, we reproduce
an extension of Jones’ theorem ([13]) (of associating ‘subfactor planar algebras’ to extremal
subfactors). Conversely, given a bimodule planar algebra, we construct a bifinite bimodule whose
associated bimodule planar algebra is the one which we start with, using perturbations and Jones-
‘Walker-Shlyakhtenko-Kodiyalam-Sunder method of reconstructing an extremal subfactor from a
subfactor planar algebra. The perturbation technique helps us to construct an example of a family
of non-spherical planar algebras starting from a particular spherical one; we also show that this
family is associated to a known family of subfactors constructed by Jones.

1. Introduction

In the pioneering and celebrated work [12] of Jones, the theory of subfactors
saw a new opening with, among other ideas and results, the introduction of the
concepts of index and the tower of basic construction for subfactors, which,
over the years, had various applications in the understanding of I7;-factors,
knot theory, quantum groups, TQFTs and other fields. There have been a lot of
pathbreaking works in this theory since its initiation — see, for instance, [12],
[24], [25], [26], [28], [29].

Further, an important aspect of this paper of Jones was the evolution of an
invariant called the standard invariant of the subfactor, which basically con-
sists of a grid of finite dimensional C*-algebras with some rich structure. It has
turned out that, among other invariants, the standard invariant of a finite index
subfactor is its most important invariant. An instance to justify this claim is
that, for certain ‘good’ family of subfactors (namely, the amenable ones, see
[28]), their standard invariants turn out to be complete invariants. As such, it
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was motivating enough for people to work on obtaining a better understanding
of this invariant. Sorin Popa (in [29]) gave an algebraic axiomatization of the
standard invariant as a grid of finite dimensional C*-algebras, which he called
a standard A-lattice. Conversely, given such a A-lattice, he constructed an ex-
tremal subfactor whose standard invariant is the A-lattice which he started with.
Ocneanu also came up with a ‘group-like’ structure on the standard invariant
and called them paragroups. Subsequently, Vaughan Jones (in [13]) developed
a very effective pictorial reformulation of the standard invariant which he called
planar algebra, and associated a planar algebra satisfying certain natural con-
ditions (referred as subfactor planar algebra) to any extremal subfactor. In the
converse direction, starting from a subfactor planar algebra Jones reconstruc-
ted a subfactor whose associated planar algebra is isomorphic to the given
one, using Popa’s characterization of A-lattices. Later, in [30], Popa exten-
ded his correspondence to generalized \-lattices on one hand and finite index
subfactors (not necessarily extremal) on the other. In 2003, Michael Burns in
his thesis (see [6]), established a similar correspondence replacing general-
ized A-lattices with planar algebras satisfying appropriate conditions (without
any assumption of sphericality). Very recently, reconstruction of extremal sub-
factor from a subfactor planar algebra has also been performed using random
matrix and free probability techniques in [10] followed by simpler treatments
using planar algebra machinery in [19] and [22]. Planar algebra techniques
have recently found applications in developing new methods of constructing
certain class of subfactors as well.

We now present a brief outline of the motivation and the results that brought
this article into existence.

(I) Our motivation stemmed solely from the investigation of the following:

(a) A construction of a planar algebra starting from a 1-cell in a pivotal 2-
category was given by the second named author in his thesis (see [8]).
This construction was purely algebraic, with the description of the action
of tangles being given in terms of graphical calculus of morphisms,
analogous to the ones used in [20]. However, the actual manifestation of
the pivotal structure in the planar picture remained unclear and required
further analysis.

(b) In the operator algebra context, a nice prototype is the 2-category of
bifinite bimodules over /I -factors. So, one would like to investigate the
planar algebras obtained using the method in [8] from a bifinite bimodule
4(p where A and B are II; factors.

(c) Another question in this context is whether the Jones’ planar algebra

associated to an extremal finite index subfactor N C M, is isomorphic
to the planar algebra coming from the bimodule y L*(M),,.
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In this paper, we make an attempt to answer these and other natural questions,
the answers of which we list below:

(IT) Summary of the main results:

(a)

(b)

(©

(d)

(e)

We answer the question (I)(c), that is, we show that one does not always
get back Jones’ subfactor planar algebra from the construction in [§]
unless the right pivotal structure is chosen.

In order to find out the exact dependence of the planar algebra from the
construction in [8] on the pivotal structure, we come up with the concept
of weights of a planar algebra and perturbations of planar algebras by
weights; later, we realized that such objects also appeared in Michael
Burns’ thesis to prove Jones’ theorem for non-extremal subfactors. Fi-
nally, we establish a one-to-one correspondence between weights on a
planar algebra and pivotal structures on the associated 2-category.

To each bifinite bimodule over /1 -factors, using the construction in [8],
we associate a bimodule planar algebra in such a way that extremal-
ity of the bimodule corresponds to sphericality of the planar algebra.
Moreover, this also shows that bimodules with different left and right
dimensions, gives the right platform to investigate planar algebras with
different modulii coming from shaded and unshaded loops.

Conversely, given a bimodule planar algebra, we construct a bifinite
bimodule whose associated bimodule planar algebra is the one that we
start with, using perturbations and Jones-Walker-Shlyakhtenko-Kodiy-
alam-Sunder method of reconstructing an extremal subfactor from a
subfactor planar algebra.

We give explicit construction of examples of non-spherical planar algeb-
ras; more precisely we show that the perturbation class of the diagonal
planar algebra with respect to the free group F,, generated by two free
generators and trivial cocycle contains a continuum of non-spherical un-
imodular bimodule planar algebras with index greater than 4; we also
prove that this family is associated to a known family of subfactors con-
structed by Jones.

(IIT) Some nice consequences:

(a) Asaconsequence of (II)(c), we reproduce an extension of Jones’ theorem

(of associating ‘subfactor planar algebras’ to extremal subfactors). This
was proved earlier by Michael Burns in his thesis [6]; the reconstruction
of a non-extremal subfactor had appeared in [30].

(b) We show that the perturbation class of a bimodule planar algebra contains

a unique spherical unimodular bimodule planar algebra which can also
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be characterized by the minimality of its index. Subfactor version of
such results had appeared in the works of Hiai and Popa.

All results in this article are derived using standard facts on bimodules, sub-
factors and planar algebras, which can be found, for instance, in [1], [13], [18],
[24], [25], [26], [28], [29].

We now briefly describe the organization of this paper. Section 2 serves as
a quick recollection of various definitions, standard facts and basic aspects of
planar algebras, pivotal bicategories and the bicategory of bifinite bimodules.

In Section 3, we define weight of a planar algebra P and perturbation of
P by the weight. A planar algebra with modulus (6_, §+) can be normalized,
that is, perturbed with an appropriate scalar weight to get a unimodular planar
algebra (that is, having §_ = §,) although the index (:= the product of the
8’s) remains unchanged. If the actions of the O-tangles in the normalization are
invariant under spherical isotopy, then the planar algebra is called spherical;
this is a slight modification of Jones’ definition of sphericality in order to
accommodate non-unimodular planar algebras. At the very end of this section,
we make few immediate observations involving perturbations, *-structures and
positivity in planar algebras.

In the first part of Section 4, we associate a strict 2-category to a planar
algebra and show that weights of the planar algebra are in one-to-one corres-
pondence with pivotal structures on the associated 2-category. Conversely, if
we start with a bicategory with two pivotal structures, then the planar algebras
obtained from any 1-cell using [8] method, are perturbations of each other. This
section ends with a quick recollection (from [8]) of the method of associating
a planar algebra to an 1-cell in a strict 2-category.

Section 5 is an omnibus section and is the crux of this paper. In this sec-
tion, we first formalize what we mean by a bimodule planar algebra; then,
following the above-mentioned method of [8], we associate a bimodule planar
algebra to each bifinite bimodule such that the extremality of the bimodule
exactly corresponds to the sphericality of its associated planar algebra. This,
in turn, provides an extension to Jones’ theorem [13, Theorem 4.2.1], that
is, we associate a unimodular bimodule planar algebra to an arbitrary finite
index subfactor. Such extension was also obtained by Burns; however, our
techniques are completely independent and rely on simple graphical calcu-
lus of morphisms in the pivotal 2 category. In the converse direction, given
any bimodule planar algebra, we obtain a bifinite bimodule whose associated
bimodule planar algebra is isomorphic to the one that we started with, through
the application of perturbations and following the strategy of [19], [22].

In the first part of Section 6, we show that the perturbation class of every
bimodule planar algebra contains a unique spherical unimodular bimodule
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planar algebra which can also be characterized by the property of having the
minimal index in the perturbation class. Minimizing indices of conditional
expectations onto a subfactor already appeared in the literature in the work of
Hiai (in [11]) and then Popa (in [28]); we are now able to connect this circle
of ideas with our notion of perturbation of planar algebra. In the second part,
we construct concrete examples of nonspherical planar algebras purely algeb-
raically; more precisely we show that the perturbation class of the diagonal
planar algebra with respect to the free group F,, generated by two free gen-
erators and trivial cocycle contains a continuum of non-spherical unimodular
bimodule planar algebras with index greater than 4. As suggested by Jones,
we prove that these planar algebras are isomorphic to the ones associated to
the (non-extremal) subfactors that he constructed in [12] in order to prove that
every index greater than 4 is realized.

In the final section, we discuss some questions pertaining to perturbations
and weights of a planar algebra.

2. Preliminaries

This section is mainly a recollection of various definitions, standard facts and
setting up of notations which will be used in the subsequent sections.

2.1. Planar algebras

Since its inception in [13], the formalism of planar algebras has undergone
gradual modifications — see, for instance, [13], [14], [21], [8]. The starting
ingredient for defining a planar algebra is the operad of tangles. A tangu-
lar diagram T consists of a subset Dy (referred as the external disc) of R?,
homeomorphic to the unit disc along with: (a) finitely many (possibly none)
non-intersecting subsets Dy, ..., D, (referred as internal discs) in the interior
of Dy, each of which is also homeomorphic to the unit disc, (b) the boundary of
each disc (internal or external) having even number of marked points numbered
clockwise, (c) non-intersecting paths (called strings) in Dg \ [Uf.’zl Int(D,-)],
which are either loops or meet the boundaries of the discs exactly at two dis-
tinct marked points in such a way that every marked point is an endpoint of
a string, and (d) a checker-board shading on the connected components of
Int(Dy) \ [(Uf’zl D;) U {strings}]. We will usually indicate the checker-board
shading and the numbering of the marked points simply by putting a — (resp.,
+) sign in the shaded (resp., unshaded) connected component near the bound-
ary segment between the last and first marked points. Such a sign along with
half the number of marked points on a disc is called its color. A tangle is
the class of a tangular diagram under the equivalence of planar isotopy (pre-
serving the shading and the distinguished boundary components). If a tangle
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T has b > 0O (resp., no) internal disc(s) and the color of the disc D; is ;k; for
0 <i < b, thenthe tangle is usually expressed as T : (¢1ky, ..., epkp) — €oko
(resp., T : @ — &oko). See Figure 2.1 for illustrations. Before we proceed fur-
ther, we will set up some notations about planar algebras which will be used
in the forthcoming sections. Although at first, these notations may seem to be
a hindrance towards the readability to some extent, they will greatly reduce
the need for drawing elaborate planar pictures again and again. Understanding
and decoding these notations correctly will definitely facilitate smooth read-
ing. We will not give the definition of planar algebra which can be found in
[13]; however, we will be consistent with the notation described in [8].

(1) We will consider the natural binary operation on {—, +} given by ++ :=
+,+— := —, —+ := — and —— := +. Notations such as (—) have to
be understood in this context.

(2) We will denote the set of all possible colors of discs in tangles by Col :=
{ek 1 & € {+, =}, k € Ny} where Ng := N U {0}.

(3) In a tangle, we will replace (isotopically) parallel strings by a single
strand labelled by the number of strings, and an internal disc with color
ek will be replaced by a bold dot with the sign ¢ placed at the angle
corresponding to the distinguished boundary component of the disc.

For example, will be replaced by . In a similar token, if

P is a planar algebra, we will replace a P-labelled internal disc by a
bold dot with the label being placed at the angle corresponding to the

distinguished boundary component of the disc; for instance, @ will

be replaced by where x € Pe.3.

We will reserve alphabets like x, y, z to denote elements of P; ¢, n, v
to denote a sign, and &, [, m to denote a natural number to avoid confu-
sion. It should be clear from the context what a bold dot or a string in a
picture is labelled by.

(4) We set some notation for a set of ‘generating tangles’ in Figure 2.1.

(5) Tex (resp., T (P)) will denote the set of tangles (resp., P-labelled
tangles) which has ek as the color of the external disc; Z.;(P) will be
the vector space . (P) as a basis. The action of P induces a linear map

Pou(P)> T > Py e Py,

A planar algebra P is a ‘representation’ of the operad of tangles, that is, it
consists of complex vector spaces {P; : ¢k € Col} and for every tangle
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k k
Right inclusion tangle Left inclusion tangle
“k ¢k
RE: (k41 = 8@ cek+1) —> ek LE;41) = @ cetk+1) > —¢ck
k k
Right conditional expectation tangle Left conditional expectation tangle

FIGURE 2.1. Generating tangles

T : (e1ky, &2ko, ..., epkp) — eoko (resp., T : @ — eoko), there exists an
action of T given by a multi-linear map Pr : xf?:]Pgik,. — P, (tesp., a
vector Pr € Pgy,) such that the action preserves (i) composition and (ii)
identity (that is, P;, = idp, ). Note that { Pst}xen, has a unital filtered algebra
structure with multiplication, unit and inclusion given by the actions of M,
1¢x and R, respectively.

DEFINITION 2.1. A planar algebra P is said to

(1) beconnected (resp., finite dimensional) if dim(Pyg) = 1 (resp., dim(Peg)
< oo for all ek € Col).

+
(2) have modulus (8_,84) € C*if P| ()| = 8+ Py, = 8+1p,, and in this

case, the scalar 6, 6_ is called the index of P.
(3) be unimodular if it has modulus (§_, §1) such that §_ = §.

(4) be a x-planar algebra if there exists a conjugate-linear involution * :
P, — Py for all ek € Col satisfying the *-condition:

(2.1) PT(xl, ey xh)* = PT*()CT, RN X;) (resp‘, (PT)* = PT*)

foreachtangle T : (e1ky X - - - X gpkp) — eoko (resp., T : 0 — eoky) and
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xi € Pey,, 1 <i < b, where the adjoint 7™ of a tangle T is obtained by
reflecting it about a horizontal line keeping the shading and distinguished
boundary components intact.

(5) be C*-planar algebra if each P, is a C*-algebra such that its multiplic-
ation is the same as that induced by M, and P forms a x-planar algebra
with respect to the .

(6) be irreducible if dim(P4;) = 1 (equivalently, dim(P_;) = 1).
Note that a connected planar algebra P has modulus, and two canonical
picture traces Prgr, : Pep — Pgo = Cand PTRi-k i Pox — Py = Cinduced

& k
. k e
by the trace tangles TR, := EQ and TR!, := k® . A connected C*-

planar algebra P is said to be positive if the canonical picture traces are positive
definite.

We now recall the definition of the n-th dual of a planar algebra P with
modulus (6_, 8+), denoted by A,,(P). For atangle T, let A,,(T') be the tangle ob-
tained from T by attaching n parallel strings on the disc D (internal or external)
enclosing closely the sign ¢p near the distinguished boundary component of
the disc.

Vectors spaces: For all colors ek, A,,(P)¢r := Range(Py,(1.,))-
Action of tangles: For all tangles T,

n -1
Mn(P)r = [ [] (l_[ 5<>'eu> ]PAHm-

De{internal disc(s) of T} “=1

Note that Ao(P) = P, Ay(Aw(P)) = Apyan(P) and A, (P) has modulus
(8¢—y+1, 8(—y) forall m, n € No.

For any mathematical category, studying the morphisms in that category is
very crucial. A morphism ¢ : P — Q for two planar algebras P and Q, is a
collection of linear maps . : Per — Qek, €k € Col which are equivariant
with the action of tangles (thatis, 9o P = Qro@ orgo Pr = Q7 according as
T has at least one internal disc or none). Given such a double sequence of linear
maps, it is not always necessary to verify its equivariance with every tangle.
For instance, it suffices to do the same only for the actions of a generating set
of tangles mentioned in Figure 2.1.

REMARK 2.2. Let P and Q be connected planar algebras with non-zero
modulii. Then, a linear map ¢ : P — Q is a planar algebra morphism if it is
equivariant with the actions of any of the following sets of tangles:

(1) Ukeny M+, RIsk, Llsk, Ex1)
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(2) Ukeng (M55 Rk, LIk, Eqerys LE ety }

Sometimes, in order to obtain morphisms between planar algebras, it is
even enough to obtain a morphism on the ‘positive parts’. More precisely, we
have the following lemma.

LEMMA 2.3. Let P and Q be planar algebras having the same pair of non-
zero moduli, say (86—, 8.), and suppose there exist linear maps ¢4y : Py —
Ok, k = 0, equivariant with the action of tangles with discs of only positive
colors. Then there exists a unique planar algebra morphism ¢ : P > QO such
that ¢ = @1y for all k > 0. Moreover, if ¢ is an isomorphism, so is §.

Proor. Consider ¢ : P — Q given by ¢, = ¢, and

bk o1
Py 3x+— 38" 0QLE, 41 © Prk+1) © Prr(x) € O«

forall k > 0. Itis straight forward to check that ¢ is equivariant with the action
of tangles of all types (not necessarily having positive colors for all discs). The
uniqueness follows from the definition.

For the second part, since ¢ is equivariant with the action of E ;(k L =
LI_yoLE, 41y, we have ¢ +1)(Ran PE’+<k+1>) C Ran QE/+(/<+I)’ with equality

if ¢ is surjective; also, ¢ is injective if so is ¢ because Q. ., restricted to

Ran Qg is injective. Thus, ¢ is an isomorphism if ¢ is so.

Let P be a planar algebra. Then, by a P-labelled (resp., semi-labelled)
tangle, we mean a tangle whose all (resp., some) internal discs are labelled by
elements of P such that an internal disc of color ¢k is labelled by an element
of P.. For simplicity, we will replace a P-labelled internal disc by a bold
dot as before with the label being placed at the angle corresponding to the
distinguished boundary component of the disc.

2.2. Bicategories
In this subsection, for the sake of completeness, we recall the notion of bic-
ategories and structures of rigidity and pivotality on them which will be used
later. Most of the material in this subsection can be found in any standard
textbook on bicategories.
DEFINITION 2.4. A bicategory % consists of:
e a class %y whose elements are called 0-cells;
o for o, B8 € Py, a category A («, ) whose object X shall be called 1-
cells and denoted by « N B, and whose morphism X BN X, from

o RN B to« RN B shall be called 2-cells;
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o for a, B,y € Ay, there exists a functor ® : B(B,y) x B(a, B) —
B, y);

o . . X Y z
¢ Associativity constraint: For each tripleo — 8,8 — y,y —> § of
azyx

1-cells, there exists an isomorphism (Z ® V) @ X —> Z ® (Y ® X)
in Mor(%(«, 8));

e Identity object: for each O-cell «, there exists a 1-cell o IS (called
the identity on «);

e Unit Constraint: for each 1-cell « i> B, there exist isomorphisms
1@ X 25 Xand X ® 1, 25 X in Mor(%(a, B))
such thataz y x, Ax and px are natural in Z, Y and X, and satisfy the pentagon

and the triangle axioms (which are exactly similar to the ones in the definition
of a tensor category).

On a bicategory %, one can perform the operation op (resp., co) and obtain
a new bicategory B (resp., B°) by setting (i) %gp = By = By°, (ii)
BP(B,a) = B, B) = (B°(a, B))°P as categories (Where op of a category
is basically reversing the directions of the morphisms).

A bicategory will be called a strict 2-category if the associativity and the
unit constraints are identities. A C-linear bicategory 9 is a bicategory such
that % (e, B) is a C-linear category for every «, B € % and the functor ® is
additive.

DEFINITION 2.5. Let &, %’ be bicategories. A weak functor F = (F, ¢) :
B — R’ consists of:

e afunction F : By — %),

o for all o, € Py, there exists a functor F*f : B(a, B) — B'(F(a),
F(B)) written simply as F,

o for all a, B,y € %, there exists a natural isomorphism ¢*#7 : ® o
(FPY x F*P) — F*Y o ® written simply as ¢ (where ® and ®’ are
the tensor functors of # and %’ respectively),

e for all @ € Ay, there exists an invertible (with respect to composition)
2-cell Pa - 1F(a) — F(ly),

satisfying commutativity of certain diagrams (consisting of 2-cells) which
are analogous to the hexagonal and rectangular diagrams appearing in the
definition of a tensor functor.

DEFINITION 2.6. Let F = (F,¢), G = (G,¥) : B — PR’ be weak
functors. A weak transformation o : F — G consists of:

o forall o € A, there exists a 1-cell o, € ob(%'(F (), G(a))),
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o for all a, B € %y, there exists a natural transformation oc®p . (0 ®
F*P) — G*P®'a, written simply as o (where (o5& F*#), G*f 0, :
B(a, B) = B(F(a), G(B)) are functors defined in the obvious way),
satisfying the following: For all X € ob(%(B, y)), Y € ob(%B(«, B))
where o, B, y € %y, the following two diagrams commute:

"idr(y)

0, ® F(X)® F(¥) 225 G(X) ® 05 & F(Y) G(X)® G(Y)® o,

iday®’(ﬂx.}'J llﬂx,y ®'idgg

idg(x)® oy
—_—

0, @F(X®Y) p— GXR®RY)® o,
S Py . ,
Ou & ldF((x) Oy ldG(tx) ® 0y
idna®’<pdl ll/m@’idaq
0y ® F(l,) - G(l,) ® 0y

@

where A" and p’ are the left and right unit constraints of %’ respectively.

When such a weak transformation exists, we say that F and G are weakly
isomorphic. We have the following useful Coherence Theorem for bicategories.
See [23] for a proof.

THEOREM 2.7. Every bicategory A is biequivalent to some strict 2-category
B, i.e., there exist weak functors F : B — B and G : B — B such that
idg (resp., idg ) is weakly isomorphic to G o F (resp., F o G).

In view of this, time and again we will suppress (and will not mention about
it) the associativity and unit constraints to give a simpler look to expressions
involving these constraints.

Rigid Structure on a bicategory. Leta X B be a 1-cell in a bicategory 2.
# ex
A right dual of X isa 1-cell B X & such that there exist 2-cells X* X —
1, and 1g 5 X @ X* satisfying
(ldx ®€X) o (CX ® ldx) = ldx and (EX X idx#) o (idx# ®Cx) = idX# .

A bicategory is said to be (right) rigid if right dual exists for every 1-cell.
Further, in a rigid bicategory 2, one can consider right dual as an invertible
weak functor # = (#, s) : B — B°P in the following way:

o for each 1-cell X, we fix a triplet (X*, ex, cx) so that when X = 1, for
a O-cell o, then X* = 1,, ex = A1, (= p1,, see [20] for a proof) and
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ex =A = p

o # induces identity map on %y;

e for each pair of O-cells & and B, define the contravariant functor # :
B(a, B) — RB(B, a) as follows: for each X,Y € ob(B(«, B)) and 2-
cell f:X — Y,set#(X) = X" and #(f), denoted by f*, be given by
the following composition

g P
Y" — Y"®1,
idy# @ f®id y#
—_

idy# ®CX

Y e X @ x*

rreyext 2N e xt 2 xt

o for all a, B, ¥ € %y, the natural isomorphism s : ® o (flip) o (#7 x
#4P) — #*7o®isdefinedby: For X € ob(Z(a, B)),Y € ob(B(B, y)),
the invertible 2-cell sy y is given by the composition

id(x#®y#) ®crex)
é

XertereX) ® Y X
ex®idy gy
X*@X)® (¥ @ X)* =

x*ev#
idy# ®ey®idx ® id ygyyt

Y ® X)*;

o for all @ € %y, the invertible 2-cell s, : 1, — 1, is given by identity
morphism on 1.

Note that the above prescription of the dual functor (#,s) carries forward
almost verbatim to another weak functor (#, §) : BP© — (FBoPO)PO — P
This allows us to consider the composition #,5)0 (#,5) : B — B. This is
again a weak functor and we abuse notation to denote it by (##, ) and call it
the bi-dual functor.

DEFINITION 2.8. A bicategory £ is said to be pivotal if Z# is (right) rigid
and there exists a weak transformation a : idg — ## such that a, = 1, for all
£ € !%)().

We now recall some useful standard properties of a pivotal bicategory.

PROPOSITION 2.9. Let B be a pivotal bicategory with pivotality given by
the weak transformation a : idg — ##. Then, for all 1-cells a N B and
B X y, we have

(1) axgy =tx,y o (ax ® ay), and

() ¥ =ay,.

X,' . . . . .
Let oy — w41, 1 < i < n be l-cells in Z. Suppressing associativ-
ity, consider the morphism tx,  x, = (fx,®- X, ,.x,) © *** 0 (tx,@x,.x; ®
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idxmg. . gxm) o (Ix, x, @ idy#g. gxm) € Mor(X* @ ... @ X" (X, ®---®
X,)™). Then, a simple iterative application of Proposition 2.9 (1) gives:

CoOROLLARY 2.10. ax,g ..ox, = tx,,..x, © (ax, ® - - - @ ax,) for all 1-cells

.....

Xi .
o — aiy, 1 <i <n.

2.3. Bicategory of bifinite bimodules

In this subsection, for the sake of completeness, we first recall certain standard
facts about subfactors and modules over II;-factors (which can be found, for
instance, in [1], [7], [9], [12], [18], [24], [25], [28], [29], [31]). And while doing
so, we also illustrate how the collection of all bimodules inherit a canonical
structure of a pivotal bicategory. We make a stand-in assumption that all Hilbert
spaces are separable and their inner products are linear in second and conjugate-
linear in first variable.

The following proposition gives a characterization of the basic construction.

PROPOSITION 2.11. Let A C B C C be unital inclusions of 11 -factors and
suppose there is a projection e € P (C) satisfying
(1) exe = Eq(x)e forall x € B, and
(2) Be =Ce.

Then the above tower is an instance of basic construction.

Given a finite index subfactor N C M, aleft (resp., right) basis of M over N
is a finite subset B of M satisfying any of the following equivalent conditions:

() x =) g EN(xb™)Db (resp.,x =),z bEn(b*x)) forallx € M,
(i) x =), g b*En(bx) (resp.,x =),z En(xb)b*) forallx € M,

(iii) Y ,cpb*eb =1 (resp., Y ,.p beb* = 1) where e is a Jones projection
in a basic construction of N C M.

Proof of existence of such basis can be found in [24].

Let A and B be II|-factors and 47 (resp., /) be a left A-module (resp.,
right B-module) such that dim(4 ) < oo (resp., dim(#p) < 00), equival-
ently, A’ := 4L (H) (resp., B’ := Lp(JF)) is a II-factor. Consider the set
of bounded vectors (4 #)° = {§ € I : thereexists k > 0 s.t. |a&|]> <
ktry(aa®) forall a € A} (resp., (J#p)° := {n € JF : thereexists k >
0 s.t. |[9b||> < ktrg(bb*) forall b € B}) which forms a dense subspace
of 7 (resp., #') and is closed under the action of A" (resp., B’). Using the
Radon-Nikodym derivative with respect to the faithful trace, one can obtain
the A-valued (resp., B-valued) inner product 4 (-, -) : (4#)° X (4 H)° — A
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(resp., (-, ) p : (JB)? x (Hp)° — B)defined by the equation tr(a (&, &) =
(€, a&’) (resp., trg({n, n'Ypb) = (n, n'b)) forall £, &' € (4 H)°,a € A (resp.,
n,n € (Jp)°, b € B). It is easy to check that the inner product has the
following properties:

(1) (&, &) (resp., (n,m)p) =0,
(2) a6, 8)" = a(§,§) (resp., (0. ') = (', m)p),

(3) alk,a&’) = ax(€, &) and 4(a&, &) = 4(§,&")a* (resp., (n,n'b)p =
(n,n"ygb and (nb, n')p = b*(n, ') p),

4) a(&, x&") = 4 (x*&, &) (resp., (n, yn') = (y*n, "))

foralla € A, x € A',£,& € (4H)° (rtesp.,b € B,y € B',n,n € (Jp)°).
Also, given a finite index subfactor C of A (resp., B), one can use a basis for
C C A (resp., C C B) to obtain (4 #)° = (¢H)° (resp., (X)° = (Fc)?)
where the C-valued inner product is given by the A-valued (resp., B-valued)
inner product composed with the trace preserving conditional expectation onto
C. Further, there exists a finite subset {£}; (resp., {n;};) of (ad)? (resp.,
(Hp)?) satisfying id(, oy = >_; al&i, )& (vesp., idwge = 3 nj(nj, )p);
such a subset is called basis for the module. Such a basis also satisfies the
following conditions which are completely straight forward to verify.

PROPOSITION 2.12. (i) tra (x) = [dim(49)]7' Y, (&, x&) (resp., trp () =
[dim (%))~ Zj(nj, n;y)) for all x € A’ (resp., y € B') which implies
(ad)° = (wI)° (resp., (Hp)" = (g H)°),

(i) D a(&i, &) = dim(a ) 1a (resp., 3; p(nj, m;) = dim(Hp)1p).

The dual Hilbert space or the contragredient H = (€ : & € ) (resp.,
I = (77 : n € H}) with bar being a conjugate linear unitary, can be equipped
with a right A-module (resp., left B-module) structure given by £a = a*£ for
a € A& € I (tesp., b = nb* for b € B,n € ¥). Note that (i) (#4)° =
(a2)° (resp., (pH)° = (Hp)°), (i) (§,8")a = a(§.§) for &,&" € (W H)°
(resp., (0, n') = (n',m)p for n,n" € (Jp)°), (i) {&}: (resp., {7;};) is a
basis for ¥ 4 (resp., 3 J) and (iv) dim(, ) = dim(9 ») (resp., dim(#p) =
dim(35)).

Next, we briefly recall few aspects of bimodules over I1-factors A and B.
Let 7 be an A-B-bimodule. If dim(73) < oo, then the Jones index of the sub-
factor A C B’ turns out to be [B’ : A] = dim(,#) dim(F3) =: index (4 /(p).
A bimodule 4 is called bifinite if index (4, #5) < 00, and a bifinite bimodule
AJp is called extremal if the canonical traces of the II,-factors A’ and B’ co-
incide on the intertwiner space 4% (#’) (which has finite complex dimension
due to the finiteness of the index). Note that if index (4 #3) = 1, then 475 is an
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irreducible A-B-bimodule. Also, if index(4#5) < 00, then (4 H)° = (I3p)?;
we will write #° for this space of bounded vectors.

Given two bifinite bimodules 473 and gJc, one can consider the tensor
product # ®p J¢ defined as the completion of the space

H Qg I

H° Rp HC =
span{éa@n—‘;‘@anIaGA,Ee%",ne%”}

with respect to the inner product (£ ®p n,& Qg ') = (£,&5(n, 1)) =
(n, (&,&Ypn')for&, & € °, n,n’ € °, which is equipped with the obvious
A-C bimodule structure. The following is a list of very useful properties of
this tensor product.

(1) (F ®@p H)* =IH°Qp H°.

(2) The A-valued (resp., C-valued) inner product is given by 4 (6 ®pn, £’ ®p
n') = a(§,&5(n, ")) (resp., (€ ®p 1. & @5 n')c = (n,(§,&)pn)c)
for&,8 e %, n,n € H°.

(3) If {&}; and {n;}; are basis for 47 and J/ (resp., #p and J/¢) respect-
ively, then {& ®p 1;};,; forms a basis for ,# ®p K (resp., X Qp Hc).

(4) The left dimension, the right dimension and the index of the bifinite
bimodules are multiplicative with respect to this tensor product.

(5) The map Lp(H) 3 x > x Qpidy € Lc(H Qp F) (resp., pL(H) >
y>idy Qpy € oL (I Qp F))is an inclusion of unital x-algebras.

Let 7 be an A-B-bimodule with dim(4#’) < oo (resp., dim(#3) < 00) and
{&}i (resp., {n;};) be abasis for 4 (resp., #p). Then, it is easy to see that the
bounded vector ) i 1j ®p 1; (resp., > & ®4 &) is independent of the basis
and is A-A-central, that is, a(}; 7, ®s 7;) = (3_; n; ®p 7;)a foralla € A
(resp., B-B-central).

LEMMA 2.13. Let J be a right B-module with dim (%) < 0o and # be
a bifinite A-B bimodule for Il factors A and B. Then, the inclusion of 11,
factors

Fp(H) > La(H ®p H) — Lp(H Rp H @4 )

X xQpids, yr> yQ®aidg

is an instance of basic construction with Jones projection e given (on bounded
vectors) by

H Qe H Qs >EQpN R4l
e 1 _ _
Z(f ®p& Qaé&i)n.C)peH QpH Qa I,

>
dimA H

where {&;}; is a basis for o .
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PROOF. Set N = Lp(H), M = La(H ®p H) and M|, = FLp(¥ Q3
H R4 ). Let {nj}; (resp., {ox}x) be a basis for #p (resp., #p). Then, using
Proposition 2.12, it is completely routine to check thatthe map Ey : M — N
givenby Ey (x)(§) = [dim(u )] 7" Y-, ;1 1 0w (&irs (0x @B &, x(E®BE)) a&i) B
forall £ € J7°, x € M, is the unique try, preserving conditional expectation
from M onto N. Further, it can also be readily shown that e € (N’ N M)
and e(x ®4 idy)e = e(En(x) ®p id%&%) for all x € M. In view of Pro-
position 2.11, it just remains to show that Mje = Me. Let x; € M, and
consider the map x : % ®p H — H ®p H given (on bounded vectors) by
x(& ®pn) = or p &iraln, nj(or @p & ®a nj, x1(6 Vp & Va4 &))p for all
& € (Hp)°, n € (Hp)°. Clearly, x € M, and it involves nothing more than
straightforward verification to show that (x ® 4 idg)e = xe.

We denote the bicategory of bifinite bimodules with % whose 0-cells are
II,-factors; for II-factors A and B, the objects of the category % (B, A) are
bifinite A-B bimodules and morphisms or 2-cells are A- B linear maps between
such bimodules (which are automatically bounded). The tensor functor is given
by the usual relative tensor product of bimodules and for each /1 -factor A the
identity object in (A, A) is the canonical A-A-bimodule L?(A). There is a
natural associativity constraint for relative tensor product of bimodules. Fur-
ther, for an A-B-bimodule 77, the unit constraints are given by the canonical

A-B A-B
isomorphisms L?(A) @, # = 9 and # ®p L*>(B) = J¢.Thus, % has a
natural bicategory structure. For the (right) rigid structure on 4, for each A-B-
bimodule 7, we set (4 #5)* = 3 4 and define the evaluation and coevalu-
ation maps ey € g Lp(H Q4 I, L2(B)) and cyr € 4 LA(L2(A), H Qp H)
respectively, (on bounded vectors) by

exE®am = (E.n)p and cx(@ =) aln; s i)

forallé,n € #°,a € A, b € B, where {n;} is a basis for the right B-module

H'g. Thus, B indeed inherits a canonical rigid structure. Finally, the canonical
A-B —

isomorphism s #p = aH p for any bifinite A-B-bimodule 43, equips A

with a pivotal structure. Note that, for0 € 4 £ (7, ¥), it can be easily shown

that 6* (&) = 6*(&) and, hence, 6**(£) = 6(&) for all £ € 9¢°, where 6* is the

usual adjoint of the intertwiner 6.
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3. Perturbations of planar algebras

In this section, we define perturbation of a planar algebra to obtain a new one
which has the same filtered algebra structure but the action of Jones projections
and conditional expectation tangles differ. As we will see, this will turn out to
be crucial in the following sections. We must mention here that such objects
already appeared in the work of Michael Burns [6] while extending Jones&E
theorem (of associating a spherical planar algebra to an extremal subfactor)
in the non-extremal case; however, for us, these arose in a purely different
context, namely, while detecting the effect of different pivotal structures on
the planar algebra associated to a 1-cell in a strict 2-category (as in [8]).

DErFINITION 3.1. Let P be a planar algebra. An invertible element z € P,
is said to be a weight of P if 7z € Z (P ) for all ek € Col, where

24k =P
¢ ¢ % ¢ _ % .- kstrings

and

—1 -1 -1
' v I k strings

Given a weight z of a planar algebra P and an invertible decomposition
z = ab for a, b invertible in Py;, we now construct a new planar algebra
P @b a5 follows:

(i) Vector spaces: Ps(,f’h) := P, for all ¢k € Col.

(i1) Actions of tangles: Let T be a tangle and T be a standard form rep-
resentative (see [8, § 4]) of the isotopy class of T. We replace each local
maximum and minimum appearing in T asin Figure 3.1 and call the resulting
semi-labelled tangular diagram 7).

a
b
3 -
m by m : v by w
FIGURE 3.1. Perturbing a planar algebra

Define P}“’b) := Pju. The immediate thing to check is the well-definedness

of P;“’h). Note that the above prescription is invariant under the sliding, wig-
gling and 360°-rotation moves, applying a finite sequence of which takes one
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standard form representative to another. Hence, P}”’h) is well defined and
P@D is a planar algebra. As mentioned before, note that P? has same
filtered algebra structure as P whereas the action of Jones projection tangles
and conditional expectation tangles differ.

We will refer P as the perturbation of P by the decomposition 7 = ab
of the weight 7.

REMARK 3.2. For an invertible decomposition z = ab of a weight z of
a planar algebra P and any A € C\ {0}, P@}) = p@ar"'b) PRyrther, the
planar algebras P@? p®t.@ p@h and PU-9 are all isomorphic. Hence, up
to isomorphism, the perturbation of P only depends upon the weight z.

To see the first part, observe that the number of local maxima is the same
as the number of local minima in a standard form representative of a tangle,
which results in cancellation of the scalars appearing in tangle maps due to
A in the latter perturbation. In the second part, for instance, the isomorphism
P@b = p@D i obtained by the maps

(a,b) D
P+k =Py >5x+— P = - : €P+k:P+k ,
b~ |b7s -+ k strings
[ = |
+
+h» be -+ k strings
PYP =P 5x+— P e P =PYY.
b bk strings
[ = |
| Db bs --- kstrings

It is straight forward to verify the equivariance of this isomorphism with the
actions of the generating tangles in Figure 2.1 and hence all tangles.

A trivial example of a weight of a planar algebra P is a non-zero scalar
L € C. By the above remark, P*# = puh — pUiw — pWh for gl
non-zero scalars A and . We will usually refer to such perturbations as scalar
perturbations.

A perturbation of a planar algebra with modulus need not have modulus
(except for perturbations by scalar weights). However, if the planar algebra
is connected then so are its perturbations, but the moduli of the perturbations
might vary. For instance, for a planar algebra P with modulus (6_, §), the
scalar perturbation P*-D has modulus (A~'86_, A8,).

DEFINITION 3.3. The normalized planar algebra associated to a planar al-
gebra P with modulus (§_, §,) is its scalar perturbation by the weight ,/2—;.



56 PARAMITA DAS, SHAMINDRA KUMAR GHOSH AND VED PRAKASH GUPTA

Note that the normalization of P is a unimodular planar algebra. Although
scalar perturbations change the modulus, the index however remains the same;
in the last section, we will come across an example of a perturbation class
whose normalized planar algebras realize all indices greater than or equal to
4.

DEerINITION 3.4. A connected planar algebra P is said to be spherical if the
actions of O-tangles in its normalization are invariant under spherical isotopy.

Note that this property is equivalent to demanding that the normalized left
and right picture traces on P, are identical. The relevance of the above defin-
ition will become clear in the section on bimodule planar algebras, where we
establish a correspondence between sphericality and extremality. We must also
point out that a non-unimodular planar algebra could be spherical according to
the above definition which is not allowed in Jones’ original definition in [13].

In general, a perturbation of a x-planar algebra need not be a x-planar
algebra. However, for certain specific weights, the perturbations also turn out
to be x-planar algebras. For instance, if P is a - (resp., positive) planar algebra,
it is routine to verify that a perturbation of the type P“*?") for non-zero real
(resp., positive) scalar A becomes a x- (resp., positive) planar algebra with
x-structure coming from the original one.

4. Weights and Pivotality

In this section, we mention how one can canonically associate a pivotal C-linear
strict 2-category to a planar algebra; conversely, from [8], we recall how to
associate a planar algebra to a 1-cell in a pivotal C-linear strict 2-category. We
then establish a relation between weights and perturbations of planar algebras
and pivotal structures on bicategories.

4.1. Planar algebras to bicategories

Let P be a planar algebra. From P, we first describe a C-linear strict 2-category
2 and see that it inherits canonical rigid and pivotal structures. Set %y =
{4+, —}; for e, n € Ay, set ob(AB(e, n)) = 2Ny + ;.. To avoid confusion,
we will write an object k € ob(%(e, 1)) as ek (whence n = (—)*¢). For two
objects ¢k, el, set Mor(¢ek, el) = P(,)ke(%) = P(,),s(%). Composition of
morphisms be given by the bilinear map

Mor(el, em) x Mor(ek,el) > (x,y) > xoy =P € Mor(ek, em).
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For each 1-cell ¢k, the identity morphism is given by Pj,,. The tensor functor
Q: B, o) x B(e,n) — B(e, o) is defined by nl @ ek := e(k + 1) and

Mor(nm, nn) x Mor(ek, €l) > (x, y)

H>Xx®y: =P € Mor(e(k + m), e(l + n)).

n |l
Yoy

o
m__ |k

For each 0-cell ¢, set the identity object 1, = €0 € ob(ZB(e, €)). With the
above structure, it is easily seen that 4 is a strict 2-category. We now describe
a (right) rigid structure # on % as follows:

0-cells: e* .= ¢.
1-cells: (ek)* = (—)*¢k.

The evaluation map e : (¢k)* ® ek = £2k — &0 (resp., coevaluation map
cer 1 (—)Fe0 — ek ® (ek)* = (—)Fe2k) will be given by ey := P

&k

(resp., Cer := P ) Thus, we obtain a weak functor # : 8 — P

(ke
which yields x* = P 7 for all x € Mor(ek, &), and satisfies # o # = id.

EoX

I
This strict 2-category % also inherits a canonical pivotal structure a :

idgp — # o# = idyp, which is identity on %, the objects a, := &0 €
ob(%(e, €)) and the morphisms a,; := id. : ¢k — ek. In fact, we have
a correspondence between the pivotal structures on & and the weights of P.

PROPOSITION 4.1. There is a one-to-one correspondence between weights of
aplanar algebra P and pivotal structures on the strict 2-category % associated
to P as above.

Proor. Given a weight z of P, define a., := z_y € Mor(ek, ek). For
naturality of a, consider f € Mor(ek, &l). Note thata_,' o f oag = z(:l)kew o
foz e k= f where the first equality readily follows from pictures and the
second one holds because z’s are central. Also, the tensor condition a(_y,; ®
Qe = Ag(k41) 1S €asy to verify. Setting a, = 1., we have a weak transformation
a :idg — # o # = idg. This proves that a gives a pivotal structure.

Conversely, if a : idg — # o # = idg is a pivotal structure, set 7 =
a_; € Mor(—1, —1) = Py,. Then, the tensor property of a, namely a(_ys; ®
agk = Agk+1)» along with naturality of a and Proposition 2.9 (2) implies that
Zex € Z(Py) and hence 7 is a weight of P.
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4.2. Bicategories to planar algebras

We first briefly recall from [8] the planar algebra associated to any 1-cell in a
pivotal C-linear strict 2-category 4. Let X € ob(%B(—, +)) for {+, —} C Ay,
#: B — PP be a right rigid structure with respect to evaluation and
coevaluation e and c respectively, and a : idg — #o# be apivotal structure. The
ingredients of the planar algebra P associated to (4, #, a, X) are as follows:

Vectors spaces: P, := End(X,;), where

X®X*®X® X" ® X ® -k many tensor factors if ¢ = +,
Xk2=
’ X*®X®X*"® X ® X*® -k many tensor factors if ¢ = —,

if k> 1and X, := 1, € ob(%B(g, ¢)).

Actions of tangles: Given atangle T : (e1ky, ... &pkp) — €oko and elements
Xi € Pgy,, 1 <i < b, the action Pr(xy, ..., xp) is given by (i) choosing a
standard form representative 77 in the isotopy class of 7" labelled with x; in the
i-thinternal box, (ii) cutting 7] into horizontal stripes so that each stripe should
have at most one local maximum, minimum or (labelled) internal rectangle,
(iii) assigning a 2-cell to each horizontal stripe as prescribed in Figure 4.1
and (iv) successively composing these 2-cells with the one coming from the
bottom stripe being the rightmost in the composition.

k / . . .
m ~> ldX(—)kk Rex# o (ax Qidy#)) ® ldXH € MOT(X(_)k(k+]+2), X(_)k(k+]))

, ~idy e, ®ex @ 1dx ;€ Mor(X yert ey X oyt k)
~> idX(,)kk Rex idXH S MOI'(X(,)k(]H,l), X(—)"(k+l+2))
~> idy

e BX® idx _ymy € Pggiomy Torall x € Py

k
k
kv ;7 19X e @l ®ax') o cxn) @idx_; € MOr(X Lyt s X (et (4142)
k m
8
m

FIGURE 4.1. Prescription for bicategory planar algebra

PRNOPOSITION 4.2. Let a and a be two pivotal structures on B as above, P
and P be the planar algebras associated to a 1-cell X with respect to a and a
respectively. Then, P and P are perturbations of each other.
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PrOOF. Setz = a;l oay € Py; = End(X). We assert that z is a weight of

P and P&D = P It follows from the definition of action of tangles and [8,

Lemma 4.2] that z* = P. Note that z4 (as in Definition 3.1) is given by
Z

otk =z®(z’1)#®z®--~ k-tensors
=(ayQaxy ®ax ®--) o (Ax @y Qadx @ ---)

1 ~
=ay, odx, € Z(Pw),

where in the second (resp., last) equality, we have used the pivotal property
of a and a as in Proposition 2.9 (resp., Corollay 2.10). And on similar lines
one establishes that z_; € Z(P_;). This shows that z is indeed a weight of
P. Now, it is a matter of routine verification that P}Z’l) = f’T for a set of
generating tangles as in Figure 2.1. Thus, we conclude that P¢D = P.

5. Bimodule planar algebras

5.1. Planar algebra associated to a bimodule

In this subsection, we associate a ‘bimodule planar algebra’ to a bifinite bimod-
ule with a natural correspondence between extremality and sphericality. This
will pave the way for us to associate a unimodular bimodule planar algebra
to a finite index subfactor, giving an extension of Jones’ Theorem [13, The-
orem 4.2.1] to an arbitrary finite index subfactor (not necessarily extremal).

DEFINITION 5.1. A finite dimensional, connected, positive C*-planar al-
gebra is called bimodule planar algebra.

Let 47 be a finite index bimodule for /7 factors A and B. Before stating
the next theorem, we set up some notations that will be used throughout this
section: #,o = L*(A), #_o := L*(B) and for k > 1, ¥, is the tensor
product (over A or B) of k-many modules 5 and J alternately with % (resp.,
) being the left-most module if &€ = + (resp., —).

THEOREM 5.2. Let g be a finite index bimodule for I | -factors A and B.
Then,

(1) P defined by
{AD?A(%JH() or LKWy, ife =+
ek —
BLp(H i) or pLs(H ), ife=—,

according as k is even or odd, has a unique bimodule planar algebra structure
with x-structure coming from the usual adjoints of intertwiners, satisfying:
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(a) action of multiplication tangles matches with the composition of oper-
ators in the intertwiner spaces,

Pi>T — T Q®sidy € Pes1), Ifeithere =4 andk is
even, or ¢ = —and k is
(b) Py, = odd,

P >5T—TQ®g ld% € Pty otherwise,

Pi>T— 1d7®AT € P_ck+1)s ife =+,
() Py, =

Py>T v idy ®pT € Pt ife = —and

(d) Pg,, (resp., Pg_,) is given by

H@p I 5E@pT > aln.E)n; ®p ;) € H° @5 H'

J

(resp.. I @4 A 3T ®AE+— Y (0. 6)sE ®a&) € T @4 IH°)

where (&;}; (resp., {n;};) is any basis for 7€ (resp., ). (We will refer P
(resp., normalized P) as the bimodule (resp., normalized or unimodular)
planar algebra associated to o Hp).

(ii) P (as in (1)) is spherical if and only if 47 is extremal (as in § 2.3).

(iii) If B’ := L (H), then the normalized planar algebras associated to 9
and 4L*(B’) g are isomorphic as %-planar algebras.

PRrROOF. (i) The planar algebra (in [8]) associated to the 1-cell 47 in the
pivotal bicategory of bifinite bimodules (§ 2.3) has same vector spaces as of P;
we provide P with the same planar algebra structure, the prescription for the
actions of tangles for which is given in Figure 4.1. It is clear from this prescrip-
tion that P satisfies the conditions (a)—(d). Since P is connected, the fact that
P with the above mentioned x-structure is a C*-planar algebra, can be verified
readily by checking the *x-condition (2.1) for the tangles M., Rl., L1y, Ecy.
It now remains to show that the C*-planar algebra P is positive. For this, it is
enough to show that the tangle maps Prg,, and Ppg,, are positive definite for
all ek € Col. We prove this only for Prg,,, ; the others can be verified using
similar arguments. For each x € Pyoy = aLa(H o) and ¢ € %Jfak_ 1> We
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have

PRE+2k (x)(f)
=Y ((dst, 0 ®per) 0 (x ®4id)) (¢ ®5 & ®4 &)
= Z(idya(Zk,]) ®pew) (Vi ®p &y ®p &, x(C @5 E))a ®a &)
i,i'k
= Z viel&ir (Vi ®5 &, x(C @5 E)) ai) 5

ii'k

where {yx}« is a basis for (7} (2x—1)) g. This gives

(¢, Pre o (X)(8)) = Z(§ ®5 (Ve ®5 &, x(C @5 E))abis vi ®5 &)

k,i,i’

= (¢ ®p&, x(t ®5&)).
Thus, Prg,,, (x) is positive semi-definite. In addition, the above also gives

Z(Vk, PRE () (1)) = Z(Vk ®p & x(yk ®p &) = dim(H 21) 4 tre (x),

k ki

where C := £ (¥, 5) and the last equality is a consequence of Proposi-
tion 2.12. This proves that Pgg,, is also faithful. Thus, P is a bimodule planar
algebra; and for uniqueness, we appeal again to Remark 2.2.

(i) It is enough to prove that the normalized left and the right picture traces
on P,; are given by the unique traces on the II,-factors A" := 4% (¥) and
B’ .= £ (F) respectively. We will only exhibit a proof for the left one. First,
note that

Pe——=eyo(idz®a;)ocy =Y (& &)5=dimLH)1p,

D i

and

P—— = ez o (ax ®idz) ocsr = Y _ alnj, n;f = dim(p)1p,

O :

where {£;}; (resp., {n;};) is a basis for 4 (resp., #3). So, the modulus of the
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planaralgebra P is (dim 477, dim #73). Further, foreachx € Py, = o g (H),

9o=12B) 31 =5 Y e xkfe = Y (6260

= dim(49) try (x)1 € L*(B) =

The first equality follows from the fact that ), (§;, x&;) 5 commutes with B
and the second one comes again from Proposition 2.12.

(iii) Note that the planar algebra associated to 47z may very well be non-
unimodular but the index of P is same as that of 47p. Set 6_ = dim(, ),
8, = dim(Jp) and § = /5, 6_. Let Q denote the bimodule planar algebra

associated to 4 L2(B') . So, P := P(‘/E’l) and Q := Q© are the normal-
izations of P and Q respectively. To establish an isomorphism between P and
0, we consider the following B’-B'linearmaps u : # ®@pH — K := L*(B)
andw : # ®p H — I given by

HRpIH SEQpTr> g E)l eX

implying .
Ho1m5 67" (@) € H° Q5K
J
and -
K@ H ERpN > pnE) e
implying

A=) i lg 5;1 Z(I’)l ®Bﬁj) e’ ®B%O.
J

Clearly, u and w are co-isometries; further, 1ndex(3/% Rp H “p) = 1 implies
u and w are unitaries as well. Let v : # Qp # — K ®p K be the B'-B’
linear unitary obtained from u after composing with the unitary taking lex

to(1®p 1) € ¥ ®y . Define ¢ : P — Q in the following way:
Piy = aLa(Hia) 3 x fact Ad,, (x) € aLa(Hya) = O

forl > 1, where v; ;= (V @4 v ®4 -+ -1 tensors) € gLy (Hio, Hio), and
forl > 0,

Py = aL (i) 3 x
<P+<21+1)
" Ade, (* ®p id5) € aLs (Hraisn) = O+t
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P_i+1y = pLa(H_us1)) D X

P—21+1) . ~
— Adwe ) (dy ®px) € gL A(H_t1)) = Q—i+1),

P_142) = pLp(H_u42) D x

P-1+2)

" Adwe,ueum (idr @px @4 ids) € g Lp(H_i12) = O_ @12

Clearly, each ¢, is an injective *x-algebra homomorphism and each ¢, is
surjective. To see that ¢ /41y (resp., ¢—(+1y) 1S surjective, note that

Adwouy 1Ly (Hrern) = 2Ly i @ X)
= {x Qpidy : x € AL (K11}

(resp.,

Adwe vy (B La(H_@i11)) = B ZLA(H Qp H_2141))
= {idy Q@px : x € pLa(H_11))})

where the second equality follows from Lemma 2.13 since B% g (resp., g p)
has index 1. Same arguments also imply ¢_;42) is surjective. Thus, ¢ is an
isomorphism preserving actions of multiplication tangles.

Actions of inclusion tangles: We only show that ¢ is equivariant with respect
to the action of R1; the same for R/_; and LI, can be verified along similar
lines. For x € P41, note that

[Adye,u(x ®p idg)] Qp idy = Adye,ugyid, (x ®p idg ®p idy)
= Ady,g,v00 (X ®p 1dg Qp 1dy)
= Adv;@,«,v(x ®B 1d%)7

where # QI Qp H > §®§ﬁ®3/i o EQ®pn € 9 Q@I isa B'-B’ unitary
intertwiner. This implies ¢ (Prp, ., (X)) = Orr, ., (9(x)). Equivariance of
¢ with respect to the action of RI,; is even more easier.

Action of E+1: From condition (d) of part (i) and definition of perturbation,
we obtain

o 3 _
@(Pg, )X ®p y) = E Z vPg, (xy*n; ®p 7;)
J

5_ ) _
= o\ 5, ;v(A(xy nj>njny @n;r)
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1 [s .
=55 E Ea(p{xy™nj, nj)ny @1y
+ .
J»J

1 [é_ o N
= — | —Ea(xy")(dim #3)*1 @p 1
5.\ 8s

= QEH(XA p j\))

forallx, y € B’. This gives <p(135+] ) = QEH . On the other hand, since (p(};Ef] )
and Q £_, are both B’-B’ linear, in order to show their equality, it suffices to
show that (,0(1557I )(i Ra i) = ngl (i Qa i). Again, from condition (d) of part
(i) and definition of perturbation, we have

o(Pr YA @4 1)

=677 ((w®au)o (idy ®pPr_, ®4ids))(n; @5 7; @4 1y @5 7;1)
J.J'
= (88,)7" Z(w ®a u)(n; ®p (1, n)BE; ®a & ®p7;)
s
= (88,)7" Z BNy & ®apny &)
Jhi
= (887" Y Ealw (. &) ®a 5 (njr. &Y

k,j'i
= 887" Y & ®a p(nj, aléi, cnp)E)

k,j',i
=48 Zék @i = 0r ,(1®4 1),
k

where {c,} is a left basis for the subfactor A C B’. Thus, in view or Remark 2.2,
@ is an isomorphism of *-planar algebras.

We now proceed to associate a unimodular bimodule planar algebar to a
finite index type /I subfactor N C M. For this, the obvious thing to consider, is
the unimodular bimodule planar algebra associated to y L*(M) . However, we
would like to find out the actions of tangles on the relative commutants (instead
of intertwiner spaces) and a set of conditions which uniquely determines the
action exactly the way [13, Theorem 4.2.1] states for extremal subfactors.
Before doing so, we first set up some notations and recall certain standard
subfactor theory facts — see [1], [12], [18], [25], [24].
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Let N C M be a subfactor with 8> := [M : N] < oo (8 > 0) and {M}i>1
be a tower of basic constructions with {e, € P (M;)}r>1 being a set of Jones
projections. We will have instances to apply the following useful fact.

LEmMMA 5.3 ([24]). For each x; € M), there is a unique x € M satisfying
Xx1e; = xey, this unique element is given by x = [M : N]1Ey(xiey).

Foreach k > 1, set

i1 =8 D (erpren - en)(ergaersr - €2)
coe(exy1ean - exr1) € N'N Moy,
-1
)(exsrex - ex)(expaersn - - €2)

/
- (exeon—1 - exy1) € M'N My,

k(k
e = 8"

and
Vi = Skekek,l cer€] € N’ ka.

Then, the tower of 11, factors N C M C My (resp., M C M C My) is
an instance of basic construction with ej_; ) (resp., ejo «]) as Jones projection,
that is, there exists an isomorphism ¢_;; : My 1 —> Ly (L*(My)) (resp.,
Qox : My —> Ly (L*(My))) given by

A 2k+1 S
P 1k ) Fr = 82 FTV Epg, o1 xner—1.47)

(resp., . - R
@01 (Xo1) Xk = 87 Epg, (XorXke€[0,17))

forall x; € M;,i =k, 2k, 2k + 1, which is identity restricted to M} and sends
e(—1.x (resp., ejo.x)) to the projection with range L?(N) (resp., L>(M)). Also,
o1k (M) N Myy)) = mInLA(Mp) (esp., @or(M] N My) =
wm, Lo (L2(My))) and @o x = @_1.x|a, forallk > 0, —1 < i < k. Further, for
each k > 0, we have an M;-M linear unitary given (on bounded vectors) by

LX(My) ®y LA (M) 3 § ®n 2 —> (yves1z) € L2(Mi41)

forall y € M and z € M. This unitary also satisfies the equation ¢ 44+ (x) =
ur(@—1x(x) @y idz2pr))uj for all x € Mogy.

Apart from these, if y7#), denotes the bimodule ~L%(M), then for each
k > 1, we have a bunch of unitary intertwiners (determined by the following
actions on the bounded vectors)

ik D X1 Qu X2 Qn -+ - @ Xk

W2k * * * e 2
'ﬂ) (xlxz V1 X3X4 U X5 -+ ’xzk_zvk—lXZk—lxzk) € L°(My—y),
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H ok X1 QN X2 Q-+ QN Xk

W2k * * * * - 2
e (X VIX2X3V2X4 -+ - X _3Vk—1X2k—2X0;_ Vi Xok) € L7(My),

Hik-1) D X1 Qu X2 QN -+ - On Xok—1

W (2k—1) % * % -~ 2
v (X1X5VI1X3XV2X5 =+ + X _oVk—1X2%—1) € L™ (My_1),

H_(2k—1) 2 X1 N X2 Qur -+ - @ Xop—1
W—(2k—1)

* * * * % 2
o (FTVIXx3vaxs - X U1 X0k-2X ) € L7 (M)

and a very useful formula (see [13]) xjvixovp -« - VkXpp1 = X1U5X20;_
coUixgq forallx; e M, 1 <i <2k.

We are now ready to present the extension of Jones’ Theorem [13, The-
orem 4.2.1], which associates a unimodular bimodule planar algebra to a finite
index subfactor and gives a natural correspondence between extremality and
sphericality.

THEOREM 5.4. Let M_y, := N C M =: M, be a subfactor with §* :=
[M : N] < o0 (§ > 0) and {My}i>1 be a tower of basic constructions
with {e, € P(My)}i>1 being a set of Jones projections. Then, P defined by
Py = N N M;_y or M' N My according as ¢ = + or —, has a unique
unimodular bimodule planar algebra structure with the x-structure given by
the usual * of the relative commutants such that for each k € Ny,

(1) the action of multiplication tangles is given by the usual multiplication
in the relative commutants,

(2) the action of the left inclusion tangle L1_y is given by the usual inclusion
M/ka CN/ﬁMk,
(3) the action of the right inclusion tangle R1 . is given by the usual inclu-
sion My_1 C M,
(4) PE+<k+1) = 88k+1!
(5) Pre ., = 87V bixb; forall x € Pyt
where {b;}; is a left basis for the subfactor N C M. In particular, P is spherical

ifand only if the subfactor N C M is extremal. (P will be referred as the planar
algebra associated to the tower { My }y>_1 with Jones projections {ey}r>1.)

PrOOF. Let Q denote the bimodule planar algebra associated to the bifinite
bimodule yy := yL?>(M)y (as in Theorem 5.2) and O = Q©V be its
normalization. With notations as above, we have the x-algebra isomorphisms
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Py =N NMy_13x

=5 Adus, (0-14-1(0) € N Ly (Hia) = Qi = Ok
P oy =M N My >x

F2 Adue, (90x (X)) € uFu(Hon) = Qo = O,
Pigien = N'N My > x

X+Q2k+1) ~
— Adys ., (@0x(X) € NLu (i) = O+ktty = Okt
P_gjry =M 0N My 3 x

X—(@k+1)
—>

Adyr,,, (9-1k(X) € MEN(H_rt1) = Q-rt1) = Okt

fork € Ny. We provide P with a unimodular bimodule planar algebra structure
from that of Q as follows: For each tangle T : (elkl X -+ X epkp) — eoko
(resp., T : @ — eoko), we define Pr = XEOkO o QT o (xl | Xei ki) (Tesp.,
Pr = Xsoko(QT))' Thus, P inherits a unimodular bimodule planar algebra
structure with modulus (8, §). We now show that P satisfies all the conditions
in the statement, which forces the planar algebra structure on P to be unique
by Remark 2.2 (2). To begin with, note that, (1) needs no further verification.
We will establish the relations in (2)—(5) only for even k’s because the proofs
for odd k’s, are completely analogous to those in the even case.

(2) Suppose k = 2/ and y € P_» = M’ N My;. Unravelling the definitions,
we just need to show that ¢o;(y) = Ady,,,, (dx @ux-2(y)). For & =
X1 @u X2 ®n -+ ®n Xo—1 ®u X @n o141 € HY(y, 1) Where x; € M for all
1 <i <?2l+1, wehave

w41y © (dr2an @mx—2(y))(E)
= wi+n (F1 ®n W00, (Mw-2)
(G2 ®y - ®n Koot Oy Xu Oy X2141))
= Zi (XIZT’iUIZZ,iZ;iUZ te UlZ2l,i)A
= X190 (M) W_2 (X2 ®n -+ Oy Xo1—1 Oy X On Xar41)
= (PO,I()’)wle((xsz);@N @ Xo1 ®p X Oy Kaig1)

= o (Mwi@i+1)(§),
where (wfy(Po,z(Y)w—zz)(;?z QN N K11 @y Koy @y Karg1) = > 2®
22 Qum -+ ®n Zo,i € H?,, for some z;; € M and {i} finite, 1 < j < 2/; as
was desired. B
(3) First consider k = 2[, y € Pyoyy = NN My_1and & = X Qy X2 Qn
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< Qu X QN Xyl € %J(r)(2l+l) with x;’s as above, we have

X+(2l+1)(y)(§)
= 82w} 1) (Eag, (PX1X501 -+ - X3 0 X041 €00.07) )
= wi(21+1) 0 @0,1(y) o uj—1 (Wi (X1 Qu 1262®N
@ X2t ®u X21) @y Rar41)
= W11y O Ui-1,0 © (@-11-1(¥) ®n idr2ar))
(Wi (R) @y X2 @y -+ - @y Xo—1 pr X21) On Far1)
= wi(21+1)(§0—1,1—1()’) 0wy () Qu 2@
QN X1 M ;21)U1x21+1)
= (Adys, (9_ 111 (NG @y X2 ® - - By X)) ®n Farg
= (X+21(») ®n id12 ) &) = Orrsy (X321 (M) ().
On the ot_her hand, if k is odd, say 21+ 1,y € Pyoi41y = N' N My and
§ =X ®u X2 ®y - ®n X241 Ou X242 € HY (5)45), then

OR1oreyy (Xt ) E)
= (X+2+)(y) ®up idz) (&)

= w4 (900 (V) 150 -+ - V1 X1 X5 Vx11) ) @ K2
= wi(21+2) ((/’O,l(y)((xlxikvl CeUIX2141) )x§1+2)
= wi(zz+2) (‘/’O,l(y) (x1x5vp - - - le21+1x;1+2) )

= wi(21+2) (‘P—l,l()’)(xlxikvl s le21+1x;1+2) )

X+@i+2 () ().

(4) The initial case k = 1 is trivial. Let k = 2/. For & = % @y %2 ®n
< Qu Xy Qn Xory1 € %j(yH) with x;’s in M, we have

X2+1(8ex)(§) = 52]+1w;1+1 (EM, (621X1X§v1 e 'x;lv]x2[+16[0,l])/\)
= 821+1w§‘,+1(x1x§v1 < v Ey, (eZIe[O,I])A)
= 5w;1+1((3€1x;vl e le21+1€2)A)
= Swyp ((rxzvf - UTX21+1€2)A)

= w3y (X5 - X503 X1 X5 X041) )



PERTURBATIONS OF PLANAR ALGEBRAS 69

where, in the third equality, we have used the fact that E;, (exe(0.1) = 5 2e,,
which holds by the uniqueness condition in Lemma 5.3 applied to the equality
exeo.;] = exepo,) (a routine verification involving Temperley-Lieb relations
satisfied by the Jones’ projections {e¢;}). On the other hand, by the definition
of Q and Theorem 5.2 (i)(d), we have

Op,, &) =6" Zfl Ou %2 ®n -+ Oy Ro_1 O (bix§1+1lef®N bi
=5 wli(zlﬂ)((xlx;vl XV Xa—1 X X211 D uiby) )
= wj—(2l+1)((x1x;vl* s 'x§1—2vikx21—1x§1x21+1f)-

(5)Letk =20,y € Propry = N'NMyandé = 31 @y % Q- - - @y Xy €

H°,, wherex; € M forall 1 <i < 2[.Then, using the precription of the action
of tangles in the planar algebra Q (described in Figure 4.1, we get

Ok cry X+ (M) ()
=67"Y (e Om id%,z,)(léi ®n X441 (V) (B @y 1 Oy - By )
=82"71Y (e ®uida )

) (1;1 ®N wi(21+1)(EMz (bixjv/xz - 'X;Z—lvfxﬂelOJJ)A))
=821 (e ®m id%zz)(u’i(zln)((b?UI*HZI)A))
="t > (er ®u id?ffzz)(wi(zzn)((b;kvﬂlb?fvkaszl (vlbi’zl))A))
=871 Y7, (e Quidary)
(b ®x B2 ®u 1 @y w1y ((En,, i)y )
="t Do b;kbﬁ QN wj—(2l—l)((EMl—1 (vlb,-/z,))A)
= 8% X, why (07 bj v En, (ibirz)) )
=381y wizl((bfﬂzz)A)
= 823wy (Euy (BFxbixfvfxa - x5 vixaeqon) )

=451 Zi X_zl(bTXbi)(g)’

where z; := Ep, (xbix{v/xs - - - x5_,viX2e€j0,)) and in the fourth and eighth
equalities we have used the fact that {v;b;} is a left Pimsner-Popa basis for
M;_y C M; —see [18].
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REMARK 5.5. Starting with an extremal subfactor, the associated planar
algebra in Theorem 5.4 is indeed the same as that in [13, Theorem 4.2.1] since
the map yF (L*(My)) =: N' 5 x —> 82, bixb; € M' := y L (L*(My))
is the unique ¢ry: preserving conditional expectation from N’ onto M’. Such
extension of [13, Theorem 4.2.1] was first established by Michael Burns in his
thesis. However, the techniques used in [6] are different from our proof which is
built up using graphical calculus of morphisms in a pivotal bicategory. Further,
Jones and Penneys, in [17], also obtain an extension of [13, Theorem 4.2.1] in
a slightly general set up.

REMARK 5.6. Apart from the action of the tangles given in conditions (1)—
(5), we also mention below the action of few other useful tangles.
(@) Prg,, =8 EAA;I::Z‘ | P following from conditions (3) and (4).
(b) PTR;k = gk tras,_, | Py following from the action of right conditional
expectation tangle in (a).

(c) 87 PTRﬂr . (resp., 87K PTR1+ (2!—1)) is given by the trace on P,y = N' N
My (resp., Pyi—1) = N’ N My_,) induced by the canonical trace on
NZ(L*(M;_,)) via the map ¢_ ;—; (resp., ¢p;—1); this could be derived
from the precription of the action. It also turns out that this trace on P,y
(resp., Py —1)) matches with the one induced by the canonical trace on

NL (L*(My_)) (resp., y-L (L*(My_5))) via the usual inclusion.
COROLLARY 5.7.If P is the planar algebra associated to the tower { My }r>_1
with Jones projections {ey}r>1 (as in Theorem 5.4), then

(@) Pg (y) =8) ;bferyeb; forally € Py = M' N My, where E' | =
LIij-1yo LE_y and {b;}; is a left basis for N C M,

(b) A,(P) = the planar algebra associated to the tower { My, }i>—_1 With
Jones projections {ejyn}ix>1-

Proor. (a) We follow the same notations as in Theorem 5.4 and prove
this only for the case k = 2/ € 2N because the case for odd k’s can be
proved using similar arguments. Let ag (resp., e3) denote the isomorphism

H >« ra—f/> aed (resp., the usual evaluation map from H @y H to L*(N)),
and & = X Qn X2 Qu -+ @n Xy € K%, where x; € M forall 1 <i < 2I.
Then, using the prescription of the actions of tangles, we get

Or, (x-2()E&)
= §(id Qn [e57 0 (ax ®u idz) | ®y ids,, )
' ():61 ®n 1u ®u [w*y 0 @ou(y) o woo (1 ®n %2 ®u -+ B %)])
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=8 _(id7 @w[es o (ax ®u id7)] ®n id. )
. (§1 RN iM Qum wizl(b;kvl*EMl,](UlbiZ))A)

(where Z := ¢ (y) o w_ZI(iM QN X2 Qu -+ Qn )221) and since {v;b;}; forms
a left basis for M;_; C M))

=8 (idz ®n[er o (ax ®u idz)] ®n idsr,,)
. (51 Qn iM QQum Zi RN wi(zl,l)(EM,_l(vlbiZ))A)

=6 (%1 ®y Ex(O))W} 1y (En_, (0ibi2)))

— 5% ® Wy (., (02)) = 8wy (650} Eyy, (112))

3 N N
= 8w, (x{v/_ e Ep, (evi—12)) = Sw™,, (xTv]_ ev-12)
= W, (X7 V190, (V) (V1X2X3V; - - - V1X))

On the other hand,

8 x-a(bferyeib:)()

20+1 -
=4 E w5, (Ep, (bferye1bixjvixax3 vy - - - vixyeo )

1

21 ~
=54t Zwizl(b;’kEN(bixik)elEM,(YUIXZX;UZ'"le2le[0,lj))

1

= w5 ({190, (¥) (V1X2X3V2 - - - v X)).

(b) Since A, is additive with respect to n, it is enough to prove the statement
for n = 1. Note that A (I;) = E;(H]) for all colors ek. By part (a) (resp.,
conditions (2) and (5) of Theorem 5.4), we get A1 (P)_x = M| N M4 (resp.,
A (P)yx = M' 0 My). So, by the uniqueness part of Theorem 5.4, it remains
to check whether the conditions (1) to (5) therein hold in this case; these
verifications are completely straight forward and we will skip them.

5.2. Reconstruction of bimodule

Starting with a bimodule planar algebra, we will construct a bifinite bimodule
whose associated bimodule planar algebra is isomorphic to the one which we
started with. We extensively use the techniques of constructing an extremal
subfactor from a spherical unimodular bimodule planar algebra in [19] and
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[22]; in fact, we first show that their construction with necessary modifications,
works without the assumption of sphericality.

Let P be a unimodular bimodule planar algebra with modulus (8, §) such
that § > 1. We will work only with the positive part of P; so, for the time
being, we will write Py in place of P,;. Henceforth, we will exactly follow
the set-up of [19] and [22] and not mention this fact at every step; whenever
some modifications become necessary, we will explicitly mention them. Set
Pk = Dien, Plk where Plk := Py fork, [ € Ng. Define the following structures
on Pk:

(1) Multiplication:

PFx P* 5 P x PX s (x,y)

2nmy K k kLt 2aam)
: X y; L L
|—>x'y::ZP . E@Pl+m—icp
=0 - 2m — i =0

We will also denote the element in the sum when i = 0, by x © y; the
i-th element will be denoted by x ©; y.

(2) *-structure:

k k
P":)Plka)cr—T>)cT::PJr e Pl c Pt
2]

(3) Trace: .
PY > P s x> 1(x) 1= 81208 Prgy (x) € C

P* becomes an associative x-algebra with respect to (1) and (2).

REMARK 5.8. The trace-functional on P¥ which was defined in [19], [22],
does not satisfy tracial property in the absence of sphericality. So, we had to
take this specific spherical isotopy of the trace in [19], [22] so that the functional
defined in (3), is indeed a trace on P*.

To see the tracial property, note that for x € P/‘ ,y € Pk,

B(x - y) = 6l=ms—"P — (- x).

We define a sesquilinear form (-, -) on P¥ by (x, y) = tr(x" - y) forx, y € Pk
It is straight forward to check that (i) #; is positive definite and hence the
sesquilinear form gives an inner product, (ii) {Plk }ien, are mutually orthogonal
subspaces of P* with respect to this inner product. Let L : P¥ — Endc(P*)



PERTURBATIONS OF PLANAR ALGEBRAS 73

and R : P¥ — Endc(P*) denote the left and right multiplication operators
respectively. The proof of the boundedness of these operators in [19], [22]
needs a little modification in the non-spherical case because the inner product
is slightly different; however, the main idea of the proof will remain the same.

LEMMA 5.9. L, and R, are bounded for a € Pk,
Proor. Without loss of generality, let a € Plk for [ € Ng. Now, L, =
2, Li where L : PX — P*is defined by
k k L k k
P"D P, 5x+— di<om (@O x)€ P, ;, CP.

Since {P/‘}IGN0 are mutually orthogonal, therefore it is enough to show that
there exists an M > 0 such that Lfl(x) < M|x| for all x € Pn’j, m € Np.
Without loss of generality, let m > 2/. Note that

alk + i y
ILL@)>=87FP(, =i ke
Ak + i y

where y € P(_)i ) is the positive square root of

To see that this is indeed a positive element, one needs to take an appropriate
rotation of x and use positivity of the action of the right conditional expectation
tangle from (=)' (k-+m) to (=) (k+i). Thus, || L’ (x)||* can also be expressed as

+ |k . .
|| Pz, (y)||> where T, is the semi-labelled tangle | a . lk+ L .(_)l.kJr L1 We equip
—i

the domain P_y: ;) of Pr,, with the norm ||-||" coming from & kP S0
(=) (ki)

that ||y||” = |lx||. Hence, the desired inequality is satisfied by setting M :=

the operator norm of Pr, which is independent of m > 2m and x € PX.

Boundedness of R, will follow using the same kind of arguments.

Let 9 be the completion of P* and M, := (LP*)" C £ (). Note that
1px € H is a cyclic, separating, trace vector for My. The unital x-algebra

inclusion PX > P} > xP[7 7| € P/‘“ c P**! induces an inclusion
+ 21

My < Mj_ ;. Note that LP&‘ C M N M. One can also prove that P, > x
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L, € M{N My is a C*-algebra isomorphism and M,’s are II-factors; for
proofs, see [19], [22] where § > 1 is crucially used.

REMARK 5.10. The above mentioned isomorphism takes the normalized
left picture trace on Py to the Mj-trace on MjN M. So, even if we assume that
{M}}1>2 1s a tower of basic constructions of My C M, there is no hope of the
unimodular bimodule planar algebra associated to My C M, being isomorphic
to P (unless P is spherical) because of the condition in Remark 5.6 (c). We
will fix this issue in the following theorem using a certain perturbation.

If Q is a unimodular bimodule planar algebra, then there exists a unique
invertible positive central element z € Q4 such that QTR/+ l () = Qrr;, (-2).
It is easy to check that z is a weight of Q and QTRik () = Orrr, (-Zex). We will
refer this as the trace intertwiner weight of Q.

THEOREM 5.11. If Q is a unimodular bimodule planar algebra with modulus
(8, 8), then there exists a finite index subfactor My C M, of type 11| whose
associated planar algebra is isomorphic to Q.

Proor. Without loss of generality, we may assume § > 1 because index of a
bimodule planar algebrais atleast 1 (which follows from positivity of the action
of the trace tangles) and the index 1 case is a triviality. Let P be the perturbation
of Q by the decomposition z = z!/? - z!/? of the trace intertwiner weight z of
Q. Clearly, P is a unimodular bimodule planar algebra. Consider the tower
of I1-factors {M}}r>0 constructed from P right before Remark 5.10 and the

isomorphism Q¢ = Pt 3 x > L, € M},N Mj. Note that the map Qr;, = Prs,
under ¢, is given by the inclusion My C M. So, by Theorem 5.4, it remains
to show that (i) { My }«>2 is a tower of basic construction of My C M, with Jones

projections {e; := 8_1¢(Q5+k)}k21 and (ii) ¢ o QE’H( =451 ZbeB bg (-)b* for
all k > 1, where B is a right Pimsner-Popa basis for My C M.

ProOOF OF (i). First note that the unique trace preserving conditional ex-
pectation from M to M_; is induced (via L) by the map

8_1P @ c P[k—H c Pk+l

Ef
P* > Plk S X

1 k1 k1
5 Pk_IQk_lePl cp
+

Using the definition of P = Q"™ it immediately follows that Qg , x QE,,
= 8E_,(x)Qp,, forall x € P*. Thus, forall y € My, exyer = Ey" (V)ex.
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Moreover, it is straight forward to check that for all x € P 0 EaX
80k, E/’L](QEHX) which implies ey M1 = ey M. Thus, by Proposition
2.11, My is a basic construction of M;_; C M, with Jones projection ¢; and
(M : My ] = 8%

PROOF OF (ii). Since L*(M,) = = EBkeNO Pk , therefore for each b € B
and k € Ny, there exists b, € Pk such that b = ZkeNO Lbk. Also, b+ =
D keNs I:b;- Since B is a basis for My C M, we have

o=l =Y bab =57 Y (Lyg, b))

beB beB .k, leNy

R | A
=67 ) > Lo0r,)on)-

meNyg beB, ik, leNg s.t.
l+k=m+i,i <2(kAl)
Using the relation O, = e the above gives the following formula
+1

in terms of pictures:

3 P i = 88,_oP N/

by 20 — i|bi
beB, i k,IeN s.t. + |2k —i +
I+k=m+i,i <2(kAl)

for all m € Ny where the sum in the left hand side is with respect to the Hilbert
space norm in P2. Now, let L, € My N My = LP} forx € P¥ = QF. So,

ZbeB(bL b*) - ZmGNU Z beB, lleN() s.t. (L(thX)Q bT) NOte that
I+k=m+i,i <2(kAl)

b ©x)Oib] =P 5T T Tir

Using the isomrphism % D (P*)' 3 % L. € (MY C L3(M;) and
replacing the sum (in the expansion of ), _,(bLb*)) of the stuff inside the
dotted box by the right side of the above formula, we obtain

D bp0)b* =Y bLb* =8Lp— —

beB beB X
Z

= 5LQE,+k(x) =8¢ (Qp, (x)).
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REMARK 5.12. We must mention here that Popa (in [30]) started with his set
up of ‘generalized A-lattice’ (which, we believe, is analogous to a unimodular
bimodule planar algebra in our case) and gave a general method of construct-
ing a (non-extremal) subfactor whose standard invariant corresponds to the
generalized A-lattice.

Using Theorem 5.11, we now construct a bimodule from a bimodule planar
algebra in the next theorem.

THEOREM 5.13. Let P be a bimodule planar algebra with modulus (5_, 5)
such that (§,+6-) > 1. Then there exists a bifinite bimodule whose associated
bimodule planar algebra is isomorphic to P.

ProoFr. Let Q be the normalization of P and § := ./646_. By The-
orem 5.11, there exist a subfactor N C M of type I1,, whose associated planar
algebra is isomorphic to Q. Without loss of generality, let 6, > 1. Choose
p € P(M) such that try (p) = 85'. Set p' := JpJ € M' := y L (L*(M)),
X := L*(M)p = Range(p’), A := Np' and B := M, where J is the ca-
nonical anti-unitary involution on L?(M). Consider the bimodule 455. Note
that (i) dim(4 ) = try (p') dim(yL*(M)) = 3;182 = 4§_, (il) dim(Hp) =
(trpr(p) ' dim(L*(M)y) = 84 and (iii) B’ := Fp(H) = Mp'. Thus, the
subfactors A C B’ and N C M are isomorphic, and so are their associated
planar algebras. The proof of Theorem 5.11 implies that Q (= normalized
P) is isomorphic to the normalized bimodule planar algebra associated to the
bimodule 4 L?(B’) g which, by Theorem 5.2 (iii), is isomorphic to that of 4 5.
So, P is isomorphic to the bimodule planar algebra associated to 4 #p.

REMARK 5.14. Since we have an extension of Jones’ theorem [13, The-
orem 4.2.1] as well as its converse for any finite index subfactor, we could
have very well referred a unimodular bimodule planar algebra as a ‘subfactor-
planar algebra’, but we abstain from doing so as the term subfactor planar
algebra has already been in use for a spherical unimodular bimodule planar
algebra.

6. Examples of perturbations

In this section, we will provide two examples of perturbations of bimodule
planar algebras by non-scalar weights. The first holds for any non-spherical
planar algebras whereas the second example is a more concrete one which
involves diagonal subfactors.

6.1. Non-spherical to spherical

In Section 3, we saw that the perturbation class of every bimodule planar
algebra contains a unimodular one, namely, its normalization. In view of this,
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we analyze the natural question whether there is more than one unimodular
bimodule planar algebra (upto isomorphism) in the perturbation class of a
bimodule planar algebra. The answer is negative for irreducible ones because
the weights have to be scalars.

Let P be a unimodular bimodule planar algebra (not necessarily spherical)
with modulus (8, §). Suppose z € P, denotes the trace intertwiner weight of
P (discussed in Section 5.2). Note that z'/? is also a weight of P. Consider the
planar algebra Q := P Tt s easy to check that Q is also a bimodule
planar algebra. Now, for x € Q1 = P4, we have

QTR{H (x) = PTR’H(Z

= Py

a4 (X) = PTRzH(Z_l/Zx) = PTRQI(ZI/ZX)

e (1) = Orey, (2),
where the third equality follows from the trace intertwining property of z
and the rest follow directly from the definition of perturbation. Setting x =
1p,, in the above equation, we conclude that Q is unimodular with modulus
Prgi, (z7'/%) = Prg, (z'/?) and thereby, is the same as its normalization; thus,
Q is spherical. We include this observation in the following proposition.

PROPOSITION 6.1. The perturbation class of every bimodule planar algebra
contains a unique spherical unimodular bimodule planar algebra which can
also be characterized by the unimodular one having the minimal index value.
In other words, any bimodule planar algebra assuming the minimal index in
its perturbation class must be spherical.

ProoF. To show minimality of the index, consider a spherical unimodular
bimodule planar algebra P with modulus § and a positive weight z of P.
Set Q = PG Let {pi}’_, be the set of minimal central projections of
Py; = Q4. Note that § = ), @; where w; = Prg; (pi) = Prgi (pi) for all
i. Also, forall i, there exists A; > Osuchthatz =), A;p;. If (5_, 8) denotes
the modulus of Q, then 8, = ), kflw,-. Thus,

n

index(0) = 3 oy = (Z wg) . (i‘—f i %)w,.w,
]

k

ij=1""7 i=1 1<j<k<n
n 2
> (Z wf) + Z 2wiw; = (Z w,-) = index(P)
i I<j<k<n i
where the equality occurs if and only if ; = A; for 1 < i, j < n, that is,

z is a scalar weight. Now, if Pis any unimodular bimodule planar algebra
assuming minimal index in its perturbation class, then there exists a weight
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w such that Q := P®@"**" is unimodular spherical. Again, by the above
argument, index(Q) being minimal, is same as index(13) and w is a scalar
welght Since both P and Q are unimodular, therefore w = 1 p,, and hence,
P = Q is spherical. This also shows the uniqueness of a spherical unimodular
bimodule planar algebra in the perturbation class of a bimodule planar algebra.

REMARK 6.2. Instance of minimizing index of a conditional expectation
onto a subfactor already appeared in the work of Hiai (see [11]) and then
Popa (see [28]). Proposition 6.1 gives a nice way of minimizing index using
perturbation of planar algebra.

REMARK 6.3. From the proof of Proposition 6.1, itis clear that if the perturb-
ation of a spherical bimodule planar algebra by a positive weight, is spherical,
then the weight must be a scalar one.

REMARK 6.4. Itis easy to check that a finite depth bimodule planar algebra
is always spherical because by Perron-Frobenius theorem, the index must be
equal to the norm-square of the pricipal graph and perturbation does not change
the principal graphs.

6.2. Spherical to non-spherical

Here we try to find whether we can perturb one of the known spherical unim-
odular planar algebras and get a non-spherical one. For this, we study the case
of diagonal subfactors.

In Section 6.1, we found that the perturbation of a bimodule planar algebra P
by aweight z, has modulus (Prg: (z71?%), Prgr (2 1/2)); so, for the perturbation
to be unimodular, we need to find z satisfying PTRz+ 1 (7 1?) = Prgr, (z'/?).
Consider the diagonal planar algebra P constructed in [3] with respect to the
free group F, generated by two free generators a, forn € I := {—, 4} and the
trivial cocycle. We briefly recall (from [3]) few aspects of this planar algebra
P which will be needed for further analysis.

Vector spaces: Py := Cand Py = Clg € % alt,(¢) = e} forall k > 1,
where e denotes the identity of F, and alt, is given by

a, [a5'anay --alV € By ifn =+
I"> (g1,--+,8,) —> - .
ag,a;1a83 s (l;n_l) S F2 if n=—
Action of tangles: For a tangle T : (niky, ..., npkp) — noko, the action
Pr: Py, X -+ X Py, = Py, is given by
(PT(QI, gD, QO) = #{f : {strings in T'}

— I | flmarked points of i-th discin7 = €' for 0 <i < b}
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where ¢’ belongs to the distinguished basis of P, for 0 <i < b.

Fix a positive scalar A_ = )Jrl. Consider z := [A_(—, =) + A, (+,+H)] €
Piiand A, = ]_[f;1 Agi(_l)i_l for & = (e, ..., &) € I*. Using the relation
= [)Cl(—, -+ A:Ll(—l—, +)] € P4 and the action of tangles in Defin-
ition 3.1, one can derive that z,x = D, _;x Ape(€,€) € Py, where € is the
sequence obtained by reversing the order in €. From the action of the multi-
plication tangle M, we have z, (¢, 2)1,7,{1 = Apehpy (&, D) = Ay, (€, D) for
&,v € I* such that alt, (g, D) = e. Freeness of a_ and a, implies that there
exists a configuration of non-crossing pairings of matching signs (abbreviated
as ‘NC-pairing’) in the sequence (g, V), which implies that A, 5 = 1. Thus,
Znk 18 central and hence, z is a weight of P. Further, positivity of z implies that
0= PG {5 a bimodule planar algebra. To check unimodularity of Q,
note that Prer (z7") = (A-)™' + (1)~ = A + Ay = Prg;, (2). Now, Q is
spherical if and only if, for all s, € C,

szl H 1AL = O (5(=, =) +1(+H ) = Qe (5=, =) +1(+, 4)
= SA_ =+ t)\._;,_

if and only if A_ = 1 = A, thatis, z = 1p,,. Clearly, the range of the
index values of these perturbed planar algebras is [4, 00). We gather the above
observation in the following proposition.

PROPOSITION 6.5. Let P denote the diagonal planar algebra constructed
in [3, § 3] with respect to the free group F, generated by two free generators
and the trivial cocycle. Then one can perturb P to obtain a continuum of
unimodular bimodule planar algebras { Q7 }, >4 such that Q" has (i) index y,
(i) is equal to P if y = 4 and (iii) is non-spherical if and only if y # 4.

REMARK 6.6. These perturbed planar algebras turn out to be the ones
associated to the subfactors with index greater than 4 constructed in [12] (which
are all non-extremal), as was pointed out by Vaughan Jones.

We give an explicit proof of the above remark in the following proposition.

PROPOSITION 6.7. Let N C M be a subfactor of type Il with a partition
of unity {p, € P(N'NM) | ¢ € I} satisfying (i) Np. = M, and (ii)
c_ = try(po) # try(py) =: cy. (Such subfactors were constructed by
Jones in [12] with M having full fundamental group.) Then, the planar algebra
associated to N C M is isomorphic to Q(C*C”f] (as in Proposition 6.5).

ProofF. Condtions (i) and (i) imply p, € Pun(N' N M), N N M =
Cp- ®Cpyand c,try (p)[M : Nl = [M, : Np,] =1.S0,[M : N] =
¢! —H:frl = (c_cy) 'andtry/(p.) = c_. andhence, N C M is non-extremal.
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Suppose {M}i>1 is a tower of basic constructions of N C M with Jones
projections {e }x>1 and P be the planar algebra associated to this tower. Let pf’”)
denote the element P - or Prr (lying in (M, _, N M, _;) by
n—1|p, n—1|p,

Corollary 5.7 (b)) according as n iseven or odd, ¢\ := try,_, (p{") = c(_y1y,
Pe = pg) p" € P(N' N M,_y) and ¢, := [, ¢ = try,_, (p) for
n € I e = (81,.. ,&,) € I". Clearly, {p, : ¢ € I"} forms a partition of
unity. Further, the formula involving indices of cut-down subfactors implies
Np. = (M,-1)),, and hence p, is minimal in I5 The set of try, ,-values of
these minimal projections is given by {c(n, k) := c* c i k |0 <k <n}.

In order to establish an isomorphism between P and Q™" we first
prove that for ¢, n € I", ¢, = ¢, if and only if there exists an NC-pairing for
the sequence (¢, n)

‘if” part: The pairings give the equation ¢ 75 = (c_cy)". On the other
hand, (e, = ey = co[ ] where =1, .., 1) 2= (=11, -, —00).

‘only if’ part: We use induction on the length n. The intial case of n = 1
is a triviality since c_ # c4. In the induction step, letn > 1and 0 <k <n
such that ¢, = ¢(n, k) = c¢,,. We may also assume 0 < k < n without loss of
generality because there is exactly one sequence in each of the cases k = 0
and k = n. Note that if both (e, ) and (1, V) have NC-pairings, then so does
(e, D) (resp., (1, £)) which can easily be obtained by taking the product (resp.,
%) of the Temperley-Lieb diagrams associated to the NC-pairings. Consider
e(n, k) € I" given by

(=)' ifl<i<k,

& (n, k) =
(=) ifk+1<i<n.
Clearly, c,nx) = c(n, k); so, it is enough to show that (¢, £(n, k)) has an
NC-pairing. We begin by showing that there exists a v € I" such that v; =
— = &1(n, k) and (g, V) has an NC-pairing (and hence ¢, = ¢, by the ‘if’
part). Suppose first that e, = +. Since 0 < k < n, € must have a pair of
consecutive matching signs. Choose the left most consecutive matching pair
in ¢ and change both the signs in the pair to obtain y € I". Observe that there
exists an NC-pairing for (¢, y). Also, the first consecutive matching pair in y.
gets closer to the left side than the one in &. Apply this method succesively to
obtain the desired v. And, if &y = —, then simply take v = ¢. Let V' (resp.,
£'(n, k)) be the sequence obtained from v (resp., £(n, k)) after removing the
minus sign in the first entry. Since ¢,y = ¢/(n.x), by induction assumption, there

exists an NC-pairing for (¢'(n, k), ﬁ/ ) and hence for (g(n, k), V).
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It is also true that for g, € I", ¢, = cy if and only if p, and py are
equivalent in P,. Suppose e = ¢y So, there exists an NC-pairing for (&, 7).
Let T be the Temperley-Lieb diagram associated to this NC-pairing. Since
pe and p, are minimal in P,, therefore it is enough to check pg(PT) py #0

which easily follows by considering the scalar try,, ( pé(PT) Py (PT*) pé) and
then using the action of tangles to show it is non-zero (in fact, positive). In
particular,

Ce

pe.T,1n):= — =
2 \/trM”l(ps(PT)Prz(PT*))

pe(Pr)py

is a partial isometry with p, (resp., p,) asits final (resp., initial) projection. To
show that p(e, T, 1)) is independent of T, consider two Temperley-Lieb ele-
ments 77 and 7; for two NC-pairings of (¢, ﬁ). It immediately follows from the

action of tangles that p(e, T1, ﬁ)(p(g, 1>, ﬁ))* IS R+[p§(I3Tl)pE(I3T2*)p§] =
Ry [pe(Pr.r;)pe] = Rype. Hence, p(e. Ti. 7)) = p(e. T, i)). So, we will
denote the partial isometry simply by p(e, 7).

Consider the diagonal planar algebra P in Proposition 6.5 and its perturba-
tion Q = Q" = P& with respect to the weight z = \/g(—, -)+

(4, +). Define g : Q4 — P, by

~ (] ~ ~
Qi =Py =(e,1) — ple, ) € Piy.

Clearly, ¢ is a x-algebra isomorphism. By Proposition 2.3, it is enough to show
that ¢ is equivarent with respect to all tangles having positive colors on their
discs and in fact, for the following tangles:

Right-inclusion tangles: For ¢, € 1" such that alt, (¢, 7)) = e (equival-
ently, (¢, 17) has an NC-pairing), we have ¢ o Qr,, (&, n) = p(e , ,Q) +

ple,+,+.7) € P+(,,+1). Thus, it is enough to show that p(g, ) = p(e, —,
—, )+ p(e, +, +, 7). Let T be the Temperley-Lieb diagram corresponding to
an NC-pairing for (¢, 17); then, R, o T gives an NC-pairing for (¢, £, £, 7).
Further, we have c(; +) = cgcgf 1 and

~ ~ = = 1
try, (p(g,:t)(PR1+noT)p(Q,:|:)(P(R1+,,0T)*)) =try, (pg(PT)pQ(PT*))CiH_ )

which imply p(e, £, +,7) = p(e, n) pi’ 1 Hence, the required equality
holds.
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Jones projection tangles: From the action of tangles on P, we have

Pe,= Y pePe,po= Y PennPr,pevy

g e’elnt! cel" 1 nvel

- ¥ s, (Pienn (P, Piewvn (Pr,))

Cle.n.m)

pe,n,n,v,v, ).

eel" 1 nvel

Now, fore € I"~"and n,v € I, note that (PE+n)p(§,v,v)(ﬁE+n) = \/i‘(’i%pg(ﬁlgﬂ)

and

Ty, (P(g,n,n)Pg(ﬁEH)) = Jc-cy trM,,((ﬁE+,,)p@,n,n)(ﬁE+,,))
= ¢ty (pe(Pp.,)) = ¢ fe—cr tru, , (pe)
= cf{‘)cg\/m

Since ¢,y = c—c4Cg, therefore

C

S)n)cl()n)

Pg,, = p(e, n,n, v, v, 8).

c_C
cel" 1 nvel

On the other hand, using the weight z of P, Q,, is equal to

C(_yn—1_ - ~
[ § © (§9_a_a_’_9§)+(§7_7_5+7+7§)
V C—yn=14

eel"! C(_yn-1
+ (&, 4, 4, — — &) + —C(‘) +(§,+,+,+,+,§)}.
(7)n—17

Thus, ¢ preserves the action of E,,.

Left conditional expectation tangle: Fix v, v' € I and g, n € I "=1 such that
alt, (v, g, ﬁ, V') = e. Note that Or,, (v, &, ﬁ, V) = Sv=v O, (v, &, ﬁ, V) =

Som /S Y (V2 £ 71 Y) ¥ Sumur [ 30 P(v. £. 0, ). On the other

hand’ PELrn (P(V, &, ﬁv V/)) = PELM (Pv p(‘): g, ﬁ7 V/)Pv’) = 81):1)’ PELF,, (P(Va g,
7, v)). Now, we may assume that alt, (v, &, 17, v) = e which implies alt_ (¢, 7))
= e equivalently, (g, 7)) has an NC-pairing given by a Temperley-Lieb diagram
T (say). Then, T} ::_LI_(,,_I) o T induces an NC-pairing for (v, ¢, ﬁ V). So,
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we have
Pe, (p(v, &, 71, v))

B C.e) Pe, (Pw.ey(Pr) pony)
_ W - ; v,e v:n
try,_, (P(u,g)(PTI)P(vﬂ)(P ) | 7

C(v,g) /C v
= = = E Py, e)(PT )Py -
\/trMn—l (p(V’Q)(PTl)p(V’E)(PT* |

yel

The last equality is obtained by using the action of tangles on P. To show

o QO = Pg o @, it remains to be shown that s
9o Qr, = FPr, o¢ o,y (P (Pr) P (Pro)

independent of v € I. Observe that the denominator

trMn 1 (p(v 8)(ﬁT1)p(v n)(f)T*))
= (c_cy)? PTRrM Pwe (Pr)po, n)(PT*))

VC C+PTR Pg(ﬁTl)P/l(ﬁTl*))

=cy(c_cy)? PTR:_n (PL(Pr)py(Pry)),

= (c- C+)

wherej pzwl o) = pfl)pfz) p((u';)l Cee, Wp—1) G.I"_l apd in tbe second
equality, we replace the loop with p, in it by a loop with nothing on it, and the
numerator ¢,y = ¢,c—,. Hence, the required fraction becomes independent
ofvel.

7. Questions

DEFINITION 7.1. A bimodule planar algebra is said to have trivial perturbation
class if all its perturbation by positive weights, are spherical.

It will be interesting to find a set of necessary and sufficient conditions
for a bimodule planar algebra having trivial perturbation class in terms of its
principal graph(s); one can also consider this question in the more specific
case of the Bisch-Haagerup planar algebras (see [5], [2] and [4]). Note that all
finite depth or irreducible bimodule planar algebras have trivial perturbation
class; so, for the Bisch Haagerup planar algebras, this question is relevant ony
when the two subgroups have nontrivial intersection and the group generated
by them is infinite.

Another interesting problem is to obtain a method of perturbing a bifinite
bimodule to a new one whose associated planar algebra is the perturbation of
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the one associated to the bimodule which we start with. Note that, by The-
orem 5.13, we may find a bifinite bimodule corresponding to a perturbation of
the planar algebra associated to a given bifinite bimodule but we don’t have
any direct relation between these bimodules in terms of the weight. We will
give answers to these questions in a forthcoming article.
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