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TORIC IDEALS OF FINITE GRAPHS AND
ADJACENT 2-MINORS

HIDEFUMI OHSUGI and TAKAY UKI HIBI*

Abstract

We study the problem when an ideal generated by adjacent 2-minors is the toric ideal of a finite
graph.

.....

K[{xij}iz=1,...m,j=1...,
Given 1 <a; <a <mand1 < b, < by < n, the symbol [a, az|b;, b>]
denotes the 2-minor x4, p, X4, — Xa,b,Xa,6, Of X. In particular [a;, az|b1, b2] is
a binomial of A. A 2-minor [a;, az|by, by] of X is adjacent ([4])ifa, = a1+ 1
and b, = by + 1. Following [2], we say that a set .# of adjacent 2-minors of

X is of chessboard type if the following conditions are satisfied:
o if [a,a+ 1|b,b+ 1]and [a,a + 1|b', b’ + 1] with b < b’ belong to
thenb + 1 < b;
e if [a,a+ 1|b,b+ 1] and [a’, @’ + 1|b, b+ 1] with a < a’ belong to ./,
thena +1 < a'.

Given a set . of adjacent 2-minors of X of chessboard type, we introduce
the finite graph I, on the vertex set .4, whose edges are {[a,a + 1|b, b +
11, [a’,a’ + 1|b', b’ + 1]} such that

claa+1lb,b+ 11, a + 10,1 + 1],

e {a,a+1}Nn{d,a +1} #0,

« (bb+ 1} NV, + 1} £ 0.
For example, if ./ = {[1, 22, 3], [2, 313,41, [3, 412, 3], [2, 3|1, 2]}, then T’y
is a cycle of length 4. The ideal 1 4 is generated by x12x23 — X13X22, X23X34 —
X24X33, X32X43 — X33X42 and x21x3p — X22x31. The binomial x35 (x13x21X34X42 —

X12X24X31X43) belongs to I 4 but neither x3p NOr X13X21X34X42 — X12X24X31X43
belongs to I 4. Thus I 4 is not prime.

*This research was supported by JST CREST.
Received 10 December 2011, in final form 7 October 2012.



186 HIDEFUMI OHSUGI AND TAKAYUKI HIBI

A fundamental fact regarding ideals generated by adjacent 2-minors is

LeEmMA 1 ([2]). Let A be a set of adjacent 2-minors of X, and let I 4 be the
ideal of A generated by all 2-minors belonging to M. Then, 1 4 is a prime ideal
if and only if M is of chessboard type, and Ty possesses no cycle of length 4.

A finite graph G is said to be simple if G has no loop and no multiple
edge. Let G be a finite simple graph on the vertex set [d] = {1,...,d},
and let E(G) = {ey, ..., e,} be its set of edges. Let K[t] = K[tq, ..., t4]
denote the polynomial ring in d variables over K, and let K[G] denote the
subring of K[t] generated by the squarefree quadratic monomials t° = #;;
with e = {i, j} € E(G). The semigroup ring K[G] is called the edge ring
of G. Let K[y] = K[y, ..., ys] denote the polynomial ring in n variables
over K. The kernel I of the surjective homomorphism 7 : K[y] — K[G]
defined by setting (y;) = t% fori = 1, ..., n is called the roric ideal of G.
Clearly, I is a prime ideal. It is known that I is generated by the binomials
corresponding to even closed walks of G. See [7] , [6, Chapter 9] and [5,
Lemma 1.1] for details.

ExaMPLE 2. Let G be a complete bipartite graph with the edge set E(G) =
{i,p+j}I1<i<p,1=<j=<gq} LetX = (xij)i=1...p.j=1....q D€ a matrix
of pq indeterminates and K[x] = K[{x;;}i=1,...p,j=1,...q]- Then, I is the
kernel of the surjective homomorphism 7 : K[x] — K[G] defined by setting
w(xij) =titpyjforl <i < p,1 < j < gq.lItisknown [6, Proposition 5.4] that
I is generated by the set of all 2-minors of X. Note that each 2-minor x;;x;/ j —
x;jxyj corresponds to the cycle {{i, p+ j}, {p+j, i’} {i’, p+j'}. {p+ /', i}}
of G.

In general, a toric ideal is the defining ideal of a homogeneous semigroup
ring. We refer the reader to [6] for detailed information on toric ideals. It is
known [1] that a binomial ideal I, i.e., an ideal generated by binomials, is a
prime ideal if and only if 7 is a toric ideal. An interesting research problem on
toric ideals is to determine when a binomial ideal is the toric ideal of a finite
graph.

ExampLE 3. The ideal I = (x;xy — x3X4, X1X2 — X5Xg, X1Xp — X7Xg) iS the
toric ideal of the semigroup I'il’lg K|[tts5, thtstats, titats, t3tats, tatsts, t1als,
t113ts, trtats]. If there exists a graph G such that I = I, then three quad-
ratic binomials correspond to cycles of length 4. However, this is impossible
since these three cycles must have common two edges e; and e; such that
e; Ne; = (. Thus, I cannot be the toric ideal of a finite graph. This observa-
tion implies that the toric ideal of a finite distributive lattice £ (see [3]) is the
toric ideal of a finite graph if and only if .# is planar. In fact, if .Z is planar,
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then it is easy to see that the toric ideal of .# is the toric ideal of a bipartite
graph. If £ is not planar, then £ contains a sublattice that is isomorphic to
the Boolean lattice B3 of rank 3. Since the toric ideal of Bs has three binomials
above, the toric ideal of .¥ cannot be the toric ideal of a finite graph.

Let ./ be a set of adjacent 2-minors. Now, we determine when a binomial
ideal I, generated by ./ is the toric ideal I of a finite graph G. Since I
is a prime ideal, according to Lemma 1, if there exists a finite graph G with
Iy = Ig, then # must be of chessboard type and I, possesses no cycle of
length 4.

THEOREM 4. Let M be a set of adjacent 2-minors. Then, there exists a finite
graph G such that I 4 = Ig ifand only if M is of chessboard type, Ty possesses
no cycle of length 4, and each connected component of Ty possesses at most
one cycle.

ProOOF. We may assume that .# is of chessboard type and I, possesses no
cycle of length 4. Let #{ = M, U --- U M, where Ty, ..., [y is the set of
connected components of I'y. If i # j, then f € J; and g € ; have no
common variable. Hence, there exists a finite graph G such that [ , = I if and
only if for each 1 <i < s, there exists a finite graph G; such that I 4, = I;,.
Thus, we may assume that I" 4 is connected. Let p be the number of vertices of
[y, and let g be the number of edges of I'y4. Since I’ is connected, we have
p=q+1

Only if. Suppose that there exists a finite graph G with I 4 = I;. From [2,
Theorem 2.3], the codimension of /4 is equal to p. Let d be the number of
vertices of G, and let n be the number of edges of G. Then, wehaved < 4p—2q
and n = 4p — q. The height of I is given in [7]. If G is bipartite, then the
codimension of I satisfiesp > n—d+1> 4p—q)—@dp—-2qg)+1 =qg+1.
Hence, we have p = g + 1 and I’ is a tree. On the other hand, if G is not
bipartite, then the codimension of I satisfiesp >n—d > (4p—q) — (4p —
2g) = q. Hence, we have p € {q, g + 1} and I has at most one cycle.

If. Suppose that I", has at most one cycle. Then, we have p € {¢q, g + 1}.

Casel.p =q + 1,ie., [y is atree.

Through induction on p, we will show that there exists a connected bipartite
graph G such that I, = Ig. If p = 1, then I, = I where G is a cycle of
length 4. Letk > 1, and suppose that the assertion holds for p = k—1. Suppose
that I/ has k vertices. Since I’y isatree, I’y hasavertex v = [a, a+1|b, b+1]
of degree 1. Let #' = M \ {v}. Since T is a tree, there exists a connected
bipartite graph G’ such that I ,» = I by the hypothesis of induction. From [5,
Theorem 1.2], since I is generated by quadratic binomials, any cycle of G’
of length > 6 has a chord. Let v’ = [@/, a’ + 1|b’, b’ + 1] denote the vertex of
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[y that is incident with v. Let e = {i, j} be the edge of G’ corresponding to the
common variable of vand v'. Let {1, 2, .. ., d} be the vertex set of G’. We now
define the connected bipartite graph G on the vertex set {1, 2, ...,d,d+1,d+
2} with the edge set E(G")U{{i,d + 1}, {d+1,d +2}, {d +2, j}}. Then, any
cycle of G of length > 6 has a chord, and hence, I is generated by quadratic
binomials. Thus, I is generated by the quadratic binomials of /s together
with v corresponding to the cycle {{i,d + 1}, {d+1,d +2}, {d+2, j}, {j, i}}.
Therefore, 14 = I;.

Case 2. p = g, i.e., [y has exactly one cycle.

Then, we have p > 8. Through induction on p, we will show that there
exists a graph G such that I, = I. If p = 8§, then I is a cycle of length 8.
Then, 14 = I where G is the graph shown in Figure 1.

FIGURE 1. Graph for . such that ', is a cycle of length 8.

Let k > 8 and suppose that the assertion holds for p = k — 1. Suppose that
Iy has k vertices. If Iy has a vertex v = [a,a + 1]b, b + 1] of degree 1,
then I where ' = M \ {v} has exactly one cycle, and hence, there exists a
graph G’ such that I ;» = I by the hypothesis of induction. Let v’ = [a', a’ +
116', b’ + 1] denote the vertex of Iy that is incident with v. Let e = {i, j} be
the edge of G’ corresponding to the common variable of v and v’. Suppose
that the vertex set of G is {1, 2, ..., d}. We now define the graph G on the
vertex set {1,2,...,d,d+1,d+2} withthe edge set E(G")U{{i,d+ 1}, {d+
1,d + 2}, {d + 2, j}}. Since G’ satisfies the conditions in [5, Theorem 1.2],
it follows that G satisfies the conditions in [5, Theorem 1.2]. Thus, I; is
generated by the quadratic binomials of /5 together with v corresponding to
the cycle {{i,d + 1}, {d + 1,d + 2}, {d + 2, j},{J, i}}. Therefore, I, = I;.

Suppose that I' 4 has no vertex of degree 1. Then, I is a cycle of length k.
A 2-minor ad — bc € M is called free if one of the following holds:

e Neither a nor d appears in other 2-minors of ./,
¢ Neither b nor ¢ appears in other 2-minors of /.
From [2, Lemma 1.6], ./ has at least two free 2-minors. Let v = [a,a +

1|b,b + 1] be a free 2-minor of /. We may assume that neither x, , nor
Xq+1.p+1 appears in other 2-minors of .. Since I’y is a cycle, x,+1,, appears
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in exactly two 2-minors of .# and x, 541 appears in exactly two 2-minors of
M. Let M = M \ {v}. Since Ty is a tree, there exists a connected bipartite
graph G’ such that I, = I by the argument in Case 1. Suppose that the
edge {1, 3} corresponds to the variable x,4 ; and the edge {2, 4} corresponds
to the variable x, 51 ;. We now define the graph G as shown in Figure 2, where
vertices 1 and 2 belong to the same part of the bipartite graph G’. Note that G
is not bipartite.

FIGURE 2. New graph G arising from G’.

Lete = {1,2} and ¢’ = {3, 4}. Since G’ is a bipartite graph, it follows that

(a) If either e or ¢’ is an edge of an even cycle C of G, then {e, ¢’} C E(C).
(b) If C’ is an odd cycle of G, then {e, ¢’} N E(C’) # @.

Let I denote the ideal generated by all quadratic binomials in /5. Since each
quadratic binomial in /s corresponds to a cycle of G of length 4, it follows
that /4 = I. Thus, it is sufficient to show that I = I, i.e., I is generated
by quadratic binomials. From [5, Theorem 1.2], since G’ is bipartite and since
I is generated by quadratic binomials, all cycles of G’ of length > 6 have a
chord.

Let C be an even cycle of G of length > 6. If E(C) N {e, ¢’} = @, then C
has an even-chord since all cycles of the bipartite graph G’ of length > 6 have
a chord. Suppose that {e, ¢’} C E(C) holds. Then, either {1, 3} or {2, 4} is a
chord of C. Moreover, such a chord is an even-chord of C from (b) above.

Let C and C’ be odd cycles of G having exactly one common vertex. From
(b) above, we may assume that e € E(C) \ E(C’) and ¢’ € E(C') \ E(C).
If {1, 3} does not belong to E(C) U E(C’), then {1, 3} satisfies the condition
in [5, Theorem 1.2 (ii)]. If {1, 3} belongs to E(C) U E(C’), then {2,4} ¢
E(C)U E(C’") since C and C’ have exactly one common vertex. Hence, {2, 4}
satisfies the condition in [5, Theorem 1.2 (ii)].

Let C and C’ be odd cycles of G having no common vertex. Then, neither
{1, 3} nor {2, 4} belong to E(C) U E(C’). Hence, {1, 3} and {2, 4} satisfy the
condition in [5, Theorem 1.2 (iii)].

Thus, from [5, Theorem 1.2], I is generated by quadratic binomials. There-
fore, I = I 4 as desired.
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