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CONCRETE REALIZATIONS OF QUOTIENTS
OF OPERATOR SPACES

MARC A. RIEFFEL∗

Abstract
Let B be a unital C*-subalgebra of a unital C*-algebra A , so that A/B is an abstract operator
space. We show how to realize A/B as a concrete operator space by means of a completely
contractive map from A into the algebra of operators on a Hilbert space, of the formA �→ [Z,A]
where Z is a Hermitian unitary operator. We do not use Ruan’s theorem concerning concrete
realization of abstract operator spaces. Along the way we obtain corresponding results for abstract
operator spaces of the form A/V where V is a closed subspace of A , and then for the more
special cases in which V is a ∗-subspace or an operator system.

Introduction

In a recent paper [11] I showed that if B is a unital C*-subalgebra of a unital
C*-algebra A and if L is the quotient norm on A/B pulled back to A , that
is,

L(A) = inf{‖A− B‖ : B ∈ B}
forA ∈ A , then there is a unital ∗-representation (H , π) of A and a Hermitian
unitary operator U on H such that

L(A) = ‖[U,π(A)]‖
for allA ∈ A . The consequence of this that most interested me is that it follows
that L satisfies the Leibniz inequality

L(AC) ≤ L(A)‖C‖ + ‖A‖L(C)
for all A,C ∈ A . But another interesting consequence is that the map A �→
[U,π(A)] gives an isometry of A/B into L (H ). Now A/B is actually an
operator space, in the sense of having a compatible family of norms on all the
matrix spaces over it (reviewed below), and this suggests that one should seek
a natural construction of a “complete isometry” from A/B into the algebra of
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operators on some Hilbert space (i.e. one respecting the norms on all the matrix
spaces). The main purpose of this article is to provide such a construction. In
fact, we show that there exists a complete isometry that is again of the form
A �→ [U,π(A)]. As a consequence we obtain a “matrix Leibniz seminorm”
on A by taking the norms of the commutators.

Now matrix Leibniz seminorms played a crucial role in my earlier paper
[8] relating vector bundles and Gromov-Hausdorff distance, and one of my
projects is to generalize the main results of that paper to the setting of non-
commutative C*-algebras, so that they can be applied, for example, to the
setting of quantizations of coadjoint orbits that I studied in [7], [9], [10]. (Mat-
rix seminorms have already been defined and discussed in this context in [12],
[13], [14], but the Leibniz property was not used there.) Actually, for infinite-
dimensional C*-algebras, the C*-metrics as defined in [9] are discontinuous
and only densely defined. But they are required to be lower semi-continuous
with respect to the C*-norm, and in all of the examples that I know of one
proves that they are lower semi-continuous by showing that they are the su-
premum of an infinite family of continuous Leibniz seminorms. This provides
ample reason for studying continuous Leibniz seminorms. Thus the results of
the present paper provide some interesting information about matrix Leibniz
seminorms, and so provide a small step forward in my project.

We will actually develop some of our results in a more general context,
namely that in which V is a closed subspace of a unital C*-algebra A , so that
A/V is an abstract operator space. We show that in this case there exists a
unital ∗-representation (H , π) of A , and projections P and Q on H , such
that the linear mapping � from A to L (H ) defined by

�(A) = Qπ(A)P

gives a complete isometry from A/V into L (H ). To show this we do not
need to use Ruan’s construction [2] of complete isometries from abstract op-
erator spaces into operator algebras (essentially because C*-algebras can be
considered to be concrete operator spaces, by the Gelfand-Naimark theorem).
In fact, our results immediately apply to the situation of a concrete operator
space W and a closed subspace V of W , so that W /V is an abstract operator
space, just by considering the unital C*-algebra A generated by the concrete
operator space W . All of this is discussed in Section 1.

Now a C*-subalgebra is in particular a ∗-subspace. For this reason we
discuss in Section 2 the situation in which V is a ∗-subspace of a unital C*-
algebra A , so that A/V is an abstract operator ∗-space. We show that in
this case there exist a unital ∗-representation (H , π) of A , a projection P
on H , and a Hermitian unitary operator U on H that commutes with the
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representation π , such that when we define the linear ∗-map � from A into
L (H ) by

�(A) = PUπ(A)P

then � gives a completely isometric ∗-map from A/V onto a ∗-subspace of
L (H ). In Section 3 we then briefly consider the case in which V is an operator
system, that is, V is a ∗-subspace of A that contains the identity element of
A .

Finally, in Section 4 we discuss the situation in which V is a unital C*-
subalgebra, B, as described above.

1. Quotients of operator spaces

We begin by reviewing here various facts about operator spaces that we need.
Let V be a vector space. For each natural number n we let Mn(V ) denote
the vector space of n× n matrices with entries in V . Let A be a C*-algebra.
ThenMn(A ) is a ∗-algebra in the evident way, and it has a unique C*-algebra
norm. We always viewMn(A ) as equipped with this norm. If V is a subspace
of A , then for each natural number n we equip Mn(V ) with the restriction
to Mn(V ) of the norm on Mn(A ). The resulting family of norms on all these
matrix spaces is called a matrix norm, and when V is equipped with this family
of norms it is called a “concrete operator space”. Ruan [2] found axioms that
characterize such families of norms. A family of norms that satisfy Ruan’s
axioms is called an “operator-space matrix norm”. A vector space equipped
with an operator-space matrix norm (but that is not assumed to be a subspace
of a C*-algebra) is called an “abstract operator space”. We will not need to use
Ruan’s axioms, because all of the vector spaces that we consider will either
be assumed to be subspaces of C*-algebras, or will eventually be proved to be
(at least isomorphic to) such.

If V and W are vector spaces and if φ is a linear map from V into W ,
then by entry-wise application φ determines a linear map, φn, fromMn(V ) to
Mn(W ) for each n. If V and W are each equipped with matrix norms, then φ
is said to be “completely contractive” if the norm of each φn is no greater than
1, and φ is said to be a “complete isometry” if each φn is an isometry.

If V is a closed subspace of an operator space W , so that Mn(V ) is a
subspace ofMn(W ) for each n, then for each nwe can equipMn(W )/Mn(V )

with the corresponding quotient norm, thus obtaining a “quotient matrix norm”
on W /V . Important perspective for us is given by the fact that W /V equipped
with this quotient matrix norm is an abstract operator space [2]. But again,
in the end we will not actually have used this fact, though we will use this
terminology, as we do already in the next proposition.
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The main technical step for all of the results of this paper is given by the
following proposition, which is closely related to the GNS construction. Here
we denote the Banach-space dual of a Banach space X by X′.

Proposition 1.1. Let A be a unital C*-algebra, let V be a closed subspace
of A , and equip A/V with the corresponding quotient matrix norm (so that
A/V is an abstract operator space). For a given natural number n let there
be given ψ ∈ (Mn(A ))′ with ψ(Mn(V )) = 0 and ‖ψ‖ = 1. Then there
exist a unital ∗-representation, (H , π), of A , and two projections, P and
Q, in L (H ), each of rank no greater than n, such that when we define the
completely contractive map � : A → L (H ) by

�(A) = Qπ(A)P

for A ∈ A , then �(V ) = 0 and there exist two unit vectors, ξ and η, in H ⊕n
such that

ψ(C) = 〈�n(C)ξ, η〉 for all C ∈ Mn(A ).

Proof. It is well-known that if B is a unital C*-algebra and if θ ∈ B ′
with ‖θ‖ = 1, then there exist a unital ∗-representation, (ρ,K ), of B and
unit vectors ξ 0 and η0 in K , such that θ(B) = 〈ρ(B)ξ 0, η0〉 for all B ∈
B. See Lemma 3.3 of [11] for a proof of this fact whose main tool is just
the Jordan decomposition of a Hermitian linear functional into the difference
of two positive linear functionals. Accordingly, we can choose a unital ∗-
representation (K , ρ) of Mn(A ), and unit vectors ξ 0 and η0 in K , such that

ψ(C) = 〈ρ(C)ξ 0, η0〉 for all C ∈ Mn(A ).

Let {Ejk} be the standard matrix-units forMn ⊆ Mn(A ). Then ρ(E11) is a
projection in L (K ). Set H = ρ(E11)K . Define a unital ∗-representation , π ,
of A on H by π(A) = ρ(A⊗ E11) where here we view Mn(A ) as A⊗Mn.
Then it is well-known and easily checked that (K , ρ) is unitarily equivalent
to (H ⊕n, πn), where by πn we mean the representation of Mn(A ) on H ⊕n
defined by the matrices

πn(C) = {π(Cjk)}

for C ∈ Mn(A ) and C = {Cjk} with Cjk ∈ A , and where the matrix {π(Cjk)}
acts on H ⊕n in the evident way. (This is, for example, essentially proposition
5ii of chapter I of [1].) In particular, there will be unit vectors ξ and η in H ⊕n
such that

ψ(C) = 〈πn(C)ξ, η〉 for all C ∈ Mn(A ).
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Let ξ = {ξk} and η = {ηj } for ξk, ηj ∈ H . (Note that the ξk’s are generally
not orthogonal, and some may be 0, and similarly for the ηj ’s.) Then for
C = {Cjk} as above, we have

ψ(C) = 〈πn(C)ξ, η〉 = 
jk〈π(Cjk)ξk, ηj 〉.
Let D ∈ V , and for fixed p and q with 1 ≤ p, q ≤ n let C = D ⊗ Epq , so
that C ∈ Mn(V ). Then by assumption on ψ

0 = ψ(C) = 〈π(D)ξq, ηp〉.
Thus for all p and q we have

〈π(V )ξq, ηp〉 = 0.

Let P andQ be the projections onto, respectively, the linear spans of {ξk} and
{ηj }. Thus P and Q are projections on H of rank at most n. Furthermore, the
fact that 〈π(D)ξq, ηp〉 = 0 for all D ∈ V and all p and q implies that

Qπ(D)P = 0 for all D ∈ V .

Define the linear mapping � from A into L (H ) by

�(A) = Qπ(A)P

for allA ∈ A . Then it is standard and easily checked that� is completely con-
tractive. Of course,�(V ) = 0. Furthermore, if we let�n be the corresponding
mapping from Mn(A) into Mn(L (H )), and if we let Pn and Qn denote the
diagonal n× n matrices with P , respectively Q, in each diagonal entry, then

�n(C) = Qnπn(C)Pn

for all C ∈ Mn(A ), where πn is as defined earlier in this proof. Note that
Pnξ = ξ and Qnη = η. Then as above

ψ(C) = 〈πn(C)ξ, η〉 = 〈Qnπn(C)Pnξ, η〉 = 〈�n(C)ξ, η〉
for all C ∈ Mn(A ), as desired.

We remark that if for each non-zero ξk we let Pk be the rank-one pro-
jection with ξk in its range, and if we define Qj similarly for ηj , then the
above proposition can be reformulated in terms of the complete contractions
�jk(A) = Qjπ(A)Pk . But this reformulation seems to be a bit more complic-
ated.
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For each natural number n let (Mn(V ))
⊥ denote the linear subspace of

(Mn(A ))′ consisting of the linear functionals that take value 0 onMn(V ). By
the Hahn-Banach theorem, for each C ∈ Mn(A ) there is a ψ ∈ (Mn(V ))

⊥
such that ‖ψ‖ = 1 andψ(C) = ‖C‖A/V , where ‖ · ‖A/V denotes the quotient
norm onMn(A )/Mn(V ) pulled back toMn(A ). Thus we can choose, in many
ways, a subset, S V

n , of elements of (Mn(V )
⊥ of norm 1 such that for every

C ∈ Mn(A ) we have

‖C‖A/V = sup{|ψ(C)| : ψ ∈ S V
n }.

For example, S V
n could consist of all elements ψ of (Mn(V ))

⊥ of norm 1,
or of a norm-dense subset thereof, or of the set of extreme points of the unit
ball of (Mn(V ))

⊥. For each such ψ we obtain from the above proposition a
representation (H ψ, πψ) and projections Pψ andQψ on H ψ , and the corres-
ponding completely contractive mapping �ψ from A into L (H ψ) defined
by

�ψ(A) = Qψπψ(A)Pψ.

Let H V ,n = ⊕{H ψ : ψ ∈ S V
n }, the Hilbert space direct sum, and let

πV ,n = ⊕{πψ : ψ ∈ S V
n } be the corresponding representation of A on

H V ,n. Let P V ,n = ⊕{Pψ : ψ ∈ S V
n }, and define QV ,n similarly. Then

define �V ,n by
�V ,n(A) = QV ,nπV ,n(A)P V ,n

for all A ∈ A . Then from the requirements on S V
n it is clear that for every

C ∈ Mn(A ) we have ‖C‖A/V = ‖�V ,n
n (C)‖.

Now let H V = ⊕{H V ,n : n ∈ N}, let πV = ⊕{πV ,n : n ∈ N}, and define
projections P V andQV on H V similarly. Then from the above considerations
we see that we obtain:

Theorem 1.2. Let A be a unital C*-algebra, let V be a norm-closed sub-
space of A , and equip A/V with the corresponding quotient matrix norm.
Then the constructions above provide a unital ∗-representation (H V , πV ) of
A , and projectionsP V andQV on H V , such that the linear mapping�V from
A to L (H V ) defined by�V (A) = QV πV (A)P V gives a complete isometry
from A/V into L (H V ).

2. Quotients of operator ∗-spaces

My principal aim is to understand quotients of the form A/B where A is
a C*-algebra and B is a C*-subalgebra of A . But both A and B are stable
under ∗, and so we will consider first quotients under just that requirement.
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Definition 2.1. By a concrete operator ∗-space we mean a subspace W

of some C*-algebra A that is stable under ∗, that is, if A ∈ W then A∗ ∈ W .

If W is a ∗-stable subspace of some C*-algebra A , thenMn(W ) is a ∗-stable
subspace of Mn(A ) for each natural number n, and the restriction to Mn(W )

of the norm on Mn(A ) will be a ∗-norm in the sense that ‖C∗‖n = ‖C‖n for
all C ∈ Mn(W ).

By a vector ∗-space we mean (definition 3.1 of [6]) a vector space W

over C that is equipped with a ∗-operation (i.e. involution) satisfying the usual
properties. ThenMn(W ) is also canonically a vector ∗-space where (C∗)jk =
(Ckj )

∗ for C = {Cjk} as one would expect.

Definition 2.2. Let W be a vector ∗-space. By a matrix ∗-norm on W we
mean a matrix norm {‖ · ‖n} on W such that each ‖ · ‖n is a ∗-norm. By an
abstract operator ∗-space we mean a vector ∗-space that is equipped with a
matrix ∗-norm that satisfies Ruan’s axioms.

Let W be an operator ∗-space, and let V be a closed ∗-subspace of W (that
is, V is stable under the involution on W ). Then the involution on W gives
an involution on W /V in the evident way, so that W /V is a vector ∗-space.
Then the quotient norm from each ‖ · ‖n will be a ∗-norm. In this way W /V

is an abstract operator ∗-space.
We will now show that if W is a concrete operator ∗-space then we can

use the results of the previous section to obtain a completely isometric ∗-
representation of W /V as a concrete operator ∗-space. As in the previous
section, it suffices to do this for the case in which W is a unital C*-algebra A .
So we now treat that case. Then by Theorem 1.2 there exist a ∗-representation
(H , π) of A and projections P and Q in L (H ) such that the linear map
� : A → L (H ) defined by

�(A) = Qπ(A)P

gives a complete isometry from A/V into L (H ). Define �∗ by �∗(A) =
(�(A∗))∗ as usual. Notice that �∗(A) = Pπ(A)Q for all A ∈ A , and that
�∗(V ) = 0. Define � : A → L (H ⊕ H ) by

�(A) =
(

0 Pπ(A)Q

Qπ(A)P 0

)
.

Then it is easily seen that � is a ∗-map. Clearly � is contractive, and it is a
complete isometry since � is. We can rewrite � as

�(A) =
(
P 0

0 Q

) (
0 π(A)

π(A) 0

) (
P 0

0 Q

)
,
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and we see that
( P 0

0 Q

)
is itself a projection. But

( 0 π(A)

π(A) 0

)
does not quite give

a ∗-representation of A . It is thus more attractive to rewrite � as

�(A) =
(
P 0

0 Q

) (
0 1

1 0

) (
π(A) 0

0 π(A)

) (
P 0

0 Q

)
,

and to notice that
( 0 1

1 0

)
is a Hermitian unitary on H ⊕H that commutes with the

representation π ⊕ π of A . This puts � into the “commutant representation”
form given in Theorems 2.2, 2.9 and 2.10 of [5]. On changing the meaning of
the various symbols H , π , P , etc, we thus obtain:

Theorem 2.3. Let A be a unital C*-algebra, let V be a closed ∗-subspace
of A , and equip A/V with the corresponding quotient matrix norm (so that
A/V is an operator ∗-space). Then there exist a unital ∗-representation
(H , π) of A , a projection P on H , and a Hermitian unitary operator U
on H that commutes with the representation π , such that the linear ∗-map �
from A into L (H ) defined by

�(A) = PUπ(A)P,

gives a completely isometric ∗-map from A/V onto a ∗-subspace of L (H ).

Notice that we can cut down to the closure of π(A )PH , that is, we can
assume that π(A )PH is dense in H .

Let E and F be the projections onto the two eigensubspaces of U , so that
U = E − F and E + F = IH . Then we can decompose � as

�(A) = PEπ(A)EP − PFπ(A)FP.

The two terms on the right give completely positive maps. Thus this decom-
position can be viewed as an analogue for � of the Jordan decomposition of
a signed measure. But note that PE is not in general a projection.

3. Quotients of operator systems

In this section we consider quotients of operator systems. As before, it suffices
for us to consider V as a subspace of a C*-algebra A . Thus we assume that V

is an operator system in A , that is, that V is a closed ∗-subspace that contains
the identity element, 1A , of A . On applying Theorem 2.3, with the notation
used there, we obtain a completely isometric embedding of A/V into L (H )

given by a map � : A �→ L (H ) defined by

�(A) = PUπ(A)P.
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The extra information that we obtain from having 1A ∈ V is that

0 = �(1A ) = PUP.

From this and the fact that U commutes with π(A) we see that

(3.1) �(A) = Pπ(A)UP−PUPπ(A) = P [π(A),UP ] = PU [π(A), P ].

LetX = 2P − I , so thatX is a Hermitian unitary. Then it follows that we can
express � by

�(a) = −(1/2)PU [X,π(A)].

We can equally well express � by

�(A) = PUπ(A)P − π(A)PUP = [PU, π(A)]P = [P, π(A)]UP.

On adding the third term of this equation to that of equation (3.1) we obtain

�(A) = P [[P,U ]/2, π(A)]P.

Set Z = [P,U ] = [2P − I, U ]/2 = [X,U ]/2. Clearly Z∗ = −Z and ‖Z‖ ≤
1. Furthermore, [U,P 2] = [U,P ]P +P [U,P ] so thatPZ = Z(I−P). Thus
we obtain:

Theorem 3.1. Let A be a unital C*-algebra, let V be an operator sys-
tem in A , and equip A/V with the corresponding quotient matrix norm
(so that A/V is an abstract operator ∗-space). Then there exist a unital ∗-
representation (H , π) of A , a projection P on H , and an operator Z on H

satisfying Z∗ = −Z and ‖Z‖ ≤ 1 and PZ = Z(I − P), such that the linear
∗-map � from A into L (H ) defined by

�(A) = (1/2)P [Z,π(A)]P

gives a completely isometric ∗-map from A/V onto a ∗-subspace of L (H ).

We remark that a quite different type of quotient involving operator systems,
in which one wants the quotient of an operator system by the kernel of a
completely positive map to be an operator system, is studied in [4], [3].

4. Quotients by C*-subalgebras

In this section we assume that A is a unital C*-algebra and that B is a unital
C*-subalgebra of A (so 1A ∈ B). Since B is, in particular, a ∗-subspace
of A , Theorem 2.3 is applicable, and, with the notation used there, we have
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a completely isometric embedding of A/B into L (H ) given by the map
� : A → L (H ) defined by

�(A) = PUπ(A)P.

Now let P̂ be the projection onto the closed linear span of π(B)PH . Since
the range of P̂ is π(B)-invariant, P̂ commutes with π(B) for all B ∈ B.
Because 1A ∈ B, the range of P̂ contains PH , and so P̂ ≥ P . From the fact
that 0 = �(B) = PUπ(B)P and that B is an algebra it is easily seen that
PUπ(B)P̂ = 0. On taking adjoints, we have P̂Uπ(B)P = 0, and so in the
same way as above we have P̂Uπ(B)P̂ = 0. Define �̂ : A → L (H ) by

�̂(A) = P̂Uπ(A)P̂ .

Clearly �̂ is completely contractive and �̂(B) = 0. From the fact that P̂ ≥ P

we see that ‖�̂(A)‖ ≥ ‖�(A)‖ for all A ∈ A , and it is easily seen that in fact
‖�̂n(C)‖ ≥ ‖�n(C)‖ for all natural numbers n and all C ∈ Mn(A ). Since �
gives a complete isometry from A/B into L (H ), it follows that �̂ does also.

Now let X = 2P̂ − I . Then X is a Hermitian unitary in L (H ) that
commutes with π(B) for every B ∈ B. Notice that because 1A ∈ B we have
P̂UP̂ = 0. Then much as in the calculation for equation (3.1) we find that

�̂(A) = −(1/2)P̂U [X,π(A)].

It follows that ‖[X,π(A)]‖ ≥ 2‖�̂(A)‖ for all A ∈ A . Define a derivation,
�, from A into L (H ) by

�(A) = (1/2)[X,π(A)]

for all A ∈ A . Then ‖�(A)‖ ≥ ‖�̂(A)‖ for all A ∈ A . Furthermore, � is
completely contractive. To see this, notice that it is the composition of π with
a corner of the completely positive contraction that sends

( a c
b d

)
in M2(A ) to

1

2

(
I 0

0 X

) (
a c

b d

) (
I 0

0 X

)
+ 1

2

( −X 0

0 I

) (
a c

b d

) ( −X 0

0 I

)
.

A slight modification of the calculations done a few lines above shows easily
that ‖�n(C)‖ ≥ ‖�̂n(C)‖ for all natural numbers n and all C ∈ Mn(A ).
Notice that �(B) = 0 for all B ∈ B because P̂ commutes with all of the
elements of π(B). Since �̂ gives a complete isometry from A/B into L (H ),
it follows that� does also. Notice that if we replaceX by iX then� is a ∗-map.
We have thus obtained:
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Theorem 4.1. Let A be a unital C*-algebra, and let B be a unital C*-
subalgebra of A (so 1A ∈ B). Then there exist a unital ∗-representation
(H , π) of A , and a Hermitian unitary operator X on H that commutes with
π(B) for all B ∈ B, such that the derivation � from A into L (H ) defined
by

�(A) = (1/2)[iX, π(A)]

gives a completely isometric ∗-map from A/B into L (H ).

This theorem is a strengthening of Corollary 3.4 of [11], and its proof is in
part motivated by the proof of Theorem 3.1 of [11].
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