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TWISTOR TRANSFORM OF VECTOR BUNDLES

STEPHEN A. HUGGETT and SERGEY A. MERKULOV

1. Introduction.

Let fXt ,!Y j t 2Mg be a family of compact complex submanifolds Xt of a
complex manifold Y parametrised by a complex manifold M. In this paper
we study vector bundles and linear connections on the moduli space M in-
duced from holomorphic vector bundles on the space Y . The origin of this
approach lies in the Ward transform [W] of holomorphic vector bundles E
on Y which are trivial when restricted to each submanifold Xt of the family
fXt ,!Y j t 2Mg. We consider a more general class of holomorphic vector
bundles E on twistor spaces Y which, when restricted to a submanifold Xt of
the family, have the same integer h0�Xt;EjXt

� for all t 2M. With such a
vector bundle E on Y there is an associated vector bundle E on M whose
fibre at t 2M is isomorphic to H0�Xt;EjXt

�. It is shown that provided the
cohomology groups H0 Xt;EjXt


N�t
� �

and H1 Xt;EjXt

N�t

� �
vanish (where

Nt is the normal bundle of Xt ,!Y ), the vector bundle E induced on the
parameter space M comes equipped with a distinguished linear connection r
satisfying some natural integrability conditions (cf. [L,E,B-E]). The curva-
ture tensor of r is represented, at each t 2M, by a cohomology class in
H1 Xt;EjXt


 �2 N�
� �


 H0�Xt;EjXt
�

� ��
. This theorem-construction gives a

very simple way to estimate the curvature tensor of an induced connection
directly from the original twistor data.
As an application, we consider a pair X ,!Y consisting of a complex

contact 3-fold �Y ;L� and a Legendre submanifold X � CP1 such that the
contact line bundle L restricts to X as O�3�. Then the moduli space M of all
holomorphic Legendre deformations of X inside Y is a 4-dimensional mani-
fold which comes equipped with an induced 1-flat G3-structure [Br2], and
any such structure arises locally in this way. Suppose that there exists a line
bundle E ! Y such that L � E
3 (such an E always exists on a sufficiently
small tubular neighbourhood of X in Y ). Since the normal bundle of X is
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isomorphic to J1O�3� � C2 
O�2�, the above cohomology conditions on
EjXt

N�t are satisfied. Then the induced rank 2 vector bundle E comes

equipped with a distinguished linear connection which, as easily follows
from its integrability properties, is a ``spinor'' version of the torsion-free
connection on M with holonomy in G3. In fact, any torsion-free connection
with holonomy in G3 can be constructed, at least locally, in this way (cf.
[Me1]). The point is that the way we prove the above mentioned theorem-
construction gives a rather simple method of computing the distinguished
linear connections from the twistor data X ,!Y ; in particular, one may use it
to compute (as many as one would like!) explicit torsion-free affine connec-
tions with exotic holonomy G3 (exotic in the sense that they are missing in
the corresponding Berger list [B]). Blowing up a point in the 2-fold covering
of a neighbourhood of a �1; 4� curve [Ped] in a quadric CP1 � CP1, branched
along the curve, we obtain a complex 2-fold Z containing a rational curve X
with self-intersection number 3. Applying the developed machinery to the
contact manifold Y � P�
1Z�, we compute an explicit example of a torsion-
free affine connection with holonomy G3.
This example is in the class of deformation data ``X ,!Y '' where one

should expect the most interesting applications of our theorem-contruction.
The fact that a torsion-free affine connection with holonomy G3 can be
constructed by twistor methods is a particular manifestation of the general
phenomenon [Me1]. Let X be a generalised flag variety embedded as a Le-
gendre submanifold into a complex contact manifold Y with contact line
bundle L such that LX is very ample on X . Then the Legendre moduli space
M of the associated complete family Xt ,!Y j t 2Mf g of all Legendre de-
formations of X inside Y is an h0�X ;LX �-dimensional complex manifold
[Me2]. Such a moduli space M comes equipped with an induced irreducible
G-structure with G isomorphic to the connected component of the identity of
the group of all global biholomorphisms � : LX ! LX which commute with
the projection � : LX ! X . For motives explained in [Me1], irreducible G-
structures which, at least locally, arise in this way are called Poisson. The
class of Poisson G-structures is of interest for several reasons: (i) this class
includes the subclass of all irreducible G-structures admitting torsion-free
connections; (ii) the complement of the subclass in (i) consists of G-struc-
tures with rather special invariant torsion; (iii) the theorem of Hano-Ozeki
[H-O] is not true in the category of Poisson G-structures, i.e. the class of
groups which can be realised as irreducibly acting holonomies of affine con-
nections in Poisson G-structures is restricted. The main motivation behind
our investigation of vector bundles on twistor spaces is that the resulting
machinery gives an very efficient tool for the analysis of Poisson G-struc-
tures. The application to G3-structures shows that, in some aspects, this
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machinery is much more effective than the Cartan-Ka« hler method used by
Bryant [Br2] or the twistor method used in [Me1]. It is hoped that one might
construct spinor versions of affine connections in Poisson G-structures by
decomposing the contact line bundle LX � I
m1

1

��
X
 � � � 
 I
mk

k

��
X as a tensor

product of the generators of the Picard group on the generalised flag variety
X and applying the theorem-construction to an appropriately assembled line
bundle E � I
n11 
 � � � 
 I
nkk with ni � mi.
In this paper we follow the tradition of identifying vector bundles with the

associated locally free sheaves of local sections.

2. Vector bundles on twistor spaces.

2.1. Families of compact complex submanifolds. Let Y and M be complex
manifolds and let �1 : Y �Mÿ!Y and �2 : Y �Mÿ!M be the natural
projections. An analytic family of compact submanifolds of the complex
manifold Y with the moduli space M is a complex submanifold F ,!Y �M
such that the restriction of the projection �2 on F is a proper regular map
(regularity means that the rank of the differential of � � �2 jF : Fÿ!M is
equal at every point to dimM). Thus the family F has the structure of a
double fibration

Y  ÿ� F ÿ!� M

where � � �1 jF . Thus for any point t in the moduli space M there is an as-
sociated submanifold Xt in Y which is said to belong to the family. On the
other hand, for any point y 2 Y 0 � [t2MXt, there is an associated subset
� � �ÿ1�y� in M. It is not difficult to show that such a subset is always an
analytic subspace of M. We denote the set of its regular points in � � �ÿ1�y�
by �y and call it an alpha subspace of M (cf. [Pen]). The ambient manifold Y
is often called a twistor space in this context.
If F ,!Y �M is an analytic family of compact submanifolds, then, for

any t 2M, there is a natural linear map [K]

kt : TtMÿ!H0�Xt;Nt�;
from the tangent space at t to the vector space of global holomorphic sec-
tions of the normal bundle Nt � TY jXt

=TXt to the submanifold Xt ,!Y ,
which can be described as follows. First note that the normal bundle of the
embedding �ÿ1�t� ,!F is trivial and thus there is a canonical map
�t : TtMÿ!H0��ÿ1�t�;N�ÿ1�t�jF �. Then a composition d� � �t gives the desired
map kt for the differential of � maps global sections of N�ÿ1�t�jF to global
sections of NXtjY . Here the symbol NAjB stands for the normal bundle of a
complex submanifold A ,!B.
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Let F ,!Y �M be a family of compact complex submanifolds and NF

denote the normal bundle of the submanifold F in Y �M. It is clear that,
for any t 2M, NF j�ÿ1�t� ' Nt. Define Y 0 � ��F�, i.e. Y 0 � [t2MXt. Then F is
a submanifold of Y 0 �M. It is not hard to check that there is a commutative
diagram with exact rows and columns

0 0
" "


1F=M � 
1F=M
" "

0 ÿ! ���
1Y 0� ÿ! 
1F ÿ! 
1F=Y ÿ! 0
" " jj

0 ÿ! N�F ÿ! ���
1M� ÿ! 
1F=Y ÿ! 0
" "
0 0

�1�

where N F is the normal bundle of F ,!Y 0 �M, and 
1F=Y and 
1F=M are
vector bundles of �-vertical and, respectively, �-vertical 1-forms. It is clear
that, for any t 2M, 
1F=Mj�ÿ1�t� ' 
1Xt and N F j�ÿ1�t� ' N t, where N t is
the normal bundle of Xt in Y 0. It is a subbundle of Nt generated by global
sections from k�TtM� � H0�Xt;Nt�. In particular, if the natural ``evalua-
tion'' map

k�TtM� 
C OXtÿ!Nt

is an epimorphism, then N t � Nt and one obtains a commutative diagram as
above with Y 0 and N F replaced by Y and NF respectively (cf. [B-E]). In all
examples of families of compact complex submanifolds ever considered in
the twistor theory framework, this condition holds.
We shall be interested in this paper in two kinds of maximal families of

compact complex submanifolds. The first one was introduced by Kodaira in
1962. The initial data is a compact complex submanifold X of a complex
manifold Y with normal bundle N and the object of study is the associated
set, M, of all ``nearby'' compact complex submanifolds, Xt ,!Y , obtained by
holomorphic deformations of X inside Y . If H1�X ;N� � 0, then, according
to Kodaira [K], X belongs to the maximal analytic family F ,!Y �M with
the moduli space M being an h0�X ;N�-dimensional complex manifold.
Moreover, here the canonical map kt : TtMÿ!H0�Xt;Nt� is an isomorphism
for any t 2M. The manifold M is called a Kodaira moduli space. It is not
hard to show that if the natural evaluation map

H0�Xt;Nt� 
 OXtÿ!Nt

is an epimorphism for all t 2 � � �ÿ1�y�, then the subspace � � �ÿ1�y� �M
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has no singularities, i.e. it coincides with the alpha subspace �y. Also, in this
case N t � Nt.
The second type of maximal family of compact complex submanifolds

which will be of interest to us arises from different initial data ``X ,!Y ''.
Assume that the ambient manifold (``twistor space'') Y has a complex con-
tact structure, i.e. a corank 1 holomorphic distribution D � TY such that the
Frobenius form

� : D�Dÿ!TY=D

�v;w�ÿ!�v;w�mod D

is non-degenerate. Then dimY � 2n� 1 for some integer n � 1 and there is a
natural contact line bundle L on Y defined by the exact sequence

0ÿ!Dÿ!TYÿ!Lÿ!0:

Assume also that the submanifold X ,!Y is a Legendre submanifold, i.e.
dimX � n and TX � D. The normal bundle of a Legendre submanifold
X ,!Y is isomorphic to J1LX , where LX � LjX , and fits, therefore, into the
following exact sequence

0ÿ!
1X 
 LXÿ!N prÿ!LXÿ!0:

The object of study is the set M of all ``nearby'' complex Legendre sub-
manifolds of Y obtained by holomorphic deformations of X inside Y . It has
been proved in [Me1,Me2] that if H1�X ;LX � � 0, then X belongs to a max-
imal family, F � Y �M, of compact complex Legendre submanifolds with
the moduli space M being an h0�X ;LX �-dimensional complex manifold.
Moreover, the canonical composition

TtM ktÿ!H0�Xt;Nt� prÿ!H0�Xt;LXt�
is an isomorphism for any t 2M. The manifold M is called a Legendre
moduli space. Thus each point t in M is represented by a compact complex
Legendre submanifold Xt in Y , while each point y in Y 0 � [t2MXt is re-
presented by an alpha subspace �y in M. It is not hard to show that if the
natural ``derivation and then evaluation'' map

H0�Xt;LXt� 
 OXtÿ!J1LXt

is an epimorphism for all t, then for any y 2 Y 0 the alpha subspace �y coin-
cides with � � �ÿ1�y�, the set of all Legendre submanifolds passing through y.
Also, in this case N t � Nt.
If X ,!Y is a complex submanifold, there is an exact sequence of vector

bundles

0ÿ!N�ÿ!
1Y
��
Xÿ!
1Xÿ!0;
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which induces a natural embedding P�N�� ,!P�
1Y� of total spaces of the
associated projectivised bundles. The manifold Ŷ � P�
1Y � carries a natural
contact structure such that the constructed embedding X̂ � P�N�� ,!Ŷ is a
Legendre one [Ar]. It is not hard to show [Me1,Me2] that if
Xt ,!Y j t 2Mf g is a maximal Kodaira family of compact submanifolds,
then the associated family fX̂t � P�N�t � ,!P�
1Y� j t 2Mg of projectivized
conormal bundles is a maximal family of compact Legendre submanifolds.

2.2. Geometric structures induced from vector bundles on twistor spaces. Let
F ,!Y �M be a family of compact complex submanifolds. A holomorphic
vector bundle E on Y is said to be weakly M-uniform1 if the function

M ÿ! N
t ÿ! h0�Xt;EjXt

�
is globally constant on M. Then using the double fibration

Y  ÿ� F ÿ!� M;

one may associate to E ! Y a locally free sheaf E � �0� ���E�� � on M. It is
natural to call E induced from the weakly M-uniform bundle E. For any
t 2M, the corresponding fibre Et � E is isomorphic to H0�Xt;EjXt

�. If E is
non-trivial on Xt, then, for any y 2 Y 0, the restriction Ej�y of E to the alpha
surface �y has canonically a vector subbundle Ty whose fibre at any t 2 �y
is, by definition, the subspace of H0�Xt;EjXt

� consisting of global sections
which vanish at y 2 Y 0. We also defineSy � Ej�y=Ty. The following result is
a variation on the themes developed in [W,M,E,B-E,Me3].

Theorem 1. Let F ,!Y �M be a family of compact complex submanifolds
and E a weakly M-uniform vector bundle on Y. If

H0 Xt;EjXt

N�t

� �
� H1 Xt;EjXt


N�t
� �

� 0�2�

for all t 2M, then the induced vector bundle E on M comes equipped canoni-
cally with an induced linear connection r such that
(i) At each t 2M, the curvature tensor of r is represented by an element of

H1 Xt;EjXt

 �2 N�t

� �

 H0�Xt;EjXt

�
� ��

;
(ii) For any y 2 Y 0, the induced connection rj�y preserves the vector sub-

bundle Ty � Ej�y , i.e. the following covariant differentials
r0y : Ty ! Ty 
 
1�y r00y : Sy !Sy 
 
1�y

1 If F is a family of compact rigid manifolds (say, of generalized flag varieties), then one
might consider an M-uniform vector bundle E on Y whose restrictions EjXt

have, by definition,
the same holomorphy type for all t 2M [E, B-E].
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are well defined;
(iii) For any y 2 Y 0, the induced connection r00y is flat.
Proof. Consider the composition

dF=Y : OF ÿ!d 
1Fÿ!
1F=Y

and notice that it extends naturally to a well-defined differential operator

rF=Y : ���E�ÿ!���E� 
 
1F=Y

which annuls the subsheaf �ÿ1�E� � ���E�. The diagram (1) implies the fol-
lowing exact sequence

0ÿ!���E� 
 N �F ÿ!���E� 
 ���
1M�ÿ!���E� 
 
1F=Yÿ!0

whose associated long exact sequence of direct image sheaves contains the
following piece

. . .ÿ!�0� ���E�
N �F
ÿ �ÿ!E

1Mÿ!�0� ���E�

1F=Y

ÿ �ÿ!�1� ���E�
N �Fÿ �ÿ! . . . :

Both �0� �
��E� 
 N �F

ÿ �
and �1� �

��E� 
 N �F
ÿ �

are locally free on M with the
fibre at t 2M isomorphic, respectively, to H0�Xt;EjXt


N�t � and H1�Xt;

EjXt

N�t �. Since the latter two cohomology groups vanish by assumption,

we get a canonical isomorphism

�0� �
��E� 
 
1F=Y

ÿ � � E 
 
1M:

Then the descent of the diagram rF=Y : ���E�ÿ!���E� 
 
1F=Y from F to
M induces a first order covariant differential

r � ���rF=Y � : Eÿ!E 
 
1M:

Thus the fact that E comes equipped with an induced linear connection r is
almost obvious. In order to prove that r has properties stated in items (i)-
(iii) above, we shall discuss next a local coordinate version of the above
``diagramatic'' construction of r. The coordinate approach, though appar-
ently more dull, provides us not only with a rather elementary proof of
Theorem 1, but also with a more suitable reformulation (see Proposition 4
below) as well as with the inverse construction (see subsection 2.4). This ap-
proach is also useful in the context of the explicit construction of r in ex-
amples of interest (see section 4).
We may assume without loss of generality that the moduli space M is a

ball in Cm with coordinates ft�g (the obvious functoriality of the construction
of r given below makes it clear how to deal with the general case). Fix any
t0 2M and consider the associated submanifold X0 � � � �ÿ1�t� ,!Y . There
is a finite Leray covering fWig of a sufficiently small open neighbourhood of
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X0 in Y by coordinate charts Wi j i 2 If g with local coordinate functions2,
�wa

i ; z
m
i �, on each chart Wi such that the intersection X0 \Wi is given by

wa
i � 0:

On the intersection Wi \Wj the coordinates wa
i ; z

m
i are holomorphic func-

tions of wb
j and znj ,

wa
i � f aij �wb

j ; z
n
j �; zmi � gmij �wb

j ; z
n
j �;

with f aij �0; znj � � 0.
The collection of coordinate domains Vi �Wi �M with coordinate func-

tions wa
i ; z

m
i ; t

�
ÿ �

is a Leray covering of an open neighbourhood of X0 �M in
Y �M. Shrinking the coordinate ball M � CdimM as necessary and using the
implicit function theorem, we may describe the submanifold F ,!Y �M in
each coordinate chart Vi by simultaneous equations of the form ([K])

wa
i � �ai �zi; t�;

where �ai �zi; t� are holomorphic functions of zi � �zmi � and t � �t�� which sa-
tisfy the conditions �ai �zi; t0� � 0. For each fixed t 2M the equation
wa

i � �ai �zi; t� defines a submanifold Xt \Wi ,!Wi.
Thus we have constructed a finite Leray covering of F by coordinate

neighbourhoods fVig with local coordinate functions �zai ; t�� which are re-
lated to each other on the overlaps Vi \ Vj as follows

zmi � gmij �j�zj; t�; zj

ÿ �
;

where �j�zj; t� � �aj �zj; t�
� �

. Obviously we have

�ai gij �j�zj; t�; zj

ÿ �
; t

ÿ � � f aij �j�zj; t�; zj

ÿ �
:

Define the functions

wa
t i � wa

i ÿ �ai �zi; t�
and note that the collections of functions �wa

t i; z
m
i ; t

�� form a local coordinate
system on Y �M with the property that the submanifold F ,!Y �M is de-
scribed in each chart Vi by the equations wa

t i � 0. On the intersection Vi \ Vj

we have

2 Here and throughout the paper small Latin indices from the first half of the alphabet,
a; b; c . . . ; take values 1, . . . codimXt; small Latin indices from the second half of the alphabet,
l;m; n; . . . ; take values 1, . . . dimXt; capital Latin indices, A;B;C . . . ; take values 1, . . .,rankE;
calligraphic indices A, B, C, . . ., take values 1,. . ., rankE; and Greek indices take values 1,. . .,
dimM.
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wa
t i � f aij wt j � �j�zj; t�; zj

ÿ �ÿ �ai gij wt j � �j�zj; t�; zj

ÿ �
; t

ÿ �
;

zmi � gmij wt j � �j�zj; t�; zj

ÿ �
:

The normal bundle NF is isomorphic to JF=J2F
ÿ ��, where JF is the ideal

sheaf of functions on Y �M which vanish on F . Since JF is generated over
Vi by wa

t i, a general element � in H0�F ;NF � can be represented by a Cï ech 0-
cocycle, f�ai �zi; t�g, of vector-valued holomorphic functions which are
``glued'' on Vi \ Vj according to the rule

�ai � F a
ij b �

b
j ;�3�

where the functions,

F a
ij b �

@wa
t i

@wb
t j

�����
wt j�0
� @f aij
@wb

j

�����
wj���zj;t�

ÿ @�
a
i

@zmi

����
zi�gij��j;zj�

@gmij
@wb

j

�����
wj��j�zj;t�

;

form a Cï ech 1-cocycle, F a
ik b � F a

ij c F
c

jk b, representing the isomorphism class of
NF as a cohomology class in H1 F ;GL�codimX ;OF �� �. The Kodaira iso-
morphism

k : TMÿ!�0� NF� �
can now be described very explicitly: take any vector field v on M and apply
the associated first-order differential operator V�@� to each function
�ai �zi; t�, where @� � @=@t�. The result is a 0-cochain �ai � V� @��

a
i �zi; t�

� 	
which, as it is not hard to show, satisfies the cocycle condition (3) thus re-
presenting an element k�v� 2 H0�F ;NF �.
Without loss of generality we may assume that the bundle E can be tri-

vialised over each Wi, with fibre coordinates sAi , A � 1; . . . ; rankE. Then, on
the intersections Wi \Wj,

sAi � G A
ijB s

B
j ;

where fG A
ijB�wj; zj�g is a Cï ech 1-cocycle representing, in the Leray covering

fWig of Y , the cohomology class in H1�Y ;GL�rankE;OY �� associated to the
isomorphism class of E. The sheaf E � �0� ���E�� � is a free OM-module on F .
Let feAg, A � 1; . . . ; rank E, be a set of basis sections of E over M. Each
section eA 2 H0�M; E� ' H0 F ; ���E�� � can be represented, in the covering
fVig of F , by a Cï ech 0-cochain �AiA

� 	
with coefficients in ���E� satisfying

the cocycle condition

� AiA�zi; t� � G A
ijB�wj; zj�

���
wj��j�zj;t�

� BjA�zj; t�:�4�

Taking the partial derivative of this equation with respect to t�, one obtains
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@� AiA
@t�
� G A

ijB
���
wj��j

@� BjA
@t�

� @G A
ijB

@wb
j

�����
wj��j

� BjA ÿ
@� AiA
@zmi

@gmij
@wb

j

�����
wj��j

24 35 @�bj
@t�

�5�

(zj being held constant). Denote

� A
ij bA �

@G A
ijB

@wb
j

�����
wj��j

� BjA ÿ
@� AiA
@zmi

@gmij
@wb

j

�����
wj��j

:

There is a natural projection

���E� 
N�F ÿ!
i
���E� 
 N �Fÿ!0:

Since in equation (5) the functions � A
ij bA are contracted with @�j=@t�, it is

their images under the projection i that are of interest to us.

Lemma 2. The 1-cochain fi�� A
ij bA�gwith coefficients in ���E� 
 N �F 
 ���E��

is a 1-cocycle.

Proof. Suppose

� � A
ij bA

n o
�  A

ijk bA

n o
for some 2-cochain of functions  A

ijk bA with coefficients in ���E� 
N�F

���E��. Then from equations (5) it follows that

 A
ijk bA

@�bj
@t�
� 0:

Since the map ���TM�ÿ!N F is an epimorphism, the latter equation implies

i  A
ijk bA

� �
� 0;

which in turn implies that the 1-cochain fi�� A
ij bA�g is a 1-cocycle representing

thus a cohomology class in H1 F ; ���E� 
 N �F 
 ���E��
ÿ �

.
Since, by assumption, H0 Xt;EjXt


N�t
� �

� H1 Xt;EjXt

N�t

� �
� 0 for all

t 2M, the Leray spectral sequence for � implies

H0 ���E� 
 N �F 
 ���E��
ÿ � � H1 ���E� 
 N �F 
 ���E��

ÿ � � 0:

Therefore, the Cï ech 1-cocycle fi�� A
ij bA�g is a coboundary of a uniquely de-

termined 0-cochain � A
i bA

� 	
, i.e.

i � A
ij bA

� �
� ÿ� A

i cA F
c

ij b � G A
ijB �

B
j bA:�6�

Then equation (5) can be rewritten in the form

@� AiA
@t�
� � A

i bA
@�bi
@t�
� G A

ijB
���
wj��j

@� BjA
@t�
� � B

j bA

@�bj
@t�

 !
;
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which implies that the Cï ech cochain

@� AiA
@t�
� � A

i bA
@�bi
@t�

� �
is a 0-cocycle representing, for each A and �, a global section of ���E� over
F , i.e. a section of E over M. Then

@� AiA�zi; t�
@t�

� � A
i bA�zi; t� @�

b
i �zi; t�
@t�

� ÿ B
�A�t�� AiB�zi; t��7�

for some holomorphic functions ÿ B
�A�t� on M. It is clear that the latter are

nothing but the coordinate coefficients of the induced connection r. Taking
the partial derivative of this equation with respect to t� and then anti-
symmetrising on � and � one obtains the equality

r� �
A

i bA

@�bj
@t�
ÿr� �

A
i bA

@�bj
@t�
� F B

��A �
A

iB�8�

where

r� �
A

i bA � @�� A
i bA ÿ ÿ B

�A �
A

i bB

and

F B
��A � @�ÿ B

�A ÿ @�ÿ B
�A � ÿ C

�A ÿ B
�C ÿ ÿ C

�A ÿ B
�C

is the curvature tensor of the induced connection. Straightforward calcula-
tions show that

� r� �
A

i aA

� 	 � � A
ij abA

@�bj
@t�

( )
�9�

for some 1-cochain f� A
ij abAg on F with coefficients in

���E� 
 �2N�F 
 ���E��. Then the statement (i) of the Theorem follows im-
mediately from the invariance of equation (8) under transformations

r� �
A

i aAÿ!r��
A

i aA � " A
i abA

@�bj
@t�

for any " A
i abA 2 ÿ Vi; �

��E� 
 �2N�F 
 ���E��
ÿ �

and the following

Lemma 3. The 1-cochain fi�� A
ij abA�g with coefficients in ���E� 
 �2N�F


���E�� is a 1-cocycle.
Proof. Suppose

� � A
ij abA

n o
� � A

ijk abA

n o
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for some 2-cochain of functions � A
ijk abA with coefficients in ���E� 
 �2N�F


���E��. Then from equations (9) it follows that

� A
ijk abA

@�bj
@t�
� 0;

which implies that

i � A
ijk abA

� �
� 0;

which in turn implies that the 1-cochain fi�� A
ij abA�g is a 1-cocycle represent-

ing thus a cohomology class in H1 F ; ���E� 
 �2N�F 
 ���E��
ÿ �

.

Next we prove items (ii) and (iii) of the Theorem for an arbitrarily chosen
point y0 2 Y 0. We may assume that y0 lies in a coordinate chart Wi � Y and
has coordinates �wa

i 0; z
m
i 0�. Then the alpha surface �y0 �M is given by equa-

tions

wa
i 0 ÿ �ai �zi 0; t� � 0;

and, therefore, the vector field V�t� � V�@� is tangent to �y0 if and only if

V�@��
a
i �zi 0; t� � 0:

Also, just from the definition of Ey0 it follows that a section hA�t� of Ej�y0
takes values in the subbundle Ey0 if and only if

hA�t�� AiA�zi 0; t� � 0:

Taking the partial derivative of the latter equation over t� and using equa-
tion (7) one obtains

@�hA�t� � ÿ A
�B�t� hB�t�

ÿ �
� AiA�zi 0; t� � � A

i bB�zi 0; t�
@�bj �zi 0; t�

@t�
hB�t�:

Therefore, for any vector V 2 T�y0 ,
�rVh�A � AiA�zi 0; t� � 0;

which means that rVh 2 Ey0 thus proving the item (ii) of the Theorem. The
final item (iii) follows immediately from equation (8) which says that

V�W� F B
��A �

A
iB�zi 0; t� � 0

for any V ;W 2 T�y0 . This fact completes the proof of Theorem 1.

Remark 1. The only role of the cohomology restrictions (6) is simply to
ensure that the natural map

E 
 
1Mÿ!�0� ���E� 
 
1F=Y
ÿ �
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is an isomorphism. Therefore the formulation of Theorem 1 can be appro-
priately modified.

Remark 2. In the case when the vector bundle E on a twistor space Y is
trivial when restricted to each submanifold Xt ,!Z, items (ii) and (iii) of
Theorem 1 are exactly equivalent to the classical Ward construction [W] as
formulated in [B-E], while the item (i) is equivalent to Manin's Theorem on
p.125 in [M].

Remark 3. Often it is more suitable to work with the normal bundle Nt

of Xt ,!Y rather than with the subbundle N t � Nt. This motivates our in-
terest in the following

Proposition 4. The statement of Theorem 1 remains true when the symbol
N t is replaced everywhere by the symbol Nt.

This Proposition is an easy consequence of the following Lemma.

Lemma 5. (i) The 1-cochain f� A
ij bAgwith coefficients in���E� 
N�F 
 ���E��

is a 1-cocycle. �ii� The 1-cochain f� A
ij abAg with coefficients in ���E� 
 �2N�F


���E�� is a 1-cocycle.
Proof. We shall prove only statement (i), since the proof of (ii) is fully

analogous. The equations

G A
ikB wk; zk� � � G A

ij C fjk�wk; zk�; gjk�wk; zk�
ÿ �

G C
jkB wk; zk� �

imply

@G A
ikB

@wb
k

� @G
A

ij C
@wc

j

@f cjk
@wb

k

G C
jkB �

@G A
ij C

@zmj

@gmjk
@wb

k

G C
jkB � G A

ij C
@G C

jkB
@wb

k

;

or

@G A
ikB

@wb
k

����
F

� @G
A

ij C
@wc

j

�����
F

F c
jk b G

C
jkB
���
F
�G A

ij C
���
F

@G C
jkB

@wb
k

�����
F

� @G
A

ij C
@wc

j

�����
F

@�cj
@zmj

@gmjk
@wb

k

����
F

G C
jkB
���
F
�@G

A
ij C

@zmj

�����
F

@gmjk
@wb

k

G C
jkB

����
F

�10�

where the symbol jF means the restriction from Y �M to F , i.e. the sub-
stitution of functions �k�zk; t� for coordinates wk. Taking into account
equation (4), one therefore obtains

�
@G A

ijB
@wb

j

�����
wj��j

�BjA

8<:
9=; � @�G A

ij C
���
F
�

@zmj

@gmjk
@wb

k

����
F

G C
jkB
���
F

8<:
9=;:�11�
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In a similar way, one can use equations �4� and
gik�wk; zk� � gij fjk�wk; zk�; gjk�wk; zk�

ÿ �
to show that

�
@�AiA
@zmi

@gmij
@wb

j

�����
F

( )
�

@�G A
ij C
���
F
�

@zmj

@gmjk
@wb

k

����
F

G C
jkB
���
F

8<:
9=;:

Finally, the last equation together with (11) imply that

�
@G A

ijB
@wb

j

�����
F

�BjA ÿ
@� AiA
@zmi

@gmij
@wb

j

�����
F

( )
� 0

which proves Lemma 5.

Remark 4. If H0 Xt;EjXt

N�t

� �
6� 0, but the other conditions of

Theorem 1 are satisfied, then the induced vector bundle E comes equipped
not with a unique connection r, but with a whole family of induced con-
nections frg such that for any t 2M and any pair of connections, r1 and
r2, from the family one has

r1 jt ÿr2 jt2 j H0 Xt;EjXt

N�t

� �� �

 E�t ;

where

j : H0 Xt;EjXt

N�t

� �
ÿ! Et 
 
1

tM

is a natural map constructed with the help of the Kodaira map
k : TtMÿ!H0�Xt;N t�. Indeed, in this case the cochain � A

i bA

� 	
is determined

by equation (6) up to a global section of ���E� 
 N �F 
 ���E��. The same
arguments as before show that for any connection from the family frg items
(i)-(iii) of Theorem 1 remain true.

Remark 5. Let X be a rational curve in a complex surface Y with normal
bundle O�2�. Then the Kodaira moduli space M parametrizing holomorphic
deformation of X inside Y exists and is a complex 3-fold which, as shown by
Hitchin [H], comes equipped with an induced Einstein-Weyl structure. As-
sume that the canonical bundle � on Y admits a cubic root. Then the bundle

E � �ÿ1
4

is such that for any t 2M,

EjXt
� O�1�:

Then all the conditions of Theorem 1 are satisfied, and, therefore, the in-
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duced rank 2 vector bundle E !M comes equipped canonically with an in-
duced connection r. The items (i)-(iii) of Theorem 1 imply that r is nothing
but a spinor version of the Einstein-Weyl connection on M.

2.3. Twistor interpretation of J1E�. Elements of the induced vector bundle
E over a point t 2M have a clear twistor interpretation ^ they correspond to
global sections of E over the associated submanifold Xt. Often, however, we
are also interested in elements of J1E (in field theory, for example, La-
grangians are usually constructed from first jets of sections of vector bun-
dles). It is the purpose of this subsection to find a (surprisingly simple!)
twistor decoding of J1E� and, as a by-product, to prove a stronger version of
Theorem 1. To simplify notation, we assume in this and the subsequent sec-
tion that for any submanifold X ,!Y under consideration the map

H0�X ;N� 
Nÿ!N

is an epimorphism, i.e. N � N . This assumption is by no means crucial for
the conclusions drawn below.
Let �X ;OX � be a complex submanifold of a complex manifold �Y ;OY �

and E a holomorphic vector bundle on Y . Assume that at any x 2 X the
stalk of EjX is spanned by germs of global sections, i.e. there is an epi-
morphism

E0 
C OX ÿ!i1 EXÿ!0;�12�
where E0 � H0 X ;EX� � and EX � EjX . Consider the restriction of the dual of
E to the first order infinitesimal neighbourhoood of X in Y which, as an
O�1�X -module, has the following extension structure

0ÿ!E�X 
N� ÿ!i2 E�jX �1� ÿ!E�Xÿ!0:

Define the composition

i3 : E�X 
N� ÿ!i4 E�X 
N� � E�X 
N� ÿ!i�1
id
i2 E�0 
N� � E�jX �1�
where

i4 : E�X 
N� ÿ! E�X 
N� � E�X 
N�

f ÿ! f � �ÿf �:
The quotient sheaf of O�1�X -modules,

E�1 � E�0 
N� � E�jX �1�
� �

=i3 E�X 
N�
� �

fits into the commutative diagram
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0 0
# #

0 ÿ! E�X 
C N� ÿ! E�jX �1� ÿ! E�X ÿ! 0?y ?y k
0 ÿ! E�0 
O N� ÿ! E�1 ÿ! E�X ÿ! 0:

Next define another O�1�X -module E�2 by the following commutative diagram

0 0
# #

0 ÿ! E�0 
N� ÿ! E�2 ÿ! E�X ÿ! 0
k ?y ?y

0 ÿ! E�0 
N� ÿ! E�0 
O�1�X ÿ! E�0 
OX ÿ! 0:

Finally from the exact sequence

0ÿ!E�0 
N� � E�0 
N� ÿ!h E�1 �E�2 ÿ!
g

E�X � E�X ÿ!0;

we obtain a ``difference'' sheaf of O�1�X -modules

E�X � gÿ1 diagonal in � E�X
ÿ �

=h diagonal in � E�0 
N�
ÿ �

:

It is clear that E�X � E�1
� �ÿ E�2

� �
in Ext1O�1�X

E�X ; E�0 
N�
ÿ �

. The consequences
of these constructions are the following Lemma and Proposition.

Lemma 6. E�X is locally free on X.

Proof. A sufficiently small tubular neighbourhood of X in Y can be
covered by the Leray coordinate charts fWig with local coordinate functions
�wa

i ; z
m
i � such that the intersection X \Wi is given by wa

i � 0. Then a choice
of trivialisation of E over each Wi induces a trivialisation


i : E�1
��
Wi\Xÿ!E

�
0 
N�

��
Wi\X � EjWi\X :

Keeping the notation of the proof of Theorem 1, one may easily find the
transition matrix of such trivialisations


i � 
ÿ1j �
�BA

@f bij
@wa

j

���
X

� CjA
@G B

ij C
@wa

j

���
X

0 G B
ijA
���
X

0B@
1CA:

The analogous transition matrix for E�2 has the form

�BA
@f bij
@wa

j

���
X

@� B
iA

@zm
i

@gmij
@wa

j

���
X

0 G B
ijA
���
X

0B@
1CA:

Neither of these matrices match up on triple intersections, reflecting the fact
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that neither E�1 nor E�2 are locally free. By the very definition of E�X , its
transition matrix has the form

Hij �
�BA

@f bij
@wa

j

���
X

� CjA
@G B

ij C
@wa

j

���
X
ÿ @� B

iA
@zm

i

@gmij
@wa

j

���
X

0 G B
ijA
���
X

0B@
1CA:

By Lemma (5), the 1-cochain � CjA
@G C

ijA
@wa

j

����
X
ÿ @� B

iA
@zm

i

@gmij
@wa

j

���
X

� �
is a cocycle, which

implies that the matrices Hij satisfy on triple intersections Wi \Wj \Wk the
condition Hik � Hij Hjk which is necessary and sufficient for the sheaf E�X to
be locally free on X . This fact completes the proof.

By construction, the vector bundle EX fits into an exact sequence

0ÿ!EXÿ!EXÿ!E0 
Nÿ!0:�13�

Theorem 7. Let fXt ,!Y j t 2Mg be a family of compact submanifolds
and E ! Y an M-homogeneous vector bundle. Then, for each t 2M, there is a
commutative diagram of vector spaces

0 ÿ! Et ÿ! �J1E���t ÿ! TtM
Et ÿ! 0??y ??y ??y
0 ÿ! H0�Xt;EjXt

� ÿ! H0�Xt;EXt� ÿ! H0�Xt;Nt�
H0�Xt;EjXt
�

with rows exact.

Proof. Keeping the notation of subsection 2.2, define the map

�J1E���t ÿ! H0�Xt;EXt�
V�B

VB

h i
ÿ! V�B @��

a
i

V�B@��
A

iB � VB � AiB

� �
:

By equation (5) and the explicit description of the transition matrix of EXt

given in the proof of Lemma 6, this map is well-defined and has, evidently,
the properties stated by the commutative diagram above.

Therefore, with a weakly M-uniform vector bundle E on a twistor space
Y and any submanifold Xt ,!Y of the family F ,!Y �M there is a naturally
associated element �t 2 H1 Xt;EXt 
N�t

ÿ �
 H0�Xt;EXt�
ÿ �� which is the ob-

struction to a global splitting of the exact sequence

0ÿ!EXtÿ!EXtÿ!Nt 
H0�Xt;EXt�ÿ!0:

A vector bundle E ! Y is said to be M�1�- uniform if it is weakly M-uniform
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and �t � 0 for all t 2M (the subscript in the symbol M�1� is used to remind
us that certain assumptions about EjX �1�t

are now in force).
Treating the triple ���1�E�;F ,!Y �M�, �1 being a natural projection

Y �M ! Y , along the same lines as the triple �E;X ,!Y � above, one con-
structs a locally free sheaf EF on F which fits into an exact sequence

0ÿ!���E� ÿ!i EFÿ!NF 
 ���E�ÿ!0�14�
and has the property that the following diagram

0 ÿ! E ÿ! �J1E��� ÿ! TM 
 E ÿ! 0??y ??y ??y
0 ÿ! �����E� ÿ! ���EF � ÿ! ���NF � 
 �����E�

�15�

is commutative.
If E is an M�1�-uniform vector bundle on Y , then the extension (14) splits,

i.e. admits a morphism s : EF ! ���E� such that s � i � id. Any such split-
ting induces, via the commutative diagram (15), a map s0 : �J1E��� ! E,
which splits the extension

0ÿ!E ÿ!j �J1E���ÿ!E 
 TMÿ!0;

i.e. satisfies s0 � j � id. It is well known [M] that any such splitting is
equivalent to a linear connection on E . A linear connection on E which
comes from a splitting of (14) is said to be an induced connection. If
H0 Xt;EXt 
N�t
ÿ � � 0 for all t 2M, then there is only one splitting of (14)

and hence a unique induced connection on E. Of course, this is the same
creature that was studied in Theorem 1. In general, since the set of all split-
tings of (14) is a principal homogeneous space for the group
H0 F ; ���E� 
N�F 
 ���E��
ÿ �

, we obtain the following strengthening of
Theorem 1

Theorem 8. Let F ,!Y �M be a family of compact complex submanifolds
and E an M�1�-uniform vector bundle on Y. Then the induced vector bundle E
on M comes equipped canonically with a family frg of induced connections
such that
(a) if r1 and r2 are in frg, then r1 ÿr2 2 H0 M; �����E 
NF � 
E�� �;
(b) the items (i)-(iii) of Theorem 1 are true for any r 2 frg
2.4. Inverse construction. Let F ,!Y �M be a family of compact complex

submanifolds with Y � [t2M and let E be a vector bundle on M with a linear
connection r. Assume that ���E� fits into an exact sequence

0ÿ!TFÿ!� � �E�ÿ!SFÿ!0

for some vector bundles SF and TF on F . Consider the composition
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rF=Y : ���E�� ÿ!�
��r�

���E�� 
 ���
1M�ÿ!���E�� 
 
1F=Y

and assume that rF=Y is flat when restricted to the subbundle S�F � ���E��.
Denote by EF the �ÿ1�OY �-module of rF=Y -horizontal sections of S�F . As-
suming that the fibres of � are simply connected, we obtain a locally free
sheaf E � ��EF� �� on the twistor space Y with rankE� � rankS�F . Assum-
ing also that ���TF � � �1��TF � � 0, we conclude that �����E� � E, i.e.
E !M is a vector bundle induced from the weakly M-uniform vector bun-
dle E ! Y . To complete this inverse construction we have to prove the fol-
lowing

Proposition 9. The bundle E � ��EF� �� is an M�1�-uniform vector bundle
such that r is an induced connection on E.
A sketch of the proof. We have to prove that there exists a splitting of

the extension (14) such that the associated induced connection on E is ex-
actly the original linear connection r. Let g be a germ in the stalk of
NF 
 ���E� at a point p 2 F . One can use the epimorphism

���TM 
 E� ÿ!i1 NF 
 ���E�ÿ!0

and the monomorphism ir : ���TM 
 E�ÿ!���J1E��� associated with ���r�
to define the subset ir � iÿ11 �g� � ���J1E���. Then, using the composition

i2 : ���J1E���ÿ!�����EF � ÿ!
evp

EF ;

where evp is the natural map of ``evaluation of a global section at p'', one
finally obtains the subset 4�g� � i2 � ir � iÿ11 �g� of the stalk of EF at p. Since
the diagram (15) is commutative, the image of 4�g� under the epimorphism
EF ! NF 
 ���E� is the original germ g. Thus if one can show that the set
4�g� consists of only one element, then one would obtain a genuine splitting
of the extension (14) thus proving the Proposition. This final check can be
easily made with the help of the local coordinate descriptions of EF and all
the maps involved in the construction (see subsections 2.2 and 2.3).

3. Example.

3.1. Conic structures and conic connections. Let M be a complex n-dimen-
sional manifold and d � n an integer. A d-conic structure on M is a closed
complex submanifold i : F ,!GM�nÿ d; 
1M� such that the projection
� : F !M is a holomorphic submersion [M]. Thus F !M is a fibration
with fibres isomorphic to an algebraic subspace in the Grassmanian
G�nÿ d;Cn�; any point p 2 F can be identified with an �nÿ d�-dimensional
subspace p � 
��p�M and hence with a d-dimensional subspace p? � T��p�M.
A conic connection on F is, by definition, a holomorphic rank d distribution
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D � TF such that, at each p 2 F , d��D� is exactly p? � T��p�M. A conic
connection is said to be integrable if it is integrable as a distribution.
Let U be the tautological vector bundle on the relative Grassmanian

GM�nÿ d;
1M� and V the dual of the quotient ���
1M�=U, where
� : GM�nÿ d;
1M� !M is the natural projection. It is clear that
V � ���TM� and hence i��V� � ���TM�. Then, defining

~TF � d�ÿ1 i��V�� �;
one may regard a conic connection on F as a splitting of the exact sequence

0ÿ!TF=Mÿ!~TF ÿ!d� i��V�ÿ!0;

where TF=M is the sheaf of �-vertical vector fields on F . It is therefore
natural to call �� i��V�� 
 TF=M� � the sheaf of conic connection coefficients.
3.2. Twistor space of an exotic G3-structure. Let S be a standard 2-di-

mensional representation space of GL�2;C�. Then GL�2;C� naturally acts on
the symmetric tensor product �3S. If � : GL�2;C� ! GL�4;C� is the asso-
ciated representation, one may define a subgroup G3 � ��GL�2;C�� of
GL�4;C�. Let M be a complex 4-manifold and � : L�M !M the holo-
morphic coframe bundle whose fibres L�tM � �ÿ1�t� consist of all C-linear
isomorphisms e : C4 ! 
1

tM. The space L�M is naturally a principal right
GL�4;C�-bundle, where the right action Rg : L�M ! L�M is given by
Rg�e� � e � g. A G3-structure on M is, by definition, is a principal subbundle
of L�M with the group G3. It is clear that a G3-structure is equivalent to a
local factorization of the tangent bundle into the symmetric cube

TM � �3S
of a locally defined vector bundle S of rank 2. Though such a vector bundle
may fail to exist on the whole of M, the projectivised vector bundle PM�S� is
well-defined globally. Since we are interested in this paper in local properties
of G3-structures, we assume from now on that M is a complex 4-manifold
with G3-structure such that S exists on the whole of M; it is called a spinor
bundle on M. A linear connection r on S is called a spinor connection on M.
It is clear that any spinor connection on M induces, via the isomorphism
TM � �3S, an affine connection with holonomy in G3; moreover, any affine
connection on M with holonomy in G3 arises, at least locally, in this way. By
a torsion tensor of a spinor connection we mean the torsion tensor of the
associated affine connection.
There is a canonical injective bundle map, i : PM�S�� ! GM�2;
1M�,

which can be unambiguously characterised by the isomorphism
i��U� � � � �S���ÿ2� � ���S�� 
 OF�ÿ2�, where OF�ÿ2� � �OF�ÿ1��
2 and
OF �ÿ1� stands for the tautological sheaf on PM�S��. Thus PM�S�� is natu-
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rally a 2-conic structure F on M. Since i��V� � �� S 
 ��2S�
2
� �

�ÿ2� and
TF=M � ����2S���2�, the conic connection coefficient sheaf on F is iso-
morphic to

�0� TF=M 
 i��V�� � � �5S� 
 �2S � �3S�:�16�
A projective connection on F � PM�S�� determines a splitting of the exact

sequence

0ÿ!TF=Mÿ!TF ÿ!d� ���TM�ÿ!0;

that is a morphism 
 : ���TM� ! TF such that d� � 
 � id. Then, restricting

 to the subsheaf V � ���TM�, one gets a conic connection on F . From the
exact sequence which relates coefficient sheaves of projective and 2-conic
connections,

0ÿ!���S� 
 �2S��ÿ!TF=M 
 ���
1M�ÿ!TF=M 
 i��V�ÿ!0;

it is clear that the map
f projective connections on PM�S��g ÿ! f conic connections on Fg

is surjective with its kernel given by sections of S� 
 �2S�. Hence the kernel
of the surjection

f linear connections on S g ÿ!pr f conic connections on F g
consists of arbitrary sections of S� 
 �2S� � �3S�. Using this freedom to-
gether with (16), it is not hard to check that there exists a unique 2-conic
connection D on F , called the distinguished 2-conic connection, such that the
set prÿ1�D� contains a (necessarily unique) linear connection r whose tor-
sion tensor is a section of �7S� 
 ��2S�
2 � TM 
 
2M. Then this section is
nothing but the invariant torsion [Br1] of the G3-structure. The vanishing of
this section is a necessary and sufficient condition for the G3-structure to
admit a torsion-free affine connection.

Proposition 10. [Br2] A G3-structure on a complex 4-fold M admits a
torsion-free affine connection if and only if the distinguished 2-conic connection
on F 2 is integrable.

Thus, with any torsion-free G3-structure on a sufficiently ``small'' 4-fold
M there is naturally associated a double fibration

Y  ÿ� F ÿ!� M

where Y is a 3-dimensional complex manifold (called the twistor space)
parametrising leaves of the integrable distribution D. It is not difficult to
show that the composition
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rF=Y : ���S�� ÿ!�
��r�

���S� 
 
1M�ÿ!���S�� 
 
1F=Y
preserves the subbundle OF�ÿ1� � ���S��. Moreover, an analysis of the cur-
vature tensor of r through the Bianchi identities (cf. [Br2]) implies that rF=Y
is actually flat on OF�ÿ1�. Thus one may define a holomorphic line bundle

E� � KerrF=Y
��
OF�ÿ1�

on Y whose restriction to each rational curve � � �ÿ1�t�, t 2M, is iso-
morphic to O�ÿ1�. Then Proposition 9 implies that both the spinor bundle S
and the torsion-free affine connection r are induced, in the sense of
Theorem 1, from the vector bundle E ! Y . The manifold Y comes equipped
with a 4-parameter family of rational curves Xt � � � �ÿ1�t� with the normal
bundle C2 
O�2�. Therefore, the family fXt ,!Y j t 2Mg is not complete in
the Kodaira sense making the hopes of restoring M with the help of the
Kodaira relative deformation theorem gloomy. However, the prospects of
twistor methods improve when one takes into account the complex contact
structure [Br2] canonically induced on Y . There is a canonical embedding

j : PM�S�� ! PM�
1M��17�
which can be unambiguously characterised by the isomorphism
j� OPM�
1M��1�
ÿ � � OPM�S���3�. As shown in [Me2] in a more general situa-

tion, the contact line bundle L on Y is nothing but KerrF=Y
��
j��~L�, where

~L ' OPM�
1M��1� is the canonical contact line bundle on PM�
1M�. There-
fore, L � E
3. Since h0�Xt;E
3

��
Xt
� � h0�CP1;O�3�� � 4, the family

fXt ,!Y j t 2Mg is complete as a family of compact Legendre submanifolds
of Y [Br2,Me1,Me2]. Therefore, given a Legendre submanifold
X � CP1 ,!Y of a complex contact manifold Y with contact line bundle L
such that LX � O�3�, one may first construct a 4-dimensional Legendre
moduli space M and then, shrinking Y as necessary and then choosing any E
such that E
3 � L, one may apply Theorem 1 to construct on M a torsion-
free affine connection with holonomy in G3. Any such connection can be
constructed, at least locally, along these lines, and how this works in practice
will be shown in the next subsection.

3.3. An explicit torsion-free affine connection with holonomy G3 on Ped-
ersen's moduli space. In this subsection we apply the machinery developed
above to a particular twistor space Y � C�
1Z�, where Z is a point blow-up
of the 2-fold covering of a neighbourhood of a �1; 4� curve [Ped] in a quadric
CP1 � CP1, branched along the curve. According to [Ped], this Z contains a
rational curve X with self-intersection number 3 and the associated Ko-
daira's complete family of rational curves admits a very simple explicit de-
scription. The projectivised conormal bundle X̂ � P�N�� of X in Z is itself a
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projective line naturally embedded into Y � P�
1Z� as a Legendre sub-
manifold with LX̂ � O�3�. As was noted in subsection 2.1, the Kodaira
moduli space of deformations of X inside Z is identical to the Legendre
moduli space of deformations of X̂ inside Y .
We start by considering CP1 � CP1, covered by the charts ��; �� [ ��̂; �̂� :

�̂ � 1=�; �̂ � 1=�: We can specify a curve X of bidegree �1; 4� in CP1 � CP1

by putting � � �4 and we change coordinates to �û � �̂4 ÿ �̂; ẑ � �̂�[
�u � � ÿ �4; z � ��, so that X is given by u � 0: X has normal bundle O�8� in
CP1 � CP1.
If U is a two-to-one covering of a tubular neighbourhood of X in

CP1 � CP1 it has charts �v̂ � ���̂
u
p

; ẑ� [ �v � ���
u
p

; z�. Now X ; which is given by
v̂ � v � 0; has normal bundle O�4� in U .
Finally, we blow up the point v � z � 0 in U to obtain our space Z with

charts �ŵ � v̂; ẑ� [ �w � v=z; z�; and patching function

f �w; z� � ŵ � w

z2
���������������
w2 � z2
p :

Z contains our original curve X , which now has normal bundle O�3� as re-
quired.
We now seek a family of curves Xt � CP1 2 Z with normal bundle O�3�:

This family will project onto a family of �1; 4� curves in CP1 � CP1 meeting
X in four points to second order, one of these points being u � z � 0: A
general �1; 4� curve is given by � � p���=q���; for a pair of quartics p and q:
If we choose p�z� � z2P�z� and q�z� � Q�z�; then our condition can be writ-
ten z4Qÿ z2P � �zR�2; or

P � ÿR2 � z2Q;

for some cubic R�z�: Now let

R�z� � t3z3 � t2z2 � t1z� t0;

and choose

P�z� � z2 ÿ 2t0t1zÿ t20:

Then

Q�z� � z2�t3z� t2�2 � 2�t3z� t2��t1z� t0� � t21 � 1:

The Legendre moduli space M of CP1's in the contact three-fold
Y � PZ�
1Z� is equal to the Kodaira moduli space of CP1's in Z: Let t� be
coordinates on M. Then 8t� the associated Xt � CP1 2 Z is given by

w � ��z; t� � iR�z�����������
Q�z�p
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or

ŵ � �̂�ẑ; t� � iR̂�ẑ�����������
P̂�ẑ�

q � iR�z�
z2

����������
P�z�p ;

where

P̂�ẑ� � zÿ2P�z�
R̂�ẑ� � zÿ3R�z�:

How is this realised in Y? The charts are �ŵ; û; ẑ� [ �w; u; z� and the contact
one-form is �̂ � dŵ� ûdẑ;� � dw� udz: The patching functions are

ŵ � f �w; z�; ẑ � 1=z;

and

û � h�w; u; z� �
@f
@w uÿ @f

@z
@
@z �1=z�

;

and 8t� 2M the associated Legendre curve Xt 2 Y is given by

w � iR�z�����������
Q�z�p ; u � ÿ @�

@z

ŵ � iR�z�
z2

����������
P�z�p ; û � ÿ @�̂

@ẑ
:

The contact line bundle L has patching function given by �̂ � A�; where

A � @f
@w
� �w2 � z2�ÿ3=2:

Define the bundle E on Y by the patching function G � �w2 � z2�ÿ1=2: Then
L � E
3, as required.
Now we are ready to compute the connection. Since the patching function

G�w; z�jw���z;t� �
����������
Q�z�p����������
P�z�p

the bundle EjXt
�� O�1�� has only two linearly independent global sections,

given by

�̂�0� � ẑ����̂
P

p ; ��0� � 1����
Q
p

( )
and

�̂�1� � 1����̂
P

p ; ��1� � z����
Q
p

( )
:
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Equation (6) becomes

�bA � ÿ�̂cAFc
b � G�bA;�18�

where

Fc
b �

Q3=2

P3=2 0
3z2Q1=2

P1=2
@
@z �QP� ÿz2Q3=2

P3=2

 !
�

@f
@w jw���z;t� 0

@h
@w

@h
@u

 !
:

�bA is given by

�1A � @G
@w
jw���z;t�:�A;

and

�2A � @G
@u
jw���z;t�:�A � 0:

It is convenient to express the solution of equation (18) and the connec-
tion coefficients in terms of the two polynomials � and � defined as follows.
Let:

a � 1� t0t2 � 2t21; b � t20t3 ÿ t1; and � � a2 ÿ b2 � 2t1ab:

Then

� � a=3� and � � b=3�:

The solution of equation (18) is

�̂1�0� � i�P̂; �̂0�0� � 3it0��� t1��;

�̂1�1� � ÿit0�P̂; �̂0�1� � 3it20�t1�ÿ ��:
At last, we can use this solution in equation (7) to calculate the connection

coefficients, which are as follows.

ÿ 0
00 � 2��t0t3 � t1t2� ÿ 3t0t1t2� ÿ 1

00 � t1t3�
ÿ 0
01 � 3t21� � ��3t1 � 3t0t21 ÿ 2t0t1t2 ÿ 2t20t3� ÿ 1

01 � ÿt0t1t3�

ÿ 0
10 � ÿ4t21� ÿ ��2t1 � t20t3� ÿ 1

10 � t0t3�
ÿ 0
11 � 3t0t1� � t0��1� t0t2� ÿ 1

11 � ÿt20t3�

ÿ 0
20 � ÿt0�3�� 4t1�� ÿ 1

20 � �
ÿ 0
21 � t20�3� ÿ 2t1�� ÿ 1

21 � ÿt0�

ÿ 0
30 � t20� ÿ 1

30 � ÿt0�3�� 2t1��
ÿ 0
31 � ÿt30� ÿ 1

31 � t20�3� ÿ 4t1��
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With this explicit connection at hand it is a trivial matter to check that the
curvature tensor of the spinor connection spans at a general point t 2M the
whole Lie algebra gl�2;C� which immediately implies that the associated
torsion-free connection has holonomy group G3 rather than one of its proper
subgroups.
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