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SOME SUFFICIENT CONDITIONS FOR HEEGAARD
GENERA TO BE ADDITIVE UNDER

ANNULUS SUM

FENGLING LI∗, FENGCHUN LEI† and GUOQIU YANG‡

Abstract
Let Mi be a compact orientable 3-manifold, and Ai an incompressible annulus on a component
Fi of ∂Mi , i = 1, 2. Suppose A1 is separating on F1 and A2 is non-separating on F2. Let M be
the annulus sum of M1 and M2 along A1 and A2. In the present paper we show that if Mi has
a Heegaard splitting Vi ∪Si

Wi with Heegaard distance d(Si) ≥ 2g(Mi) + 5 for i = 1, 2, then
g(M) = g(M1) + g(M2). Moreover, when g(F2) ≥ 2, the minimal Heegaard splitting of M is
unique up to isotopy.

1. Introduction

Let Mi be a compact connected orientable bordered 3-manifold, and Ai an
incompressible annulus on ∂Mi , i = 1, 2. Let h : A1 → A2 be a homeo-
morphism. The manifold M obtained by gluing M1 and M2 along A1 and A2

via h is called an annulus sum of M1 and M2 along A1 and A2, and is denoted
by M1 ∪h M2 or M1 ∪A1=A2 M2.

Let Vi ∪Si
Wi be a Heegaard splitting of Mi , i = 1, 2, and M = M1 ∪A1=A2

M2. M has a natural Heegaard splitting V ∪S W induced from V1 ∪S1 W1

and V2 ∪S2 W2 with genus g(S) = g(S1) + g(S2) (refer to Schultens [15]).
Let g(M) be the minimal genus among all Heegaard surfaces of M . Then we
always have g(M) ≤ g(M1) + g(M2).

Some sufficient conditions for tunnel number of knots not to go down under
connected sum are given in [17]. When both A1 and A2 are non-separating on
the corresponding boundary component, there are some sufficient conditions
for the equality g(M) = g(M1) + g(M2) to hold, see [2], [8].

In the present paper, we consider the case that A1 is separating on F1 (so
necessarily g(F1) > 1) and A2 is non-separating on F2. The following are the
main results of the paper.
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Theorem 1.1. Let M be an irreducible 3-manifold, and A a properly em-
bedded essential annulus separating M into M1 and M2. Suppose Ai = A lies
in an incompressible boundary component Fi of Mi for i = 1, 2, and A1 is sep-
arating on F1 and A2 is non-separating on F2. If Mi has a Heegaard splitting
Vi ∪Si

Wi with d(Si) ≥ 2g(Mi)+5 for i = 1, 2. Then g(M) = g(M1)+g(M2).

Theorem 1.2. Let M be an irreducible 3-manifold, and A a properly em-
bedded essential annulus separating M into M1 and M2. Suppose Ai = A lies
in an incompressible boundary component Fi of Mi for i = 1, 2, and A1 is
separating on F1 and A2 is non-separating on F2. Suppose Mi has a Heegaard
splitting Vi ∪Si

Wi with d(Si) ≥ 2g(Mi) + 5 for i = 1, 2, then

(1) If g(F2) ≥ 2, then the minimal Heegaard splitting of M is unique up to
isotopy;

(2) If g(F2) = 1, then there are at most two minimal Heegaard splittings of
M up to isotopy.

Note that papers [8] and [17] only consider the case that both A1 and A2 are
non-separating. In [2], the bound of the Heegaard distance for the additivity to
hold is “d(Si) ≥ 2(g(M1) + g(M2)), i = 1, 2”, in other words, the bound of
d(S1) (d(S2), resp.) of M1 (M2, resp.) not only relates to the genus of M1 (M2,
resp.), but also relates to the genus of the other manifold M2 (M1, resp.). While
in our results, the bound is “d(Si) ≥ 2g(Mi) + 5, i = 1, 2”, that is, d(S1)

only relates to g(M1) and d(S2) only relates to g(M2). And with the weaker
assumptions, we obtain the stronger conclusion that the minimal Heegaard
splitting of M is in some sense unique. Hence we remark that the situations
here are quite different from those in [2], [8] and [17], and the arguments there
are not applicable to the main cases here.

The paper is organized as follows. In Section 2, we review some prelim-
inaries which will be used later. In Section 3, we give the proof of the main
results.

2. Preliminaries

In this section, we will review some fundamental facts on surfaces in 3-
manifolds. Definitions and terms which have not been defined are all standard,
refer to, for example, [5].

A Heegaard splitting of a 3-manifold M is a decomposition M = V ∪S W

in which V and W are compression bodies and S = V ∩ W = ∂+V = ∂+W

is the Heegaard surface. V ∪S W is said to be weakly reducible if there are
essential disks D1 ⊂ V and D2 ⊂ W with ∂D1∩∂D2 = ∅. Otherwise, V ∪S W

is strongly irreducible (see [1]).



heegaard genera to be additive under annulus sum 175

Suppose M = V ∪S W is a Heegaard splitting. Let CV (S) (CW(S), resp.),
denote the set of all simple closed curves on S which bound essential disks in
V (W , resp.). Define d(S) = min {d(α, β) | α ∈ CV (S), β ∈ CW(S)}, where
d(α, β) is measured in the curve complex C (S) of S (see [4]).

Let F be a surface properly embedded in M . We say that F is ∂-parallel
if F cuts off a 3-manifold homeomorphic to F × [0, 1] from M . A properly
embedded surface is essential if it is incompressible and not ∂-parallel.

Let P be a properly embedded separating surface in a 3-manifold M which
cuts M into two 3-manifolds M1 and M2. Then P is bicompressible if P

has compressing disks in both M1 and M2. P is strongly irreducible if it is
bicompressible and each compressing disk in M1 meets each compressing disk
in M2.

Now let P be a closed bicompressible surface in an irreducible 3-manifold
M . By maximally compressing P in both sides of P and removing any resulting
2-sphere components, we obtain two surfaces that we denote by P+ and P−. Let
HP

1 denote the closure of the region that lies between P and P+ and similarly
define HP

2 to denote the closure of the region that lies between P and P−.
Then HP

1 and HP
2 are compression bodies. If P is strongly irreducible in M ,

then the Heegaard splitting HP
1 ∪P HP

2 is strongly irreducible. Two strongly
irreducible surfaces P and Q are said to be well-separated in M if HP

1 ∪P HP
2

may be isotoped to be disjoint from H
Q
1 ∪Q H

Q
2 .

Scharlemann and Thompson ([13]) showed that any irreducible and ∂-
irreducible Heegaard splitting M = V ∪S W has an untelescoping as

V ∪S W = (V1 ∪S1 W1) ∪F1 (V2 ∪S2 W2) ∪F2 . . . ∪Fm−1 (Vm ∪Sm
Wm),

such that each Vi ∪Si
Wi is a strongly irreducible Heegaard splitting with

Fi = ∂−Wi ∩ ∂−Vi+1, 1 ≤ i ≤ m − 1, ∂−V1 = ∂−V , ∂−Wm = ∂−W , and for
each i, each component of Fi is a closed incompressible surface of positive
genus, and only one component of Mi = Vi ∪Si

Wi is not a product. It is
easy to see that when m ≥ 2, g(S) ≥ g(Si) + 1 ≥ g(Fi) + 2 for each i. From
V1 ∪S1 W1, . . . , Vm ∪Sm

Wm, we can get a Heegaard splitting of M by a process
called amalgamation (see [16]).

The following are some basic facts and results on Heegaard splittings.

Lemma 2.1 ([11]). Suppose (Q, ∂Q) ⊂ (M, ∂M) is an essential surface
and Q′ is the result of ∂-compressing Q in M . Then Q′ is essential.

Lemma 2.2 ([15], [9]). Let F be an incompressible surface (not a 2-sphere,
a 2-disk or a projective plane) properly embedded in M = V ∪S W . If V ∪S W

is strongly irreducible, then F can be isotoped so that S ∩ F consists of loops
that are essential in both F and S.
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The following Lemma is a well known fact (see [15]).

Lemma 2.3. An incompressible surface F in a compression body V with
∂F ⊂ ∂+V cuts V into compression bodies.

Lemma 2.4 ([9]). Let V be a non-trivial compression body and A be a
disjoint union of essential annuli properly embedded in V . Then there is an
essential disk D in V with D ∩ A = ∅.

Lemma 2.5 ([3], [11]). Let V ∪S W be a Heegaard splitting of M and F

be a properly embedded incompressible surface (maybe not connected) in M .
Then either any component of F is ∂-parallel in M or d(S) ≤ 2 − χ(F ).

Lemma 2.6 ([14]). Let P and Q be strongly irreducible connected closed
separating surfaces in a 3-manifold M. Then either

(1) P and Q are well-separated,

(2) P and Q are isotopic, or

(3) d(P ) ≤ 2g(Q).

Lemma 2.7 ([6]). Let M = V ∪S W be a Heegaard splitting with d(S) >

2g(M). Then V ∪S W is the unique minimal Heegaard splitting of M up to
isotopy.

Lemma 2.8 ([12]). Let V be a non-trivial compression body and A be a
disjoint union of incompressible annuli properly embedded in V . If U is a
component of V \A with U ∩ ∂−V �= ∅, then χ(U ∩ ∂−V ) ≥ χ(U ∩ ∂+V ).

Lemma 2.9 ([8], [17]). Let N be a compact orientable 3-manifold which
is not a compression body, and F = ∂N . Suppose Q is a properly embedded
connected separating surface in N with ∂Q essential in F , and Q cuts N into
two compression bodies N1 and N2 with Q = ∂+N1 ∩ ∂+N2 and F ∩ N2 a
collection of annuli. If Q is compressible in both N1 and N2, and Q can be
compressed to Q∗ in N1 such that any component of Q∗ is ∂-parallel in N , then
N has a Heegaard splitting V ∪S W with g(S) = 1 − 1

2χ(Q) and d(S) ≤ 2.

3. The proof of the main results

In M = M1 ∪h M2, let A = A2 = h(A1) and Fi be the incompressible
boundary component of Mi in which Ai lies, i = 1, 2. We denote the two
components of F1 − intA by F 1

1 and F 2
1 , and let F3 = F 1

1 ∪ (F2 − intA)∪F 2
1 ,

then F3 is a boundary component of M . Let I = [0, 1] and Fi × I be a regular
neighborhood of Fi in Mi with Fi = Fi × {0}. We denote the surface Fi × {1}
by F i , it’s clear that F i is incompressible in Mi . Let Mi = Mi −Fi × [0, 1) for
i = 1, 2, and M0 = F1 × I ∪A F2 × I . Then M = M1 ∪F 1 M0 ∪F 2 M2. Note
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that M0 contains three boundary components F 1, F 2 and F3. By [2] Lemma
2.3, M0 contains only two essential surfaces up to isotopy, F ∗

1 and F ∗
2 , say,

where F ∗
1 = X1 ∪ X2 ∪ X3 such that X1 and X3 are isotopic to F 1

1 , and X2 is
a copy of F2 − intA. And F ∗

2 = Y1 ∪ Y2 ∪ Y3 such that Y1 and Y3 are isotopic
to F 2

1 , and Y2 is a copy of F2 − intA.

Lemma 3.1. Let M1, M0,F 1 and F 2 be as above. If M1 has a Heegaard
splitting V1 ∪S1 W1 with d(S1) ≥ 2g(M1) + 5, then any minimal Heegaard
splitting of M1 ∪F 1 M0 is the amalgamation of minimal Heegaard splittings
of M1 and M0, and g(M1 ∪F 1 M0) = g(M1) + g(F2).

Proof. Now suppose thatV ∪SW is a minimal Heegaard splitting ofM1∪F 1

M0 with F3 ⊂ ∂−V . Since M1 ∪F 1 M0 = M1 ∪A (F2 × I ), by a result of
Schultens [15], g(S) ≤ g(M1) + g(F2).

First we show that M1 is not a compression body. Otherwise, M1 is either a
(closed surface)×I or ∂-reducible. In each case, M1 cannot have a Heegaard
splitting V1 ∪S1 W1 with distance d(S1) ≥ 2g(M1) + 5.

We will show that V ∪S W is weakly reducible. So suppose for contradiction
that V ∪S W is strongly irreducible. First note that S ∩ A �= ∅ since F 1 is
essential in M and there is no closed essential surface in a compression body.
By Lemma 2.2, we may assume that each component of S ∩ A is essential in
both S and A, and |S ∩A| is minimal. Since A is an essential annulus in M , by
Lemma 2.4, S\A has compressing disks in both V and W . If there are distinct
components of S\A, say P1 and P2, such that P1 has a compressing disk DV

in V and P2 has a compressing disk DW in W , but P1 �= P2, then we have
∂DV ∩∂DW = ∅, contradicting the strong irreducibility of V ∪S W . Hence we
assume that all components of S\A are incompressible in M\A except exactly
one bicompressible component.

Claim 1. χ(S ∩ M1) ≤ −2g(M1).

Proof. Now if S ∩ M1 is incompressible, then it is essential in M1. Other-
wise, any component of S ∩ M1 is ∂-parallel in M1, which means that M1 is a
compression body, a contradiction. By Lemma 2.5, 2−χ(S ∩M1) ≥ d(S1) ≥
2g(M1) + 5, thus χ(S ∩ M1) ≤ −3 − 2g(M1).

Now suppose S ∩ M1 is bicompressible. We denote the bicompressible
component of S ∩ M1 by P . In fact, P is strongly irreducible in M1. We claim
that χ(P ) ≤ −2. If not, P is either a disk, an annulus, a pair of pants, or
a once punctured torus. In each case we conclude that a component of ∂P

bounds a disk in M1, therefore A is compressible in M1, a contradiction. If
there exists an incompressible component Q of S ∩ M1 which is essential in
M1, by Lemma 2.5, 2 −χ(Q) ≥ d(S1) ≥ 2g(M1)+ 5, and then χ(S ∩M1) ≤
χ(Q) + χ(P ) ≤ −5 − 2g(M1). Hence in the following we may assume that
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the incompressible components of S ∩ M1 are all ∂-parallel in M1. Let P V

be the surface obtained by maximally compressing P in V and removing all
possible 2-sphere components. Since P is strongly irreducible, we can see that,
by the No Nesting Lemma ([10]) and [10, Lemma 5.5], P V is incompressible
in M1. Now if P V is essential in M1, by Lemma 2.5, 2 − χ(P V ) ≥ d(S1) ≥
2g(M1) + 5, and then χ(S ∩ M1) ≤ χ(P ) ≤ χ(P V ) − 2 ≤ −5 − 2g(M1).
Therefore we may assume that each component of P V is ∂-parallel in M1.

Since A is an essential annulus in M and by Lemma 2.3, each component
of V ∩ M1 and W ∩ M1 is a compression body. Let U1 be the component of
V ∩M1 containing P and U2 be the component of W ∩M1 containing P . Since
any component of S ∩ M1 other than P is ∂-parallel, U1 ∪P U2

∼= M1 and
∂+U1 ∩ ∂+U2 = P . Since M1 is not a compression body and A is an annulus,
by Lemma 2.9, there exists a Heegaard surface S1 of M1 with d(S1) ≤ 2 and
g(S1) ≤ 1 − 1

2χ(P ). Since d(S1) ≤ 2, by Lemma 2.7, S1 is not isotopic to
the unique minimal Heegaard surface S1 of M1, we have g(S1) ≥ g(M1) + 1.
Hence χ(S ∩ M1) ≤ χ(P ) ≤ 2 − 2g(S1) ≤ −2g(M1).

This completes the proof of Claim 1.

Claim 2. χ(S ∩ (F2 × I )) ≤ χ(F2).

Proof. Since A is an essential annulus in M , if we denote the component
of V ∩ (F2 × I ) or W ∩ (F2 × I ) which contains F 2 by U , by Lemma 2.8, we
have χ(S ∩ (F2 × I )) ≤ χ(U ∩ (S ∩ (F2 × I ))) ≤ χ(U ∩ F 2) = χ(F2).

This completes the proof of Claim 2.

Now by the proof of Claim 1, we know that if S ∩ M1 is incompressible
in M1 then it is essential in M1, and therefore by Lemma 2.5, χ(S ∩ M1) ≤
−3 − 2g(M1). Then 2g(S) = 2 −χ(S ∩M1)−χ(S ∩ (F2 × I )) ≥ 2g(M1)+
2g(F2)+3, a contradiction. Hence S ∩M1 is bicompressible in M1 and χ(S ∩
M1) ≤ −2g(M1). Note that S is a strongly irreducible Heegaard surface of
M , so S ∩ (F2 × I ) is incompressible in F2 × I . By Lemma 2.1, S ∩ (F2 × I )

is ∂-parallel in F2 × I since any incompressible and ∂-incompressible surface
in a trivial compression body is just a spanning annulus.

If χ(S∩(F2×I )) < χ(F2), then 2g(S) = 2−χ(S∩M1)−χ(S∩(F2×I )) >

2g(M1) + 2g(F2), a contradiction. Thus χ(S ∩ (F2 × I )) = χ(F2). Now if
χ(F2) = 0, i.e., g(F2) = 1, then g(S) ≤ g(M1) + 1. Since S is a Heegaard
surface of M1 ∪A F2 × I while S1 is a Heegaard surface of M1, S and S1 are
not well-separated, furthermore, S is not isotopic to S1. Then by Lemma 2.6,
d(S1) ≤ 2g(S) ≤ 2g(M1) + 2 < 2g(M1) + 5, a contradiction. So g(F2) > 1
and S ∩ (F2 ×I ) has one and only one component. Since A2 is non-separating,
we have that |S ∩ A| = 2.

We take an essential arc α in S ∩ (F2 × I ) such that α is adjacent to the two
components of S ∩ A. Let N∗ = N((S ∩ A) ∪ α, S ∩ (F2 × I )) be the regular
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neighborhood of (S ∩ A) ∪ α in S ∩ (F2 × I )), and denote the component
of ∂N∗ which is not a component of S ∩ A by β∗, from the construction of
regular neighborhood we may assume that β∗ ⊂ F2 × {

1
2

}
in F2 × I . Set

A∗ = β × I with β ⊂ F2\A2 and β∗ = β × {
1
2

}
. Denote the component

of (F2\A2)\β which doesn’t contain ∂A2 by F ∗. By substituting F ∗ × I

with (a disk)×I , we get a 3-manifold M ′ with a Heegaard surface S ′ induced
from the Heegaard surface S of M1 ∪F 1 M0. Since S is strongly irreducible,
S ′ is strongly irreducible with g(S ′) ≤ g(M1) + 1. Then by Lemma 2.6,
d(S1) ≤ 2g(S ′) ≤ 2g(M1) + 2 < 2g(M1) + 5, a contradiction.

Hence V ∪S W is weakly reducible. Then V ∪S W has an untelescoping as
V ∪S W = (V ′

1 ∪S ′
1
W ′

1) ∪H1 . . . ∪Hn−1 (V ′
n ∪S ′

n
W ′

n), where n ≥ 2, and each
component of Hi , 1 ≤ i ≤ n − 1, is a closed essential surface in M1 ∪F 1 M0.
Let H = ⋃n−1

i=1 Hi . We may assume that any component of H ∩A is essential
in both A and H , and |H ∩A| is minimal. If H ∩A �= ∅, let H be a component
of H with H ∩ A �= ∅. If H ∩ M1 is essential in M1 and H ∩ (F2 × I ) is
∂-parallel in F2 × I , by Lemma 2.5, 2 − χ(H ∩ M1) ≥ d(S1) ≥ 2g(M1) + 5,
χ(H ∩ (F2 × I )) ≤ χ(F2), and then 2g(S) ≥ 2g(H)+4 = 6−χ(H ∩M1)−
χ(H ∩ (F2 × I )) ≥ 2g(M1) + 2g(F2) + 4, a contradiction.

Hence if H ∩ A �= ∅, H ∩ M1 is ∂-parallel in M1 and H ∩ (F2 × I ) is
∂-parallel in F2 × I . Then H is an essential closed surface in M0, hence H is
isotopic to either F ∗

1 or F ∗
2 . We may assume that H is isotopic to F ∗

1 .
If there is no component of H in M1, we denote the Heegaard splitting in

the untelescoping between F ∗
1 and F3 by N1 = V ′

1 ∪S ′
1
W ′

1. Since A is essential
in M , it is essential in N1. Note that N1 ∩ M1

∼= M1 and N1 ∩ M2
∼= F2 × I .

Since V ′
1 ∪S ′

1
W ′

1 is strongly irreducible, by Claim 1 and Claim 2 applied to this
splitting we have χ(S ′

1 ∩ M1) ≤ −2g(M1), χ(S ′
1 ∩ (F2 × I )) ≤ χ(F2). Then

2g(S) ≥ 4 − χ(S ′
1) ≥ 2g(M1) + 2g(F2) + 2, a contradiction.

Hence there is some component of H in M1. We denote the outermost one
by F ∗, and suppose F ∗ is essential in M1. We denote the Heegaard splitting in
the untelescoping between F ∗ and F3 by N1 = V ′

1 ∪S ′
1
W ′

1.

Claim 3. χ(S ′
1 ∩ M1) ≤ −3 − 2g(M1).

Proof. Since F ∗ is essential in M1, by Lemma 2.5 2 − χ(F ∗) ≥ d(S1) ≥
2g(M1)+5. If we denote the component of V ′

1 ∩M1 or W ′
1∩M1 which contains

the essential component F ∗ by U , since A is an essential annulus in M , by
Lemma 2.8, we have χ(S ′

1 ∩ M1) ≤ χ(U ∩ (S ′
1 ∩ M1)) ≤ χ(U ∩ F ∗) ≤

χ(F ∗) ≤ −3 − 2g(M1).
This completes the proof of Claim 3.

Now by Claim 2, we have χ(S ′
1 ∩ (F2 × I )) ≤ χ(F2). Then 2g(S) ≥

4 − χ(S ′
1) ≥ 2g(M1) + 2g(F2) + 5, a contradiction.
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Hence S ′
1 ∩ A = ∅, and since F ∗ is the outermost component of H in M1,

we know that some component of H must be parallel to F 1 in M1.
Then we get a generalized Heegaard splitting as: V ∪S W = (V ′

1 ∪S ′
1
W ′

1)∪H1

(V ′
2 ∪S ′

2
W ′

2), and H1 is isotopic to F 1. We may further assume that V ′
1 ∪S ′

1
W ′

1
is a Heegaard splitting of M1, and V ′

2 ∪S ′
2
W ′

2 is a Heegaard splitting of M0.
Since A is separating on F1 and non-separating on F2, M0 contains only three
boundary components F 1, F 2 and F3. Note that g(F3) = g(F1) + g(F2) − 1,
hence g(S ′

2) ≥ g(M0) ≥ g(F1)+g(F2). Then we have g(S) = g(S ′
1)+g(S ′

2)−
g(H1) ≥ g(M1) + g(F2), and equality holds if and only if g(S ′

1) = g(M1),
g(S ′

2) = g(F1) + g(F2). Combining this with Schultens’ result we see that
g(S) = g(M1) + g(F2), and therefore the previous inequality is an equality,
implying that g(S ′

1) = g(M1) and g(S ′
2) = g(F1) + g(F2). Hence V ∪S W is

the amalgamation of minimal Heegaard splittings of M1 and M0.

Lemma 3.2. Let M2, M0 and F 2 be as above. If M2 has a Heegaard splitting
V2 ∪S2 W2 with d(S2) ≥ 2g(M2) + 5, then any minimal Heegaard splitting of
M2 ∪F 2 M0 is the amalgamation of minimal Heegaard splittings of M2 and
M0, and g(M2 ∪F 2 M0) = g(M2) + g(F1).

Proof. The proof is analogous to the proof of Lemma 3.1. The only dif-
ference is that A is separating in F1 but non-separating in F2.

Now suppose that V ∪S W is a minimal Heegaard splitting of M2 ∪F 2 M0

with F3 ⊂ ∂−V . Since M2 ∪F 2 M0 = (F1 × I ) ∪A M2, we have g(S) ≤
g(M2) + g(F1). Following the lines of the proof of Lemma 3.1, M2 is not a
compression body.

We will show that V ∪S W is weakly reducible. So suppose for contradiction
that V ∪S W is strongly irreducible. First note that S ∩ A �= ∅, since F 2 is
essential in M . By Lemma 2.2, we may assume that each component of S ∩A

is essential in both S and A, and |S ∩ A| is minimal.
By proofs similar to those of Claim 1 and 2 we have the following two

Claims.

Claim 4. χ(S ∩ M2) ≤ −2g(M2).

Claim 5. χ(S ∩ (F1 × I )) ≤ χ(F1).

By arguments similar to those in the proof of Lemma 3.1, we know that
S ∩ M2 is bicompressible in M2 while S ∩ (F1 × I ) is ∂-parallel in F1 × I . If
all components of S ∩ (F1 × I ) are parallel to the same component of F 1

1 and
F 2

1 , say F 1
1 , then in V , a component of A ∩ V cuts off a trivial compression

body F 1 × I from V , but this is impossible since the component of A ∩ V

is a spanning annulus in V . Hence at least one component of S ∩ (F1 × I ) is
parallel to F 1

1 and at least one component of S ∩ (F1 × I ) is parallel to F 2
1 .
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Now if χ(S ∩ (F1 × I )) < χ(F1), then 2g(S) = 2 − χ(S ∩ M2) − χ(S ∩
(F1×I )) > 2g(M2)+2g(F1), a contradiction. Thus χ(S∩(F1×I )) = χ(F1).
Since A is separating in F1 and |∂A| = 2, χ(F 1

1 ) ≤ −1 and χ(F 2
1 ) ≤ −1.

Hence if χ(S∩(F1 ×I )) = χ(F1), S∩(F1 ×I ) has only two components with
one parallel to F 1

1 and the other parallel to F 2
1 . This means that |S ∩ A| = 2.

Suppose that the boundary components of A are simple closed curves α1 and
α2. Now if g(F 1

1 ) = r > 1, without loss of generality, we may assume
that ∂F 1

1 = α1. Take a separating simple closed curve γ in F 1
1 such that

F 1
1 \γ = T1,2 ∪ �r−1,1, where T1,2 is a twice punctured torus with boundary

α1 and γ , and �r−1,1 is a once punctured genus r − 1 surface with boundary
γ . In M2 ∪F 2 M0, cut F 1

1 × I along γ × I , we get two 3-manifolds T1,2 × I

and �r−1,1 × I . Get rid of �r−1,1 × I and keep T1,2 × I , we add a 2-handle
along γ to get M̃1 = (T1,2 × I )∪γ 2-handle. And if g(F 1

1 ) = 1, we can
take M̃1 = F 1

1 × I . For F 2
1 , we do the same operation to get M̃2. Then we

get a 3-manifold M ′ = (
M̃1 ∪α1×I (A × I ) ∪α2×I M̃2

) ⋃
A M2 (Actually,

M̃1 ∪α1×I (A × I ) ∪α2×I M̃2 is a product of a genus 2 closed surface with I)
with a Heegaard surface S ′ induced from S. Since S is strongly irreducible,
S ′ is strongly irreducible with g(S ′) ≤ g(M2) + 2. Then by Lemma 2.6,
d(S2) ≤ 2g(S ′) ≤ 2g(M2) + 4 < 2g(M2) + 5, a contradiction.

Hence V ∪S W is weakly reducible. Then V ∪S W has an untelescoping as
V ∪S W = (V ′

1 ∪S ′
1
W ′

1) ∪H1 . . . ∪Hn−1 (V ′
n ∪S ′

n
W ′

n), where n ≥ 2, and each
component of Hi , 1 ≤ i ≤ n − 1, is a closed essential surface in M2 ∪F 2 M0.
Let H = ⋃n−1

i=1 Hi . We may assume that any component of H ∩A is essential
in both A and H , and |H ∩ A| is minimal. Let H ′ = ⋃

Hi where Hi ∈ H

and Hi ∩M2 is essential in M2. If some component H ′ of H ′ and F 1 cobound
a Heegaard splitting in the untelescoping, we denote the Heegaard splitting
between H ′ and F 1 by Nj = V ′

j ∪S ′
j
W ′

j . Since H ′ ∩ M2 is essential in M2, by
Claim 3 in the proof of Lemma 3.1, we have χ(S ′

j ∩M2) ≤ −3−2g(M2), and
by Claim 5, χ(S ′

j ∩ (F1 × I )) ≤ χ(F1). Then we have 2g(S) ≥ 4 − χ(S ′
j ) ≥

2g(M2) + 2g(F1) + 5, a contradiction.
Hence the outermost component with H ∩ A �= ∅ must be ∂-parallel in

M2. We may assume that H is isotopic to F ∗
1 . Let N1 = V ′

1 ∪S ′
1
W ′

1 be the
Heegaard splitting bounded by F 1, F ∗

1 and F3 in the untelescoping. Then
g(N1) ≥ min{g(F1) + g(F ∗

1 ), g(F1) + g(F3), g(F ∗
1 ) + g(F3)}. Note that

g(F3) = g(F1) + g(F2) − 1 and g(F ∗
1 ) = g(F2) + 2g(F 1

1 ) − 1, hence
g(S ′

1) ≥ g(N1) ≥ g(F1) + g(F2).
If there is no other component of H , we denote the Heegaard splitting in

the untelescoping bounded by F ∗
1 by N2 = V ′

2 ∪S ′
2
W ′

2. A is essential in M ,
and hence in N2. Note that N2 ∩ M1

∼= F 1
1 × I and N2 ∩ M2

∼= M2. By
Claim 4, we have χ(S ′

2 ∩ M2) ≤ −2g(M2). Since S ′
2 is separating in N2,

|S ′
2 ∩ A| is even while |∂F 1

1 | = 1. This means that S ′
2 ∩ (F1 × I ) has at least
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two components. Then by Claim 5, χ(S ′
2 ∩ (F1 × I )) ≤ 2χ(F 1

1 ). Then we
have g(S) = g(S ′

1) + g(S ′
2) − g(F ∗

1 ) ≥ g(M2) + g(F1) + 1, a contradiction.
Hence there is some other component F ∗ of H . If F ∗ ∩ M2 is essential in

M2, we denote the Heegaard splitting in the untelescoping between F ∗
1 and

F ∗ by N2 = V ′
2 ∪S ′

2
W ′

2. Then by Claim 3 in the proof of Lemma 3.1, we have
χ(S ′

2∩M2) ≤ −3−2g(M2). By Claim 5, we have χ(S ′
2∩(F1×I )) ≤ 2χ(F 1

1 ).
Then g(S) = g(S ′

1) + g(S ′
2) − g(F ∗

1 ) ≥ g(M2) + g(F1) + 2, a contradiction.
Hence one component of H must be parallel to F 2 in M2. Then by the same

arguments as in the last paragraph of the proof of Lemma 3.1, only replacing
M1 by M2, we have that V ∪S W is the amalgamation of minimal Heegaard
splittings of M2 and M0, and g(S) = g(M2) + g(F1).

Now we come to the proof of Theorem 1.1.

Proof of Theorem 1.1. Let V ∪S W be a minimal Heegaard splitting of
M . Then g(S) ≤ g(M1) + g(M2).

If V ∪S W is strongly irreducible, then by Lemma 2.2 we may assume S∩A

is a collection of essential simple closed curves on both S and A, and |S ∩A| is
minimal. By Claim 1 in the proof of Lemma 3.1, χ(S ∩M1) ≤ −2g(M1), and
by Claim 4 in the proof of Lemma 3.2, we have that χ(S ∩ M2) ≤ −2g(M2).
Then 2g(S) = 2 − χ(S ∩ M1) − χ(S ∩ M2) ≥ 2g(M1) + 2g(M2) + 2, a
contradiction.

Hence V ∪S W is weakly reducible. Thus V ∪S W has an untelescoping as

V ∪S W = (V ′
1 ∪S ′

1
W ′

1) ∪H1 . . . ∪Hm−1 (V ′
m ∪S ′

m
W ′

m),

where m ≥ 2, and for each i, each component of Hi is a closed essential
surface in M . Let F = ⋃m−1

i=1 Hi .

Claim 6. For any i ∈ {2, . . . , m − 1}, there are no two components Hi−1,
Hi of F so that Hi−1 ∩ M1 is essential in M1 and Hi ∩ M2 is essential in M2

whether Hi−1 ∩ M1 and Hi ∩ M2 have boundary or not.

Proof. Suppose there exist two components of F so that Hi−1 ∩ M1 is
essential in M1 and Hi ∩ M2 is essential in M2. Suppose V ′

i ∪S ′
i
W ′

i is the
Heegaard splitting in the untelescoping between them. Then by Claim 3 in
the proof of Lemma 3.1, we have χ(S ′

i ∩ M1) ≤ −3 − 2g(M1), and χ(S ′
i ∩

M2) ≤ −3 − 2g(M2). Hence 2g(S) ≥ 4 − χ(S ′
i ) > 2g(M1) + 2g(M2) + 4, a

contradiction.
This completes the proof of Claim 6.

We now divide the proof into the following three cases.

Case 1. No component of F is ∂-parallel in M1 or M2, and A ∩ F = ∅.
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In this case, by Claim 6 and the assumption, we may assume that any
component of F is contained in M1. Let H be an outermost component of F

in M1. By the hypothesis of Case 1, H is essential in M1.
Suppose A ⊂ Nj = V ′

j ∪S ′
j

W ′
j . A is essential in M , and hence in Nj .

Since H is essential in M1, by Claim 3 in the proof of Lemma 3.1, we have
χ(S ′

j ∩ M1) ≤ −3 − 2g(M1). Now Nj ∩ M2 = M2, and by Claim 4 in the
proof of Lemma 3.2, we have that χ(S ′

j ∩ M2) ≤ −2g(M2). Then 2g(S) ≥
4 − χ(S ′

j ) ≥ 2g(M1) + 2g(M2) + 7, a contradiction.
Thus, Case 1 cannot happen.

Case 2. No component of F is ∂-parallel in M1 or M2, and A ∩ F �= ∅.
In this case, we may assume that any component of F ∩ A is essential in

both A and F , and |F ∩ A| is minimal. There are three subcases.

Subcase 2.1. The outermost component H of F with H ∩ A �= ∅ is
essential in M1 but ∂-parallel in M2.

By Claim 6, we may assume that each component of F ∩M1 with boundary
is essential in M1 and each component of F ∩ M2 with boundary is ∂-parallel
in M2. Among the components of F ∩M2, let B be the innermost one, that is,
B cuts M2 into two pieces M ′

2 and M ′′
2 , where M ′

2
∼= M2 and M ′′

2
∼= B ×I , and

the interior of M ′
2 contains no component of F ∩M2. Let Hr be the component

of F containing B. Then Hr ∩M1 is essential in M1 and Hr ∩M2 is ∂-parallel
in M2, see Figure 1.

M1

A

H

B

M2

Sr�

Hr

Figure 1.

We may assume that M ′
2 is contained in the submanifold Nr = V ′

r ∪S ′
r
W ′

r of
the untelescoping. Since B is innermost, Nr is not a product. V ′

r ∪S ′
r
W ′

r is a
strongly irreducible Heegaard splitting of Nr . Since any component of Hr ∩M1

is essential in M1, by Claim 3 in the proof of Lemma 3.1, χ(S ′
r ∩ M1) ≤

−3 − 2g(M1). Note that Nr ∩ M2
∼= M2, and by Claim 4 in the proof of

Lemma 3.2, we have χ(S ′
r ∩ M2) ≤ −2g(M2). Then 2g(S) ≥ 4 − χ(S ′

r ) ≥
2g(M1) + 2g(M2) + 7, a contradiction.
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Subcase 2.2. The outermost component H of F with H ∩ A �= ∅ is
essential in M2 but ∂-parallel in M1.

There are two sub-subcases.

Sub-subcase 2.2.1. Each component of H ∩M1 is parallel to the same one
of F 1

1 or F 2
1 , say F 1

1 , in M1.
We denote the Heegaard splitting in the untelescoping between F3 and H

by Nj = V ′
j ∪S ′

j
W ′

j . See Figure 2. Note that by Clai 6, Nj ∩ M1
∼= M1, and

by Claim 1 in the proof of Lemma 3.1, we have that χ(S ′
j ∩ M1) ≤ −2g(M1).

Since H ∩ M2 is essential in M2, by Claim 3 in the proof of Lemma 3.1,
χ(S ′

j ∩M2) ≤ −3−2g(M2). Then 2g(S) ≥ 4−χ(S ′
j ) ≥ 2g(M1)+2g(M2)+7,

a contradiction.

M1

A

H

M2

Sj�

Figure 2.

Sub-subcase 2.2.2. At least one component of H ∩ M1 is parallel to F 1
1

and at least one component of H ∩ M1 is parallel to F 2
1 in M1.

By Claim 6, we may assume that each component of F ∩M1 with boundary
is ∂-parallel in M1. Among the components of F ∩M1 which are parallel to F 1

1 ,
let B1 be the innermost one, and among the components of F ∩ M1 which are
parallel to F 2

1 , let B2 be the innermost one, that is, B1 and B2 cut M1 into three
pieces M ′

1, M
′′
1 and M

′′′
1 with M ′

1
∼= B1 × I , M

′′
1

∼= M1 and M
′′′
1

∼= B2 × I , and
the interior of M

′′
1 contains no component of F ∩ M1. By swapping the labels

of B1 and B2 if necessary, we may suppose that the number of components of
F ∩ M1 in M ′

1 is greater than the number in M
′′′
1 . Let Hj be the component of

F containing B2. Then by Claim 6, we have that Hj ∩ M1 is ∂-parallel in M1

and Hj ∩ M2 is essential in M2. See Figure 3.
We may assume that M

′′
1 is contained in the submanifold Nj = V ′

j ∪S ′
j
W ′

j

of the untelescoping. Since Hj ∩M2 is essential in M2, by Claim 3 in the proof
of Lemma 3.1, χ(S ′

j ∩ M2) ≤ −3 − 2g(M2). Note that Nj ∩ M1
∼= M1, and

by Claim 1 in the proof of Lemma 3.1, we have that χ(S ′
j ∩ M1) ≤ −2g(M1).

Then 2g(S) ≥ 4 − χ(S ′
j ) ≥ 2g(M1) + 2g(M2) + 7, a contradiction.
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M1

B2

B1

A

H

M2

Hj

Sj�

Figure 3.

Subcase 2.3. The outermost component H of F with H ∩A �= ∅ is isotopic
to F ∗

1 or F ∗
2 , say F ∗

1 .
We denote the Heegaard splitting in the untelescoping between F3 and F ∗

1
by Nj = V ′

j ∪S ′
j
W ′

j . Let S1
j = S ′

j ∩M1 and S2
j = S ′

j ∩M2. Now if Nj has some
other boundary component H ∗, then by assumption H ∗ ∩ A = ∅, i.e., H ∗ is a
closed essential surface in M1 or M2. Now Nj ∩M2

∼= (F2 − intA)× I , hence
H ∗ ⊂ M1. Since H ∗ is an essential surface in M1, by Claim 3 and Claim 2
in the proof of Lemma 3.1, we have that χ(S1

j ) ≤ −3 − 2g(M1), χ(S2
j ) ≤

χ(F2). If Nj has no other boundary component, then Nj ∩ M1
∼= M1. By

Claim 1 and Claim 2 in the proof of Lemma 3.1, we have χ(S1
j ) ≤ −2g(M1),

χ(S2
j ) ≤ χ(F2). Hence whether Nj has some other boundary component or

not, we have χ(S ′
j ) = χ(S1

j ) + χ(S2
j ) ≤ 2 − 2g(M1) − 2g(F2).

We denote the Heegaard splitting in the untelescoping on the other side of F ∗
1

which has F ∗
1 as a boundary component by Nr = V ′

r ∪S ′
r
W ′

r . Let Si
r = S ′

r ∩Mi ,
i = 1, 2.

There are three sub-subcases.

Sub-subcase 2.3.1. Nr has another boundary component H ′ of F with
H ′ ∩ M1 essential in M1.

In this case, if H ′ ∩ M2 = ∅, then H ′ ⊂ (F 1
1 × I ), which means that a

compression body contains a closed essential surface, a contradiction. Hence
H ′ ∩ M2 �= ∅, and all components of H ′ ∩ M2 are ∂-parallel in M2, and
furthermore, by Claim 6, we may assume that each component of (F −F ∗

1 )∩
M1 with boundary is essential in M1 and each component of F ∩ M2 with
boundary is ∂-parallel in M2.

The following arguments are in some sense similar to those in Subcase 2.1.
Take the innermost component B of F ∩ M2, that is, B cuts M2 into two
pieces M ′

2 and M ′′
2 , where M ′

2
∼= M2 and M ′′

2
∼= B × I , and the interior of M ′

2
contains no component of F ∩M2. Let Hi be the component of F containing
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B. Then Hi ∩ M1 is essential in M1 and Hi ∩ M2 is ∂-parallel in M2. We
may assume that M ′

2 is contained in the submanifold Ni = V ′
i ∪S ′

i
W ′

i of the
untelescoping. V ′

i ∪S ′
i
W ′

i is a strongly irreducible Heegaard splitting of Ni .
Since Hi ∩ M1 is essential in M1, by Claim 3 in the proof of Lemma 3.1,
χ(S ′

i ∩ M1) ≤ −3 − 2g(M1). Note that Ni ∩ M2
∼= M2, and by Claim 4 in the

proof of Lemma 3.2, χ(S ′
i ∩ M2) ≤ −2g(M2). Then 2g(S) ≥ 4 − χ(S ′

i ) ≥
2g(M1) + 2g(M2) + 7, a contradiction.

Sub-subcase 2.3.2. Nr has another boundary component H ′ of F with
H ′ ∩ M2 essential in M2.

In this case, H ′ ∩ M2 essential in M2, and by Claim 3 in the proof of
Lemma 3.1, we have that χ(S2

r ) ≤ −3 − 2g(M2). Whether H ′ ∩ M1 = ∅
or not, see Figure 4 (a), (b), by Claim 5 in the proof of Lemma 3.2, we
have that χ(S1

r ) ≤ 2χ(F 1
1 ). Hence 2g(S) ≥ 2 − χ(S ′

r ) − χ(S ′
j ) + χ(F ∗

1 ) ≥
2g(M1) + 2g(M2) + 5, a contradiction.

M1

F1
* F1

*

A

(a) (b)

M2

M1

A M2

Sj�
Sj�

H� H�

Sr�

Sr�

Figure 4.

Sub-subcase 2.3.3. Nr has no other boundary component.
In this case, Nr ∩ M2

∼= M2, see Figure 5. By Claim 4 and Claim 5 in
the proof of Lemma 3.2, we have that χ(S1

r ) ≤ 2χ(F 1
1 ), χ(S2

r ) ≤ −2g(M2).
Hence 2g(S) = 2 − χ(S ′

r ) − χ(S ′
j ) + χ(F ∗

1 ) ≥ 2g(M1) + 2g(M2) + 2, a
contradiction.

Therefore, Case 2 cannot happen. Thus, we have only one possibility.

Case 3. There exists one component of F which is ∂-parallel in M1 or
M2. By applying Lemma 3.1 and Lemma 3.2 to this case, we have the stated
conclusion.

This finishes the proof of Theorem 1.1.
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F1
*

M1

A M2
Sj�

Sr�

Figure 5.

Proposition 3.3. Any minimal Heegaard splitting of M0 is strongly irre-
ducible.

Proof. Let V0 ∪S0 W0 be any minimal Heegaard splitting of M0. Since
M0 = F1×I ∪AF2×I , from the result of Schultens, we have g(S0) ≤ g(F1)+
g(F2). Since A is separating on F1 and non-separating on F2, M0 contains only
three boundary components F 1, F 2 and F3 = F 1

1 ∪ (F2\A2) ∪ F 2
1 . Note that

g(F3) = g(F1) + g(F2) − 1, and then g(S0) = g(M0) ≥ min{g(F 1) +
g(F 2), g(F 1) + g(F3), g(F 2) + g(F3)} ≥ g(F1) + g(F2). Hence we have
g(S0) = g(F1) + g(F2).

Now if V0 ∪S0 W0 is weakly reducible, then it has an untelescoping as
(V ′

1 ∪S ′
1
W ′

1)∪H1 (V ′
2 ∪S ′

2
W ′

2), where H1 is isotopic to either F ∗
1 or F ∗

2 . We may
assume that F3 ⊂ ∂−V ′

1. Since F3 is incompressible in M0 and the length of
the untelescoping is at least 2, we have g(S0) ≥ g(S ′

1) + 1 ≥ g(F3) + 2 ≥
g(F1) + g(F2) + 1, a contradiction. Hence V0 ∪S0 W0 is strongly irreducible.

Now we come to the proof of Theorem 1.2.

Proof of Theorem 1.2. Since d(Si) ≥ 2g(Mi) + 5, Lemma 2.7 im-
plies that Si is the unique minimal Heegaard splitting of Mi for i = 1, 2.
By Theorem 1.1, any minimal Heegaard splitting of M is the amalgama-
tion of minimal Heegaard splittings of M1, M0, and M2 along F 1, F 2, and
g(M) = g(M1)+g(M2). To prove Theorem 1.2, we only need to consider the
minimal Heegaard splitting V0 ∪S0 W0 of M0. By Proposition 3.3, V0 ∪S0 W0 is
strongly irreducible. M0 contains three boundary components F 1, F 2 and F3,
and the type of V0 ∪S0 W0 is only determined by the partition of its boundary
components. We may assume that F3 ⊂ ∂−V0. Note that since A is separating
on F1, g(F1) ≥ 2.

(1) When g(F2) ≥ 2, since g(F3) = g(F1) + g(F2) − 1 > g(F1), g(F2),
the only possibility is F3 = ∂−V0, F 1 ∪F 2 = ∂−W0. Hence the minimal
Heegaard splitting of M is unique.
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(2) When g(F2) = 1, g(F3) = g(F1) + g(F2) − 1 = g(F1), then there are
two possibilities: F3 = ∂−V0, F 1∪F 2 = ∂−W0 orF 1 = ∂−V0, F 2∪F3 =
∂−W0. Hence there are at most two minimal Heegaard splittings of M .

This completes the proof of Theorem 1.2.
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