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CYCLIC VECTORS IN KORENBLUM TYPE SPACES

ABDELOUAHAB HANINE∗

Abstract
In this paper we use the technique of premeasures, introduced by Korenblum in the 1970’s, to
give a characterization of cyclic functions in the Korenblum type spaces A−∞

� . In particular, we
give a positive answer to a conjecture by Deninger [7, Conjecture 42].

1. Introduction

Let D be the open unit disk in the complex plan C. Suppose that X is a topo-
logical vector space of analytic functions on D, with the property that zf ∈ X

whenever f ∈ X. Multiplication by z is thus an operator on X, and if X is
a Banach space, then it is automatically a bounded operator on space X. A
closed subspace M ⊂ X (Banach space) is said to be invariant (or z-invariant)
provided that zM ⊂ M . For a function f ∈ X, the closed linear span in X

of all polynomial multiples of f is an z-invariant subspace denoted by [f ]X;
it is also the smallest closed z-invariant subspace of X which contains f . A
function f in X is said to be cyclic (or weakly invertible) in X if [f ]X = X.
For some information on cyclic functions see [3] and the references therein.
In the case when X = A2(D) is the Bergman space, defined as

A2(D) =
{
f analytic in D :

∫ 1

0

∫ 2π

0
|f (reiθ )|2 dθ < ∞

}
,

a singular inner function Sμ,

Sμ(z) := exp − 1

2π

∫ 2π

0

eiθ + z

eiθ − z
dμ(θ), z ∈ D,

is cyclic in A2(D) if and only if its associated positive singular measure μ

places no mass on any �-Carleson set for �(t) = log(1/t). �-Carleson sets
constitute a class of thin subsets of T, they will be discussed shortly. The
necessity of this Carleson set condition was proved by H. S. Shapiro in 1967
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[21, Theorem 2], and the sufficiency was proved independently by Korenblum
in 1977 [17] and Roberts in 1979 [19, Theorem 2].

In the following a majorant � will always denote a positive non-increasing
convex differentiable function on (0, 1] such that:

• �(0) = +∞
• t�(t) is a continuous, non-decreasing and concave function on [0, 1],

and t�(t) → 0 as t → 0.

• There exists α ∈ (0, 1) such that tα�(t) is non-decreasing.

•

(1.1) �(t2) ≤ C�(t).

Typical examples of majorants � are log+ log+(1/x), (log(1/x))p, p > 0.
In this work, we shall be interested mainly in studying cyclic vectors in the

case X = A −∞
� , generalizing the theory of premeasures developed by Koren-

blum; here A −∞
� is the Korenblum type space associated with the majorant

�, defined by

A −∞
� = ∪c>0A −c

� =
⋃
c>0

{
f ∈ Hol(D) : |f (z)| ≤ exp(c�(1 − |z|))}.

With the norm

‖f ‖A−c
�

= sup
z∈D

|f (z)| exp(−c�(1 − |z|)) < ∞,

A −c
� becomes a Banach space and for every c2 ≥ c1 > 0, the inclusion

A
−c1
� ↪→ A

−c2
� is continuous. The topology on

A −∞
� = ∪c>0A −c

� ,

is the locally-convex inductive limit topology, i.e. each of the inclusions A −c
� ↪→

A −∞
� is continuous and the topology is the largest locally-convex topology

with this property. A sequence {fn}n ∈ A −∞
� converges to f ∈ A −∞

� if
and only if there exists N > 0 such that all fn and f belong to A −N

� , and
limn→+∞ ‖fn − f ‖A−N

�
= 0.

The notion of a premeasure (a distribution of the first class) and the defini-
tion of the �-boundedness property of premeasure was first introduced in [15],
for the case of �(t) = log(1/t) in connection with an extension of the Nevan-
linna theory (see also [16] and [11, Chapter 7]). Later on, in [18], Korenblum
introduced a space of �-smooth functions and proved that the so called pre-
measures of bounded �-variation are the bounded linear functionals on this
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space. Next, he established that any premeasure of bounded �-variation is the
difference of two �-bounded premeasures [18, p. 542]. Finally, he described
the Poisson integrals of �-bounded premeasures.

Our paper is organized as follows: In Section 2, we first introduce the notion
of a �-bounded premeasure, and we will prove, using some arguments of real-
variable theory, a general approximation theorem for �-bounded premeasures
which will be critical for describing the cyclic vectors in A −∞

� . Furthermore,
this theorem shows that in respect to some general measure-theoretical prop-
erties, premeasure with vanishing �-singular part (see Definition 2.4), behave
themselves in some ways like absolutely continuous measures in the classical
theory.

In Section 3, we show that every �-bounded premeasure μ generates a
harmonic function h(z) in D (the Poisson integral of μ) such that

(1.2) h(z) = O(�(1 − |z|)), |z| → 1, z ∈ D,

by the formula

h(z) =
∫

T

1 − |z|2
|eiθ − z|2 dμ.

Conversely, every real harmonic function h(z) in D, satisfying h(0) = 0 and
(1.2) is the Poisson integral of a �-bounded premeasure. (This result is for-
mulated in [18, p. 543] without proof, in a more general situation).

Finally, in Section 4 we characterize cyclic vectors in the spaces A −∞
� in

terms of vanishing the �-singular part of the corresponding premeasure. We
prove two results for two different growth ranges of the majorant �. At the end
we give two examples that show how the cyclicity property of a fixed function
changes in a scale of A�α

spaces, �α(x) = (log(1/x))α , 0 < α < 1.
Throughout the paper we use the following notation: given two functions

f and g defined on � we write f � g if for some 0 < c1 ≤ c2 < ∞ we have
c1f ≤ g ≤ c2f on �.

Acknowledgments. The author is grateful to Alexander Borichev, Omar
El-Fallah, and Karim Kellay for their useful comments and suggestions on this
paper. Also the author would like to thank referee for the valuable comments.

2. �-bounded premeasures

In this section we extend the results of two papers by Korenblum [15], [16]
on �-bounded premeasures (see also [11, Chapter 7]) from the case �(t) =
log(1/t) to the general case.

Let B(T) be the set of all (open, half-open and closed) arcs of T including
all the single points and the empty set. The elements of B(T) will be called
intervals.
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Definition 2.1. A real function defined on B(T) is called a premeasure if
the following conditions hold:

(1) μ(T) = 0

(2) μ(I1 ∪I2) = μ(I1)+μ(I2) for every I1, I2 ∈ B(T) such that I1 ∩I2 = ∅
and I1 ∪ I2 ∈ B(T)

(3) limn→+∞ μ(In) = 0 for every sequence of embedded intervals, In+1 ⊂
In, n ≥ 1, such that

⋂
n In = ∅.

Given a premeasure μ, we introduce a real valued function f
μ on (0, 2π ]

defined as follows:
f
μ(θ) = μ(Iθ ),

where
Iθ = {

ξ ∈ T : 0 ≤ arg ξ < θ
}
.

The function f
μ satisfies the following properties:

(a) f
μ(θ−) exists for every θ ∈ (0,2π ] and f

μ(θ+) exists for every θ ∈ [0, 2π)

(b) f
μ(θ) = limt→θ−

f
μ(t) for all θ ∈ (0,2π ]

(c) f
μ(2π) = limθ→0+

f
μ(θ) = 0.

Furthermore, the function f
μ(θ) has at most countably many points of discon-

tinuity.

Definition 2.2. A real premeasure μ is said to be �-bounded, if there is
a positive number Cμ such that

(2.1) μ(I) ≤ Cμ|I |�(|I |)
for any interval I .

The minimal number Cμ is called the norm of μ and is denoted by ‖μ‖+
�;

the set of all real premeasures μ such that ‖μ‖+
� < +∞ is denoted by B+

� .

Definition 2.3. A sequence of premeasures {μn}n is said to be �-weakly
convergent to a premeasure μ if :

(1) supn ‖μn‖+
� < +∞, and

(2) for every point θ of continuity of f
μ we have limn→∞

f
μn(θ) = f

μ(θ).

In this situation, the limit premeasure μ is �-bounded.
Given a closed non-empty subset F of the unit circle T, we define its �-

entropy as follows:
Entr�(F ) =

∑
n

|In|�(|In|),
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where {In}n are the component arcs of T \ F , and |I | denotes the normalized
Lebesgue measure of I on T. We set Entr�(∅) = 0.

We say that a closed set F is a �-Carleson set if F is non-empty, has
Lebesgue measure zero (i.e |F | = 0), and Entr�(F ) < +∞.

Denote by C� the set of all �-Carleson sets and by B� the set of all Borel
sets B ⊂ T such that B ∈ C�.

Definition 2.4. A function σ : B� → R is called a �-singular measure if

(1) σ is a finite Borel measure on every set in C� (i.e. σ
∣∣F is a Borel measure

on T).

(2) There is a constant C > 0 such that

|σ(F )| ≤ C Entr�(F )

for all F ∈ C�.

Given a premeasure μ in B+
� , its �-singular part is defined by :

(2.2) μs(F ) = −
∑

n

μ(In),

where F ∈ C� and {In}n is the collection of complementary intervals to F

in T. Using the argument in [15, Theorem 6] one can see that μs extends to a
�-singular measure on B�.

Proposition 2.5. If μ is a �-bounded premeasure, F ∈ C�, then μs

∣∣F is
finite and non-positive.

Proof. Let F ∈ C�. We are to prove that μs(F ) ≤ 0.
Let {In}n be the (possibly finite) sequence of the intervals complementary

to F in T. For N ≥ 1, we consider the disjoint intervals {JN
n }1≤n≤N such that

T \ ⋃N
n=1 In = ⋃N

n JN
n . Then

−
N∑

n=1

μ(In) =
N∑

n=1

μ(JN
n ) ≤ ‖μ‖+

�

N∑
n=1

|JN
n |�(|JN

n |).

Furthermore, each interval JN
n is covered by intervals Im ⊂ JN

n up to a set of
measure zero, and max1≤n≤N |JN

n | → 0 as N → ∞ (If the sequence {In}n is
finite, then all JN

n are single points for the corresponding N ). Therefore,

−
N∑

n=1

μ(In) ≤ ‖μ‖+
�

N∑
n=1

∑
Im⊂JN

n

|Im|�(|Im|) ≤ ‖μ‖+
�

∑
n>N

|In|�(|In|).
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Since F is a �-Carleson set,

− lim
N→∞

N∑
n=1

μ(In) ≤ 0.

Thus, μs

∣∣F ≤ 0.

Given a closed subset F of T, we denote by F δ its δ-neighborhood:

F δ = {ζ ∈ T : d(ζ, F ) ≤ δ}.
Proposition 2.6. Let μ be a �-bounded premeasure and let μs be its �-

singular part. Then for every F ∈ C� we have

(2.3) μs(F ) = lim
δ→0

μ(F δ).

Proof. Let F ∈ C�, and let {In}n, |I1| ≥ |I2| ≥ . . ., be the intervals of the
complement to F in T. We set

I (δ)
n = {

eiθ : dist(eiθ , T \ In) > δ
}
.

Then for |In| ≥ 2δ, we have

In = I 1
n � I (δ)

n � I 2
n

with |I 1
n | = |I 2

n | = δ. We see that

μ(F δ) = −
∑

|In|>2δ

μ(I (δ)
n ).

Using relation (2.2) we obtain that

−μs(F ) =
∑

n

μ(In)

=
∑

|In|≤2δ

μ(In) +
∑

|In|>2δ

[
μ(I 1

n ) + μ(I (δ)
n ) + μ(I 2

n )
]

=
∑

|In|≤2δ

μ(In) − μ(F δ) +
∑

|In|>2δ

[
μ(I 1

n ) + μ(I 2
n )

]
.

Therefore,

μ(F δ) − μs(F ) =
∑

|In|≤2δ

μ(In) +
∑

|In| > 2δ
[
μ(I 1

n ) + μ(I 2
n )

]
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The first sum tends to zero as δ → 0, and it remains to prove that

(2.4) lim
δ→0

∑
|In|>2δ

μ(I 1
n ) = 0.

We have∑
|In|>2δ

μ(I 1
n ) ≤ C

∑
|In|>δ

δ�(δ) = C
∑

|In|>δ

δ�(δ)

|In|�(|In|) · |In|�(|In|).

Since the function t �→ t�(t) does not decrease, we have

δ�(δ)

|In|�(|In|) ≤ 1, |In| > δ.

Furthermore,
lim
δ→0

δ�(δ)

|In|�(|In|) = 0, n ≥ 1.

Since ∑
n≥1

|In|�(|In|) < ∞,

we conclude that (2.4), and, hence, (2.3) hold.

Definition 2.7. A premeasure μ in B+
� is said to be �-absolutely continu-

ous if there exists a sequence of �-bounded premeasures (μn)n such that:

(1) supn ‖μn‖+
� < +∞.

(2) supI∈B(T) |(μ + μn)(I )| → 0 as n → +∞.

Theorem 2.8. Let μ be a premeasure in B+
� . Then μ is �-absolutely con-

tinuous if and only if its �-singular part μs is zero.

The only if part holds in a more general situation considered by Korenblum,
[18, Corollary, p. 544]. On the other hand, the if part does not hold for differ-
ences of �-bounded premeasures (premeasures of �-bounded variation), see
[18, Remark, p. 544].

To prove this theorem we need several lemmas. The first one is a linear
programming lemma from [11, Chapter 7].

Lemma 2.9. Consider the following system ofN(N+1)/2 linear inequalities
in N variables x1, . . . , xN

l∑
j=k

xj ≤ bk,l, 1 ≤ k ≤ l ≤ N,
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subject to the constraint: x1 + x2 + · · · + xN = 0. This system has a solution
if and only if ∑

n

bkn,ln ≥ 0

for every simple covering P = {[kn, ln]}n of [1, N ].

The following lemma gives a necessary and sufficient conditions for a pre-
measure in B+

� to be �-absolutely continuous.

Lemma 2.10. Let μ be a �-bounded premeasure. Then μ is �-absolutely
continuous if and only if there is a positive constant C > 0 such that for every
ε > 0 there exists a positive M such that the system

(2.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xk,l ≤ M|Ik,l|�(|Ik,l|)
μ(Ik,l) + xk,l ≤ min{C|Ik,l|�(|Ik,l|), ε}

xk,l =
l−1∑
s=k

xs,s+1

x0,N = 0

in variables xk,l, 0 ≤ k < l ≤ N , has a solution for every positive integer N .
Here Ik,l are the half-open arcs of T defined by

Ik,l =
{
eiθ : 2π

k

N
≤ θ < 2π

l

N

}
.

Proof. Suppose that μ is �-absolutely continuous and denote by {μn} a se-
quence of �-bounded premeasures satisfying the conditions of Definition 2.7.
Set

C = sup
n

‖μ + μn‖+
�, M = sup

n

‖μn‖+
�,

and let ε > 0. For large n, the numbers xk,l = μn(Ik,l), 0 ≤ k < l ≤ N ,
satisfy relations (2.5) for all N .

Conversely, suppose that for some C > 0 and for every ε > 0 there exists
M = M(ε) > 0 such that for every N there are {xk,l}k,l (depending on N )
satisfying relations (2.5). We consider the measures dμN defined on Is,s+1,
0 ≤ s < N , by

dμN(ξ) = xs,s+1

|Is,s+1| |dξ |,

where |dξ | is normalized Lebesgue measure on the unit circle T. To show that
μN ∈ B+

� , it suffices to verify that the quantity supI
μ(I)

|I |�(|I |) is finite for every
interval I ∈ B(T). Fix I ∈ B(T) such that 1 /∈ I .
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If I ⊂ Ik,k+1, then

μN(I) = xk,k+1

|Ik,k+1| |I | ≤ xk,k+1

|Ik,k+1|�(|Ik,k+1|) |I |�(|I |) ≤ M|I |�(|I |).

If I = Ik,l , then

μN(Ik,l) =
l−1∑
s=k

μN(Is,s+1) =
l−1∑
s=k

xs,s+1 = xk,l ≤ M|Ik,l|�(|Ik,l|).

Otherwise, denote by Ik,l the largest interval such that Ik,l ⊂ I . We have

μN(I) = μN(Ik,l) + μN(I \ Ik,l)

≤ M|Ik,l|�(|Ik,l|) + max(xk−1,k, 0) + max(xl,l+1, 0)

≤ 3M|Ik,l|�(|Ik,l|) ≤ 3M|I |�(|I |).
Thus, μN is a �-bounded premeasure. Next, using a Helly-type selection

theorem for premeasures due to Cyphert and Kelingos [6, Theorem 2], we can
find a �-bounded premeasure ν and a subsequence μNk

∈ B+
� such that {μNk

}k
converge �-weakly to ν. Furthermore, ν satisfies the following conditions:
ν(J ) ≤ 3M|J |�(|J |) and μ(J ) + ν(J ) ≤ min{C|J |�(|J |), ε} for every
interval J ⊂ T \ {1}.

Now, if I is an interval containing the point 1, we can represent it as I =
I1 � {1} � I2, for some (possibly empty) intervals I1 and I2. Then

μ(I) + ν(I ) = (μ + ν)(I1) + (μ + ν)(I2) + (μ + ν)({1})
≤ (μ + ν)(I1) + (μ + ν)(I2).

Therefore, for every I ∈ B(T) we have μ(J ) + ν(J ) ≤ 2ε. Since (μ + ν)(T \
I ) = −μ(I) − ν(I ), we have

|μ(J ) + ν(J )| ≤ 2ε.

Thus μ is �-absolutely continuous.

Lemma 2.11. Let μ ∈ B+
� be not �-absolutely continuous. Then for every

C > 0 there is ε > 0 such that for all M > 0, there exists a simple covering
of T by a finite number of half-open intervals {In}n, satisfying the relation∑

n

min
{
μ(In) + M|In|�(|In|), C|In|�(|In|), ε

}
< 0.
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Proof. By Lemma 2.10, for every C > 0 there exists a number ε > 0 such
that for all M > 0, the system (2.5) has no solutions for some N ∈ N. In other
words, there are no {xk,l}k,l such that:

(2.6)

l−1∑
s=k

μ(Is,s+1) + xs,s+1

≤ min
{
μ(Ik,l) + M|Ik,l|�(|Ik,l|), C|Ik,l|�(|Ik,l|), ε

}
with xk,l = ∑l−1

s=k xs,s+1 and x0,N = 0.
We set Xj = μ(Ij,j+1) + xj,j+1, and

bk,l = min
{
μ(Ik,l+1) + M|Ik,l+1|�(|Ik,l+1|), C|Ik,l+1|�(|Ik,l+1|), ε

}
.

Then relations (2.6) are rewritten as

l∑
j=k

Xj ≤ bk,l, 0 ≤ k < l ≤ N − 1.

Therefore, we are in the conditions of Lemma 2.9 with variables Xj . We con-
clude that there is a simple covering of the circle T by a finite number of
half-open intervals {In} such that∑

n

min
{
μ(In) + M|In|�(|In|), C|In|�(|In|), ε

}
< 0.

In the following lemma we give a normal families type result for the �-
Carleson sets.

Lemma 2.12. Let {Fn}n be a sequence of sets on the unit circle, and let each
Fn be a finite union of closed intervals. We assume that

(i) |Fn| → 0, n → ∞,

(ii) Entr�(Fn) = O(1), n → ∞.

Then there exists a subsequence {Fnk
}k and a �-Carleson set F such that: For

every δ > 0 there is a natural number N with

(a) Fnk
⊂ F δ ,

(b) F ⊂ F δ
nk

.

for all k ≥ N .

Proof. Let {Ik,n}k be the complementary arcs to Fn such that |I1,n| ≥
|I2,n| ≥ · · ·. We show first that the sequence {|I1,n|}n is bounded away from
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zero. Since the function � is non-increasing, we have

Entr�(Fn) =
∑

k

|Ik,n|�(|Ik,n|) ≥ |T \ Fn|�(|I1,n|),

and therefore,
Entr�(Fn)

|T \ Fn| ≥ �(|I1,n|).

Now the conditions (i) and (ii) of lemma and the fact that �(0+) = +∞ imply
that the sequence {|I1,n|}n is bounded away from zero.

Given a subsequence {F (m)
k }k of Fn, we denote by (I

(m)
j,k )j the complement-

ary arcs to F
(m)
k . Let us choose a subsequence {F (1)

k }k such that

I
(1)
1,k = (a

(1)
k , b

(1)
k ) → (a1, b1) = J1

as k → +∞, where J1 is a non-empty open arc.
If |J1| = 1, then F = T \ J1 is a �-Carleson set, and we are done: we can

take {Fnk
}k = {F (l)

k }k .
Otherwise, if |J1| < 1, then, using the above method we show that

�(|I (1)
2,k |) ≤ Entr�(F

(1)
k )

|T \ F
(1)
k | − |I (1)

1,k |
.

Since limk→+∞ |T \F
(1)
k |− |I (1)

1,k | = 1 −|J1| > 0, the sequence �(|I (1)
2,k |) is

bounded, and hence, the sequence |I (1)
2,k | is bounded away from zero. Next we

choose a subsequence {F (2)
k }k of {F (1)

k }k such that the arcs I
(2)
2,k = (a2

k , b
2
k) tend

to (a(2), b(2)) = J2, where J2 is a non-empty open arc. Repeating this process
we can have two possibilities. First, suppose that after a finite number of steps
we have |J1| + · · · + |Jm| = 1, and then we can take {Fnk

}k = {F (m)
k }k ,

I
(m)
j,k → Jj , 1 ≤ j ≤ m,

as k → +∞, and F = T \ ∪m
j=1Jj is �-Carleson.

Now, if the number of steps is infinite, then using the estimate

�(|Jl|) ≤ supn{Entr�(Fn)}
1 − ∑l−1

k=1 |Jk|
,

and the fact |Jm| → 0 as m → ∞, we conclude that

∞∑
j=1

|Jj | = 1.
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We can set {Fnk
}k = {F (m)

m }m, F = T \ ⋃
j≥1 Jj .

In all three situations the properties (a) and (b) follow automatically.

Proof of Theorem 2.8

First we suppose that μ is �-absolutely continuous, and prove that μs = 0.
Choose a sequence μn of �-bounded premeasures satisfying the properties
(1) and (2) of Definition 2.7. Let F be a �-Carleson set and let (In)n be the
sequence of the complementary arcs to F . Denote by (μ+μn)s the �-singular
part of μ + μn. Then

−(μ + μn)s(F ) =
∑

k

(μ + μn)(Ik)

=
∑
k≤N

(μ + μn)(Ik) +
∑
k>N

(μ + μn)(Ik)

≤
∑
k≤N

(μ + μn)(Ik) + C
∑
k>N

|Ik|�(|Ik|)

Using the property (2) of Definition 2.7 we obtain that

− lim inf
n→∞ (μ + μn)s(F ) ≤ C

∑
k>N

|Ik|�(|Ik|).

Since F ∈ C�, we have
∑

k>N |Ik|�(|Ik|) → 0 as N → +∞, and hence
lim infn→∞(μ + μn)s(F ) ≥ 0. Since (μ + μn) ∈ B+

� , by Proposition 2.5
its �-singular part is non-positive. Thus limn→∞(μ + μn)s(F ) = 0 for all
F ∈ C�, which proves that μs = 0.

Now, let us suppose that μ is not �-absolutely continuous. We apply
Lemma 2.11 with C = 4‖μ‖+

� and find ε > 0 such that for all M > 0,
there is a simple covering of circle T by a half-open intervals {I1, I2, . . . , IN }
such that

(2.7)
∑

n

min
{
μ(In) + M|In|�(|In|), 4‖μ‖+

�|In|�(|In|), ε
}

< 0.

Let us fix a number ρ > 0 satisfying the inequality ρ�(ρ) ≤ ε/4‖μ‖+
�.

We divide the intervals {I1, I2, . . . IN } into two groups. The first group {I (1)
n }n

consists of intervals In such that

(2.8) min{μ(In) + M|In|�(|In|), 4‖μ‖+
�|In|�(|In|), ε}

= μ(In) + M|In|�(|In|),
and the second one is {I (2)

n }n = {In}n \ {I (1)
n }n.
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Using these definitions and the fact that � is non-increasing, we rewrite
inequality (2.7) as

(2.9)
∑

n

μ(I (1)
n ) + M

∑
n

|I (1)
n |�(|I (1)

n |)

< −4‖μ‖+
�

∑
n:|I (2)

n |<ρ

|I (2)
n |�(|I (2)

n |) − ε Card{n : |I (2)
n | ≥ ρ}.

Next we establish three properties of these families of intervals. From now
on we assume that M > 4‖μ‖+

�.
(1) We have {I (2)

n : |I (2)
n | ≥ ρ} �= ∅. Otherwise, by (2.9), we would have

0 = μ(T) =
∑

n

μ(I (1)
n ) +

∑
n

μ(I (2)
n )

≤ −M
∑

n

|I (1)
n |�(|I (1)

n |)

− 4‖μ‖+
�

∑
n

|I (2)
n |�(|I (2)

n |) + ‖μ‖+
�

∑
n

|I (2)
n |�(|I (2)

n |)

≤ −M
∑

n

|I (1)
n |�(|I (1)

n |) − 3‖μ‖+
�

∑
n

|I (2)
n |�(|I (2)

n |) < 0.

(2) We have
∑

n |I (2)
n |�(|I (2)

n |) ≤ 2�(ρ). To prove this relation, we notice
first that for every simple covering {Jn}n of T, we have

0 = μ(T) =
∑

n

μ(Jn) =
∑

n

μ(Jn)
+ −

∑
n

μ(Jn)
−,

and hence, ∑
n

|μ(Jn)| =
∑

n

μ(Jn)
+ +

∑
n

μ(Jn)
−

= 2
∑

n

μ(Jn)
+ ≤ 2‖μ‖+

�

∑
n

|Jn|�(|Jn|).

Applying this to our simple covering, we get∑
n

|μ(I (1)
n )| +

∑
n

|μ(I (2)
n )| ≤ 2‖μ‖+

�

∑
n

[|I (1)
n |�(|I (1)

n |) + |I (2)
n |�(|I (2)

n |)],
and hence,

−
∑

n

μ(I (1)
n ) ≤ 2‖μ‖+

�

∑
n

[|I (1)
n |�(|I (1)

n |) + |I (2)
n |�(|I (2)

n |)].
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Now, using (2.9) we obtain that

M
∑

n

|I (1)
n |�(|I (1)

n |) + 4‖μ‖+
�

∑
|I (2)

n |<ρ

|I (2)
n |�(|I (2)

n |)

≤ 2‖μ‖+
�

∑
n

[|I (1)
n |�(|I (1)

n |) + |I (2)
n |�(|I (2)

n |)],
and hence,

(2.10)
(
M − 2‖μ‖+

�

) ∑
n

|I (1)
n |�(|I (1)

n |)

≤ 2‖μ‖+
�

[ ∑
|I (2)

n |≥ρ

|I (2)
n |�(|I (2)

n |) −
∑

|I (2)
n |<ρ

|I (2)
n |�(|I (2)

n |)
]
.

As a consequence, we have

∑
|I (2)

n |<ρ

|I (2)
n |�(|I (2)

n |) ≤
∑

|I (2)
n |≥ρ

|I (2)
n |�(|I (2)

n |),

and, finally,

∑
n

|I (2)
n |�(|I (2)

n |) ≤ 2
∑

|I (2)
n |≥ρ

|I (2)
n |�(|I (2)

n |) ≤ 2
∑

n

|I (2)
n |�(ρ) ≤ 2�(ρ).

(3) We have

∑
n

|I (1)
n |�(|I (1)

n |) ≤ 2‖μ‖+
�

M − 2‖μ‖+
�

· �(ρ).

This property follows immediately from (2.10).

We set FM = ⋃
n I

(1)
n . Inequality (2.9) and the properties (1)–(3) show that

(i) Entr�(FM) = O(1), M → ∞,

(ii) |FM |�(|FM |) ≤ 2‖μ‖+
�

M−2‖μ‖+
�

· �(ρ),

(iii) μ(FM) ≤ −4‖μ‖+
�

[∑
n |I (1)

n |�(|I (1)
n |)+∑

n:|I (2)
n |<ρ

|I (2)
n |�(|I (2)

n |)]− ε.

By Lemma 2.12 there exists a subsequence Mn → +∞ such that F ∗
n := FMn

(composed of a finite number of closed arcs) converge to a �-Carleson set



cyclic vectors in korenblum type spaces 67

F . More precisely, F ⊂ F ∗
n

δ and F ∗
n ⊂ F δ for every fixed δ > 0 and for

sufficiently large n. Furthermore, (iii) yields
(2.11)

μ(F ∗
n ) ≤ −4‖μ‖+

�

[∑
k

|Rk,n|�(|Rk,n|) +
∑

k:|Lk,n|<ρ

|Lk,n|�(|Lk,n|)
]

− ε,

where F ∗
n = ⊔

k Rk,n and T \ F ∗
n = ⊔

k Lk,n.
It remains to show that

μs(F ) < 0.

Otherwise, if μs(F ) = 0, then by Proposition 2.6 we have

lim
δ→0

μ(F δ) = 0.

Modifying a bit the set F ∗
n , if necessary, we obtain limδ→0 μ(F ∗

n ∩ F δ) = 0.
Now we can choose a sequence δn > 0 rapidly converging to 0 and a sequence
{kn} rapidly converging to ∞ such that the sets Fn defined by

Fn = F ∗
kn

\ F δn+1 ⊂ F δn \ F δn+1 ,

and consisting of a finite number of intervals {Ik,n}k satisfy the inequalities

(2.12) μ(Fn) ≤ −4‖μ‖+
�

[∑
k

|Ik,n|�(|Ik,n|) +
∑

k

|Jn,k|�(|Jn,k|)
]

− ε/2,

where
⊔

k Jn,k = (F δn \ F δn+1) \ Fn =: Gn.
We denote by In, Jn, and Kn the systems of intervals that form Fn, Gn,

and F δn , respectively. Furthermore, we denote by I0 be the system of inter-
vals complementary to F δ1 , and we put Sn = (∪n

k=1Ik) ∪ (∪n
k=1Jn) ∪ Kn+1.

Summing up the estimates on μ(Fn) in (2.12) we obtain

∑
I∈I0

|μ(I)| +
∑
I∈Sn

|μ(I)| ≥
n∑

i=1

|μ(Fi)|

≥ 4‖μ‖+
�

n∑
i=1

[∑
k

|Ii,k|�(|Ii,k|) +
∑

k

|Ji,k|�(|Ji,k|)
]

+ nε/2

= 4‖μ‖+
�

∑
I∈Sn

|I |�(|I |) − 4‖μ‖+
�

∑
I∈Kn+1

|I |�(|I |) + nε/2

= 4‖μ‖+
�

[ ∑
I∈Sn∪I0

|I |�(|I |) −
∑

I∈Kn+1

|I |�(|I |)
]
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− 4‖μ‖+
�

∑
I∈I0

|I |�(|I |) + nε/2.(2.13)

Notice that∑
I∈Kn+1

|I |�(|I |)

≤
∑

|Jk |<2δn+1

|Jk|�(|Jk|) + 2δn+1�(δn+1) · Card{k : |Jk| ≥ 2δn+1},

where {Jk}k , |J1| ≥ |J2| ≥ · · · are the complementary arcs to the �-Carleson
set F . Since limt→0 t�(t) = 0, we obtain that

lim
n→+∞

∑
I∈Kn+1

|I |�(|I |) = 0.

Thus for sufficiently large n, (2.13) gives us the following relation∑
I∈Sn∪I0

|μ(I)| ≥ 4‖μ‖+
�

∑
I∈Sn∪I0

|I |�(|I |)

where Sn ∪I0 is a simple covering of the unit circle. However, since μ ∈ B+
� ,

we have∑
I∈Sn∪I0

|μ(I)| = 2
∑

I∈Sn∪I0

max(μ(I), 0) ≤ 2‖μ‖+
�

∑
I∈Sn∪I0

|I |�(|I |).

This contradiction completes the proof of the theorem.

3. Harmonic functions of restricted growth

Every bounded harmonic function can be represented via the Poisson integral
of its boundary values. In the following theorem we show that a large class
of real-valued harmonic functions in the unit disk D can be represented as the
Poisson integrals of �-bounded premeasures. Before formulating the main
result of this section, let us introduce some notations.

Definition 3.1. Let f be a function in C1(T) and let μ ∈ B+
� . We define

the integral of the function f with respect to μ by the formula∫
T
f dμ =

∫ 2π

0
f (eit ) d

f
μ(t).

In particular, we have∫ 2π

0

1 − |z|2
|eiθ − z|2 dμ(θ) = −

∫ 2π

0

(
∂

∂θ

1 − |z|2
|eiθ − z|2

)
f
μ(θ) dθ.
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Given a �-bounded premeasure μ we denote by P [μ] its Poisson integral:

P [μ](z) =
∫ 2π

0

1 − |z|2
|eiθ − z|2 dμ(θ).

Proposition 3.2. Let μ ∈ B+
� . The Poisson integral P [μ] satisfies the

estimate
P [μ](z) ≤ 10‖μ‖+

��(1 − |z|), z ∈ D.

Proof. It suffices to verify the estimate on the interval (0, 1). Let 0 < r <

1. Then

P [μ](r) =
∫ 2π

0

1 − r2

|eiθ − r|2 dμ(θ) = −
∫ 2π

0

[
∂

∂θ

(
1 − r2

|eiθ − r|2
)]

f
μ(θ) dθ

=
∫ 2π

0

2r(1 − r2) sin θ

(1 − 2r cos θ + r2)2
μ(Iθ ) dθ

=
∫ π

0

2r(1 − r2) sin θ

(1 − 2r cos θ + r2)2
μ(Iθ ) dθ

−
∫ 0

π

− 2r(1 − r2) sin θ

(1 − 2r cos θ + r2)2
μ(I2π−θ ) dθ

=
∫ π

0

2r(1 − r2) sin θ

(1 − 2r cos θ + r2)2

[
μ(Iθ ) + μ([−θ, 0))

]
dθ

=
∫ π

0

2r(1 − r2) sin θ

(1 − 2r cos θ + r2)2
μ([−θ, θ)) dθ.

Integrating by parts and using the fact that � is decreasing and t�(t) is
increasing we get

P [μ](r) ≤ ‖μ‖+
��(1 − r)

[
(1 − r)

∫ 1−r
2

0

2r(1 − r2) sin θ

(1 − 2r cos θ + r2)2
dθ

−
∫ π

1−r
2

2θ

[
∂

∂θ

(
1 − r2

|eiθ − r|2
)]

dθ

]

≤ ‖μ‖+
��(1 − r)

[
2(1 − r)3

∫ 1−r
2

0

dθ

(1 − r)4

+ (1 − r)(1 − r2)

(1 − r)2
+ 2

∫ π

0

1 − r2

|eiθ − r|2 dθ

]
≤ 10‖μ‖+

��(1 − r).
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The following theorem is stated by Korenblum in [18, Theorem 1, p. 543]
without proof, in a more general situation.

Theorem 3.3. Let h be a real-valued harmonic function on the unit disk
such that h(0) = 0 and

h(z) = O(�(1 − |z|)), |z| → 1, z ∈ D.

Then the following statements hold.

(1) For every open arc I of the unit circle T the following limit exists:

μ(I) = lim
r→1−

μr(I ) = lim
r→1−

∫
I

h(rξ) |dξ | < ∞.

(2) μ is a �-bounded premeasure.

(3) The function h is the Poisson integral of the premeasure μ:

h(z) =
∫ 2π

0

1 − |z|2
|eiθ − z|2 dμ(θ), z ∈ D.

Proof. Let

h(reiθ ) =
+∞∑

n=−∞
anr

|n|einθ .

Since a0 = h(0) = 0, we have∫ 2π

0
h+(reiθ ) dθ =

∫ 2π

0
h−(reiθ ) dθ = 1

2

∫ 2π

0
|h(reiθ )| dθ.

Furthermore,

|an| =
∣∣∣∣ r−|n|

2π

∫ 2π

0
h(reiθ )e−inθ dθ

∣∣∣∣
≤ r−|n|

2π

∫ 2π

0
|h(reiθ )| dθ = r−|n|

π

∫ 2π

0
h+(reiθ ) dθ

≤ Cr−|n|�(1 − r)

≤ C1�

(
1

|n|
)

,
1

|n| = 1 − r, n ∈ Z \ {−1, 0, 1}.(3.1)

Let I = {eiθ : α ≤ θ ≤ β} be an arc of T, τ = β − α. For θ ∈ [α, β] we
define

t (θ) = min{θ − α, β − θ}, η(θ) = 1

τ
(β − θ)(θ − α).
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Then

1

2
t (θ) ≤ η(θ) ≤ t (θ), |η′(θ)| ≤ 1, η′′(θ) = −2

τ
, θ ∈ [α, β].

Given p > 2 we introduce the function q(θ) = 1 − η(θ)p satisfying the
following properties:

|q ′(θ)| ≤ pη(θ)p−1, |q ′′(θ)| ≤ p2η(θ)p−2, θ ∈ (α, β).

Integrating by parts we obtain for |n| ≥ 1 and τ < 1 that

∣∣∣∣
∫ β

α

(1 − q(θ)|n|)einθ dθ

∣∣∣∣
= 1

|n|
∣∣∣∣
∫ β

α

|n|q(θ)|n|−1q ′(θ)einθ dθ

∣∣∣∣
≤ |n| − 1

|n|
∫ β

α

q(θ)|n|−2|q ′(θ)|2 dθ + 1

|n|
∫ β

α

q(θ)|n|−1|q ′′(θ)| dθ

≤ 2p2
∫ τ/2

0

(
1 −

[
t

2

]p)|n|−2

t2p−2 dt + 2p2

|n|
∫ τ/2

0

(
1 −

[
t

2

]p)|n|−1

tp−2 dt

≤ Cp

[∫ τ/4

0

(
1 − tp

)|n|−2
t2p−2 dt + 1

|n|
∫ τ/4

0

(
1 − tp

)|n|−1
tp−2 dt

]
,

and, hence,∣∣∣∣
∫ β

α

(1 − q(θ)|n|)einθ dθ

∣∣∣∣
≤ C1,pτ max

0≤t≤1

{(
1 − tp

)|n|−2
t2p−2 + 1

|n|
(
1 − tp

)|n|−1
tp−2

}

≤ C2,pτ |n|−2(1− 1
p
)
.

On the other hand, we have

1

2π

∫
I

h(rξ) |dξ | = 1

2π

∫ β

α

h(rq(θ)eiθ ) dθ

+ 1

2π

∫ β

α

[h(reiθ ) − h(rq(θ)eiθ )] dθ.
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By (3.1), we obtain∣∣∣∣ 1

2π

∫ β

α

[h(reiθ ) − h(rq(θ)eiθ )] dθ

∣∣∣∣
≤ 1

2π

∑
n∈Z

|an|
∣∣∣∣
∫ β

α

r |n|(1 − q(θ)|n|)einθ dθ

∣∣∣∣
≤ C3,pτ

∑
n∈Z

|an|(|n| + 1)
−2

(
1− 1

p

)

≤ C4,pτ
∑
n∈Z

�

(
1

max(|n|, 1)

)
(|n| + 1)

−2
(

1− 1
p

)
.

Therefore, if t �→ tα�(t) increase, and

(3.2) α + 2

p
< 1,

then ∣∣∣∣ 1

2π

∫ β

α

[h(reiθ ) − h(rq(θ)eiθ )] dθ

∣∣∣∣ ≤ C5,pτ.

Since �(xp) ≤ Cp�(x), we obtain∣∣∣∣ 1

2π

∫ β

α

h(rq(θ)eiθ ) dθ

∣∣∣∣ ≤ C

∫ β

α

�(1 − q(θ)) dθ ≤ C

∫ β

α

�

(
t (θ)

2

)
dθ

≤ C1

∫ τ/4

0
�(t) dt = C1

∫ τ/4

0
t−αtα�(t) dt

≤ C2τ
α�(τ)

∫ τ/4

0
t−α dt = C3τ�(τ).

Hence,
μr(I ) ≤ C|I |�(|I |)

for some C independent of I .
Given r ∈ (0, 1), we define hr(z) = h(rz). The hr is the Poisson integral

of dμr = hr(e
iθ ) dθ :

hr(z) =
∫

T

1 − |z|2
|eiθ − z|2 dμr(θ)

The set {μr : r ∈ (0, 1)} is a uniformly �-bounded family of premeasures.
Using a Helly-type selection theorem [15, Theorem 1, p. 204], we can find



cyclic vectors in korenblum type spaces 73

a sequence of premeasures μrn
∈ B+

� converging weakly to a �-bounded
premeasure μ as n → ∞, limn→∞ rn = 1. Then

μ(I) ≤ C|I |�(|I |)
for every arc I , and

hrn
(z) = −

∫ 2π

0

∂

∂θ

(
1 − |z|2
|eiθ − z|2

)
f
μn(θ) dθ.

Passing to the limit we conclude that

h(z) =
∫

T

1 − |z|2
|eiθ − z|2 dμ(θ).

4. Cyclic vectors

Given a �-bounded premeasure μ, we consider the corresponding analytic
fuction

(4.1) fμ(z) = exp
∫ 2π

0

eiθ + z

eiθ − z
dμ(θ).

If μ̃ is a positive singular measure on the circle T, we denote by Sμ̃ the as-
sociated singular inner function. Notice that in this case μ = μ̃(T)m − μ̃

is a premeasure, and we have Sμ̃ = fμ/Sμ̃(0); m is (normalized) Lebesgue
measure.

Let f be a zero-free function in A −∞
� such that f (0) = 1. According to

Theorem 3.3, there is a premeasure μf ∈ B+
� such that

f (z) = exp
∫ 2π

0

eiθ + z

eiθ − z
dμf (θ).

The following result follows immediately from Theorem 2.8.

Theorem 4.1. Let f ∈ A −∞
� be a zero-free function such that f (0) = 1.

If (μf )s ≡ 0, then f is cyclic in A −∞
� .

Proof. Suppose that (μf )s ≡ 0. By Theorem 2.8, μf is �-absolutely con-
tinuous. Let {μn}n≥1 be a sequence of �-bounded premeasures from Defini-
tion 2.7. We set

gn(z) = exp
∫ 2π

0

eiθ + z

eiθ − z
dμn(θ), z ∈ D.
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By Proposition 3.2, gn ∈ A −∞
� , and

f (z)gn(z) = exp
∫ 2π

0

eiθ + z

eiθ − z
d(μf + μn)(θ)

= exp

[
−

∫ 2π

0

∂

∂θ

(
eiθ + z

eiθ − z

)
[f
μn(θ) − f

μ(θ)] dθ

]

= exp

[
−

∫ 2π

0

∂

∂θ

(
eiθ + z

eiθ − z

)
[μ(Iθ ) + μn(Iθ )] dθ

]
.

Again by Definition 2.7, we obtain that f (z)gn(z) → 1 uniformly on compact
subsets of unit disk D. This yields that fgn → 1 in A −∞

� as n → ∞.

From now on, we deal with the statements converse to Theorem 4.1. We’ll
establish two results valid for different growth ranges of the majorant �. More
precisely, we consider the following growth and regularity assumptions:

for every c > 0, the function x �→ exp[c�(1/x)] is(C1)

concave for large x,

lim
t→0

�(t)

log(1/t)
= ∞.(C2)

Examples of majorants � satisfying condition (C1) include

(log(1/x))p, 0 < p < 1, and log(log(1/x)), x → 0.

Examples of majorants � satisfying condition (C2) include

(log(1/x))p, p > 1.

Thus, we consider majorants which grow less rapidly than the Korenblum
majorant (�(x) = log(1/x)) in Case 1 or more rapidly than the Korenblum
majorant in Case 2.

4.1. Weights � satisfying condition (C1)

We start with the following observation:

�(t) = o(log 1/t), t → 0.

Next we pass to some notations and auxiliary lemmas. Given a function f in
L1(T), we denote by P [f ] its Poisson transform,

P [f ](z) = 1

2π

∫ 2π

0

1 − |z|2
|eiθ − z|f (eiθ ) dθ, z ∈ D.
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Denote by A(D) the disk-algebra, i.e., the algebra of functions continuous on
the closed unit disk and holomorphic in D. A positive continuous increasing
function ω on [0, ∞) is said to be a modulus of continuity if ω(0) = 0,
t �→ ω(t)/t decreases near 0, and limt→0 ω(t)/t = ∞. Given a modulus of
continuity ω, we consider the Lipschitz space Lipω(T) defined by

Lipω(T) = {f ∈ C(T) : |f (ξ) − f (ζ )| ≤ C(f )ω(|ξ − ζ |)}.
Since the function t �→ exp[2�(1/t)] is concave for large t , and �(t) =

o(log(1/t)), t → 0, we can apply a result of Kellay [12, Lemma 3.1], to get a
non-negative summable function �� on [0, 1] such that

e
2�

(
1

n+1

)
− e

2�

(
1
n

)
�

∫ 1

1− 1
n

��(t) dt, n ≥ 1.

Next we consider the Hilbert space L2
��

(T) of the functions f ∈ L2(T) such
that

‖f ‖2
��

= |P [f ](0)|2 +
∫

D

P [|f |2](z) − |P [f ](z)|2
1 − |z|2 ��(|z|) dA(z) < ∞,

where dA denote the normalized area measure. We need the following lemma.

Lemma 4.2. Under our conditions on � and ��, we have

(1) ‖f ‖2
��

� ∑
n∈Z |f̂ (n)|2e2�(1/n), f ∈ L2

��
(T),

(2) the functions exp(−c�(t)) are moduli of continuity for c > 0,

(3) for some positive a, the function ρ(t) = exp
(− 3

2a
�(t)

)
satisfies the

property
Lipρ(T) ⊂ L2

��
(T).

For the first statement see [5, Lemma 6.1] (where it is attributed to Aleman
[1]); the second statement is [5, Lemma 8.4]; the third statement follows from
[5, Lemmas 6.2 and 6.3].

Recall that

A −1
� = {f ∈ Hol(D) : |f (z)| ≤ C(f ) exp(�(1 − |z|))}.

Lemma 4.3. Under our conditions on �, there exists a positive number c

such that
P+ Lipe−c�(T) ⊂ (A −1

� )∗

via the Cauchy duality
〈f, g〉 =

∑
n≥0

anĝ(n),
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where f (z) = ∑
n≥0 anz

n ∈ A −1
� , g ∈ Lipe−c�(T), and P+ is the orthogonal

projector from L2(T) onto H2(D).

Proof. Denote

L2
�(D) =

{
f ∈ Hol(D) :

∫
D

|f (z)|2|�′(1 − |z|)|e−2�(1−|z|) dA(z) < +∞
}
,

and

B2
� =

{
f (z) =

∑
n≥0

anz
n : |a0|2 +

∑
n>0

|an|2e−2�(1/n) < ∞
}
.

Let us prove that

(4.2) L2
�(D) = B2

�.

To verify this equality, it suffices sufficient to check that

e−2�(1/n) �
∫ 1

0
r2n+1|�′(1 − r)|e−2�(1−r) dr.

In fact,∫ 1

1−1/n

r2n+1|�′(1 − r)|e−2�(1−r) dr �
∫ 1

1−1/n

|�′(1 − r)|e−2�(1−r) dr

� e
−2�

(
1
n

)
, n ≥ 1.

On the other hand,∫ 1−1/n

0
r2n+1|�′(1 − r)|e−2�(1−r) dr

= −
∫ 1−1/n

0
r2n+1 de−2�(1−r)

� −e−2�(1/n) + (2n + 1)

∫ 1−1/n

0
r2ne−2�(1−r) dr

� n

n∑
k=1

e−2n/ke−2�(1/k) 1

k2
.

Since the function exp
[
2�(1/x)

]
is concave, we have e2�(1/k) ≥ k

n
e2�(1/n),

and hence,
e−2�(1/k) ≤ n

k
e−2�(1/n).
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Therefore,∫ 1−1/n

0
r2n+1|�′(1 − r)|e−2�(1−r) dr

≤ Cn2e−2�(1/n)

n∑
k=1

e−2n/k 1

k3
� e−2�(1/n),

and (4.2) follows.
Since A −1

� ⊂ L2
�(D), we have (B2

�)∗ ⊂ (A −1
� )∗. By Lemma 4.2, we have

P+ Lipρ(T) ⊂ (B2
�)∗. Thus,

P+ Lipρ(T) ⊂ (A −1
� )∗.

Lemma 4.4. Let f ∈ A −n
� for some n > 0. The function f is cyclic in

A −∞
� if and only if there exists m > n such that f is cyclic in A −m

� .

Proof. Notice that the space A −∞
� is endowed with the inductive limit

topology induced by the spaces A −N
� . A sequence {fn}n ∈ A −∞

� converges
to g ∈ A −∞

� if and only if there exists N > 0 such that all fn and g belong to
A −N

� , and limn→+∞ ‖fn − g‖A−N
�

= 0. The statement of the lemma follows.

Theorem 4.5. Let μ ∈ B+
� , and let the majorant � satisfy condition (C1).

Then the function fμ is cyclic in A −∞
� if and only if μs ≡ 0.

Proof. Suppose that the �-singular part μs of μ is non-trivial. There exists
a �-Carleson set F ⊂ T such that −∞ < μs(F ) < 0. We set ν = −μs

∣∣F .
By a theorem of Shirokov [22, Theorem 9, pp. 137, 139], there exists an outer
function ϕ such that

ϕ ∈ Lipρ(T) ∩ H∞(D), ϕSν ∈ Lipρ(T) ∩ H∞(D),

and the zero set of the function ϕ coincides with F . Next, for ξ, θ ∈ [0, 2π ]
we have

|ϕSν(e
iξ ) − ϕSν(e

iθ )|
= |ϕ(eiξ )Sν(e

iθ ) − ϕ(eiθ )Sν(e
iξ )|

≤ |(ϕ(eiξ ) − ϕ(eiθ ))Sν(e
iθ )| + |(ϕ(eiθ ) − ϕ(eiξ ))Sν(e

iξ )|
+ |(ϕSν)(e

iθ ) − (ϕSν)(e
iξ )|,

and hence,
ϕSν ∈ Lipρ(T).
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Set g = P+(zϕSν). Since ϕSν ∈ Lipρ(T), we have g ∈ (A −1
� )∗. Consider

the following linear functional on A −1
� :

Lg(f ) = 〈f, g〉 =
∑
n≥0

anĝ(n), f (z) =
∑
n≥0

anz
n ∈ A −1

� .

Suppose that Lg = 0. Then, for every n ≥ 0 we have

0 = Lg(z
n)

=
∫ 2π

0
einθg(eiθ )

dθ

2π

=
∫ 2π

0
ei(n+1)θ ϕ(eiθ )

Sν(eiθ )

dθ

2π
.

We conclude that ϕ/Sν ∈ H∞(D), which is impossible. Thus, Lg �= 0.
On the other hand we have, for every n ≥ 0,

Lg(z
nSν) =

∫ 2π

0
einθSν(e

iθ )g(eiθ )
dθ

2π

=
∫ 2π

0
einθSν(e

iθ )g(eiθ )
dθ

2π

=
∫ 2π

0
ei(n+1)θϕ(eiθ )

dθ

2π

= 0.

Thus, g ⊥ [
fμ

]
A−1

�

which implies that the function fμ is not cyclic in A −1
� .

By Lemma 4.4, fμ is not cyclic in A −∞
� .

4.2. Weights � satisfying condition (C2)

We start with an elementary consequence of the Cauchy formula.

Lemma 4.6. Let f (z) = ∑
n≥0 anz

n be an analytic function in D. If f ∈
A −∞

� , then there exists C > 0 such that

|an| = O
(
exp

[
C�

(
1
n

)])
as n → +∞.

Theorem 4.7. Let μ ∈ B+
� , and let the majorant � satisfy condition (C2).

Then the function fμ is cyclic in A −∞
� if and only if μs ≡ 0.
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Proof. We define

A ∞
� =

⋂
c<∞

{
g ∈ Hol(D) ∩ C∞(D̄) : |f̂ (n)| = O

(
exp

[−c�
(

1
n

)])}
,

and, using Lemma 4.6, we obtain that A ∞
� ⊂ (A −∞

� )∗ via the Cauchy duality

〈f, g〉 =
∑
n≥0

f̂ (n)ĝ(n) = lim
r→1

∫ 2π

0
f (rξ)g(ξ) dξ, f ∈ A −∞

� , g ∈ A ∞
� .

Suppose that the �-singular part μs of μ is nonzero. Then there exists a
�-Carleson set F ⊂ T such that −∞ < μs(F ) < 0. We set σ = μs

∣∣F . By
a theorem of Bourhim, El-Fallah, and Kellay [5, Theorem 5.3] (extending a
result of Taylor and Williams), there exist an outer function ϕ ∈ A ∞

� such that
the zero set of ϕ and of all its derivatives coincides exactly with the set F , a
function �̃ such that

(4.3) �(t) = o(�̃(t)), t → 0,

and a positive constant B such that

(4.4) |ϕ(n)(z)| ≤ n!Bne�̃∗(n), n ≥ 0, z ∈ D,

where �̃∗(n) = supx>0{nx − �̃(e−x/2)}.
We set

� = ϕSσ .

For some positive D we have

(4.5) |S(n)
σ (z)| ≤ Dnn!

dist(z, F )2n
, z ∈ D, n ≥ 0.

By the Taylor formula, for every n, k ≥ 0, we have

(4.6) |ϕ(n)(z)| ≤ 1

k!
dist(z, F )k max

w∈D
|ϕ(n+k)(w)|, z ∈ D.

Next, integrating by parts, for every n �= 0, k ≥ 0 we obtain

|�̂(n)| = | ̂
(ϕSσ )(n)| = 1

2π

∣∣∣∣
∫ 2π

0

(ϕSσ )(k)(eit )

nk
e−int dt

∣∣∣∣.
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Applying the Leibniz formula and estimates (4.4)–(4.6), we obtain for n ≥ 1
that

|�̂(n)| ≤ inf
k≥0

{
1

nk
max

t∈[0,2π ]
|(ϕSσ )(k)(eit )|

}

≤ inf
k≥0

{
1

nk

k∑
s=0

Cs
k max

t∈[0,2π ]
|S(s)

σ (eit )| max
t∈[0,2π ]

|ϕ(k−s)(eit )|
}

≤ inf
k≥0

{
1

nk

k∑
s=0

Cs
kD

ss!
1

(2s)!
(k + s)!Bk+se�̃∗(k+s)

}

≤ inf
k≥0

{
e�̃∗(2k)

(
B2D

n

)k k∑
s=0

(k + s)!k!

(2s)!(k − s)!

}

≤ inf
k≥0

{
k!e�̃∗(2k)

(
4B2D

n

)k}

≤ inf
k≥0

k!

{(
4B2D

n

)k

sup
0<t<1

{
e−�̃(t1/4)t−k

}}
.

By property (4.3), for every C > 0 there exists a positive number K such
that

e−�̃(t1/4) ≤ Ke−�(Ct), t ∈ (0, 1).

We take C = 1
8B2D

, and obtain for n �= 0 that

|�̂(n)| ≤ K inf
k≥0

{(
4B2D

n

)k

k! sup
0<t<1

e−�(Ct)

tk

}

≤ K1 inf
k≥0

{
(2n)−kk! sup

0<t<1

e−�(t)

tk

}
.

Finally, using [14, Lemma 6.5] (see also [5, Lemma 8.3]), we get

|�̂(n)| = O(e−�(1/n)), |n| → ∞.

Thus, the function g = P+(zϕSσ ) belongs to (A −1
� )∗. Now we obtain that

fμ is not cyclic using the same argument as that at the end of Case 1. This
concludes the proof of the theorem.

Theorems 4.5 and 4.7 together give a positive answer to a conjecture by
Deninger [7, Conjecture 42].

We complete this section by two examples that show how the cyclicity
property of a fixed function changes in a scale of A −∞

� spaces.
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Example 4.8. Let �α(x) = (log(1/x))α , 0 < α < 1, and let 0 < α0 < 1.
There exists a singular inner function Sμ such that

Sμ is cyclic in A −∞
�α

⇐⇒ α > α0.

Construction. We start by defining a Cantor type set and the corresponding
canonical measure. Let {mk}k≥1 be a sequence of natural numbers. Set Mk =∑

1≤s≤k ms , and assume that

(4.7) Mk � mk, k → ∞.

Consider the following iterative procedure. Set I0 = [0, 1]. On the step n ≥
1 the set In−1 consist of several intervals I . We divide each I into 2mn+1

equal subintervals and replace it by the union of every second interval in this
division. The union of all such groups is In. Correspondingly, In consists
of 2Mn intervals; each of them is of length 2−n−Mn . Next, we consider the
probabilistic measure μn equidistributed on In. Finally, we set E = ∩n≥1In,
and define by μ the weak limit of the measures μn.

Now we estimate the �α-entropy of E:

Entr�α
(In) �

∑
1≤k≤n

2Mk · 2−k−Mk · �α(2−k−Mk)

�
∑

1≤k≤n

2−k · mα
k , n → ∞.

Thus, if

(4.8)
∑
n≥1

2−n · mα0
n < ∞,

then Entr�α0
(E) < ∞. By Theorem 4.5, Sμ is not cyclic in A −∞

�α
for α ≤ α0.

Next we estimate the modulus of continuity of the measure μ,

ωμ(t) = sup
|I |=t

μ(I ).

Assume that

Aj+1 = 2−(j+1)−Mj+1 ≤ |I | < Aj = 2−j−Mj ,

and that I intersects with one of the intervals Ij that constitute Ij . Then

μ(I) ≤ 4
|I |
Aj

μ(Ij ) = 4|I |2j+Mj 2−Mj = 4|I |2j .
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Thus, if

(4.9) 2j ≤ C(log(1/Aj ))
α � mα

j , j ≥ 1, α0 < α < 1,

then
ωμ(t) ≤ Ct(log(1/t))α.

By [2, Corollary B], we have μ(F) = 0 for any �α-Carleson set F , α0 < α <

1. Again by Theorem 4.5, Sμ is cyclic in A −∞
�α

for α > α0. It remains to fix
{mk}k≥1 satisfying (4.7)–(4.9). The choice mk = 2k/α0k−2/α0 works.

Of course, instead of Theorem 4.5 we could use here [5, Theorem 7.1].

Example 4.9. Let �α(x) = (log(1/x))α , 0 < α < 1, and let 0 < α0 < 1.
There exists a premeasure μ such that μs is infinite,

fμ is cyclic in A −∞
�α

⇐⇒ α > α0,

where fμ is defined by (4.1).

It looks like the subspaces [fμ]A−∞
�α

, α ≤ α0, contain no nonzero Nevan-
linna class functions. For a detailed discussion on Nevanlinna class generated
invariant subspaces in the Bergman space (and in the Korenblum space) see
[10].

For α ≤ α0, instead of Theorem 4.5 we could once again use here [5,
Theorem 7.1].

Construction. We use the measure μ constructed in Example 4.8.
Choose a decreasing sequence uk of positive numbers such that∑

k≥1

uk = 1,
∑
k≥1

vk = +∞,

where vk = uk log log(1/uk) > 0, k ≥ 1.
Given a Borel set B ⊂ B0 = [0, 1], denote

Bk =
{
ukt +

k−1∑
j=1

uj : t ∈ B

}
⊂ [0, 1],

and define measures νk supported by B0
k by

νk(Bk) = vk

uk

m(Bk) − vkμ(B),

where m(Bk) is Lebesgue measure of Bk .
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We set
ν =

∑
k≥1

νk.

Then ν(B0
k ) = νk(B

0
k ) = 0, k ≥ 1, and ν is a premeasure.

Since
vk ≤ C(α)uk�α(uk), 0 < α < 1,

ν is a �α-bounded premeasure for α ∈ (0, 1).
Furthermore, as above, by Theorem 4.5, fν is not cyclic in A −∞

�α
for α ≤ α0.

Next, we estimate
ων(t) = sup

|I |=t

|ν(I )|.

As in Example 4.8, if j, k ≥ 1 and

ukAj+1 ≤ |I | < ukAj ,

then

(4.10)
|ν(I )|
|I | ≤ C · 2j · vk

uk

.

Now we verify that

(4.11) ων(t) ≤ Ct(log(1/t))α, α0 < α < 1.

Fix α ∈ (α0, 1), and use that(
log

1

Aj

)α

≥ C · 2(1+ε)j , j ≥ 1,

for some C, ε > 0. By (4.10), it remains to check that

2j log log
1

uk

≤ C

(
2(1+ε)j +

(
log

1

uk

)α)
.

Indeed, if
log log

1

uk

> 2εj ,

then
C

(
log

1

uk

)α

> 2j log log
1

uk

.

Finally, we fix α ∈ (α0, 1) and a �α-Carleson set F . We have

T \ F = �sL
∗
s
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for some intervals L∗
s . By [2, Theorem B], there exist disjoint intervals Ln,s

such that

F ⊂ �sLn,s,
∑

s

|Ln,s |�α(|Ln,s |) <
1

n
, n ≥ 1.

Then by (4.11), ∑
s

|ν(Ln,s)| <
c

n
.

Set
T \ �sLn,s = �sL

∗
n,s .

Then ∣∣∣∑
s

ν(L∗
n,s)

∣∣∣ <
c

n
.

Since F is �α-Carleson, we have∑
s

|L∗
s |�α(|L∗

s |) < ∞,

and hence, ∑
s

ν(L∗
n,s) →

∑
s

ν(L∗
s )

as n → ∞. Thus, ∑
s

ν(L∗
s ) = 0,

and hence, ν(F ) = 0. Again by Theorem 4.5, fν is cyclic in A −∞
�α

for α > α0.

REFERENCES

1. Aleman, A., Hilbert spaces of analytic functions between the Hardy and the Dirichlet space,
Proc. Amer. Math. Soc. 115 (1992), 97–104.

2. Berman, R., Brown, L., and Cohn, W., Moduli of continuity and generalized BCH sets, Rocky
Mountain J. Math. 17 (1987), 315–338.

3. Borichev, A., and Hedenmalm, H., Harmonic functions of maximal growth: invertibility and
cyclicity in Bergman spaces, J. Amer. Math. Soc. 10 (1997), 761–796.

4. Borichev, A., Hedenmalm, H., and Volberg, A., Large Bergman spaces: invertibility, cyclicity,
and subspaces of arbitrary index, J. Funct. Anal. 207 (2004), 111–160.

5. Bourhim, A., El-Fallah, O., and Kellay, K., Boundary behaviour of functions of Nevanlinna
class, Indiana Univ. Math. J. 53 (2004), 347–395.

6. Cyphert, D., and Kelingos, J., The decomposition of functions of bounded κ-variation into
differences of κ-decreasing functions, Studia Math. 81 (1985), 185–195.

7. Deninger, C., Invariant measures on the circle and functional equations, arXiv 1111.6416.
8. Duren, P., Theory of Hp spaces, Pure Appl. Math. 38, Academic Press, New York 1970.



cyclic vectors in korenblum type spaces 85

9. Hayman, W., and Korenblum, B., An extension of the Riesz–Herglotz formula, Ann. Acad.
Sci. Fenn. Ser. A I Math. 2 (1967), 175–201.

10. Hedenmalm, H., Korenblum, B., and Zhu, K., Beurling type invariant subspaces of the
Bergman spaces, J. London Math. Soc. 53 (1996), 601–614.

11. Hedenmalm, H., Korenblum, B., and Zhu, K., Theory of Bergman Spaces, Grad.Texts Math.
199, Springer, Berlin 2000.

12. Kellay, K., Fonctions intérieures et vecteurs bicycliques, Arch. Math. 77 (2001), 253–264.
13. Khrushchev, S., Sets of uniqueness for the Gevrey class, Zap. Nauchn. Semin. LOMI 56

(1976), 163–169.
14. Khrushchev, S., The problem of simultaneous approximation and removal of singularities of

Cauchy-type integrals, Trudy Mat. Inst. Steklov 130 (1978), 124–195; Engl. transl.: Proc.
Steklov Inst. Math. 130 (1979), 133–203.

15. Korenblum, B., An extension of the Nevanlinna theory, Acta Math. 135 (1975), 187–219.
16. Korenblum, B., A Beurling-type theorem, Acta Math. 138 (1976), 265–293.
17. Korenblum, B., Cyclic elements in some spaces of analytic functions, Bull. Amer. Math. Soc.

5 (1981), 317–318.
18. Korenblum, B., On a class of Banach spaces associated with the notion of entropy, Trans.

Amer. Math. Soc. 290 (1985), 527–553.
19. Roberts, J.W., Cyclic inner functions in the Bergman spaces and weak outer functions in Hp ,

0 < p < 1, Illinois J. Math. 29 (1985), 25–38.
20. Seip, K., An extension of the Blaschke condition, J. London Math. Soc. 51 (1995,) 545–558.
21. Shapiro, H.S., Some remarks on weighted polynomial approximations by holomorphic func-

tions, Math. U.S.S.R. Sbornik 2 (1967), 285–294.
22. Shirokov, N., Analytic functions smooth up to the boundary, Lect. Notes Math. 1312, Springer,

Berlin 1988.

LABORATOIRE ANALYSE ET APPLICATIONS – URAC/03
DÉPARTEMENT DE MATHÉMATIQUES
UNIVERSITÉ MOHAMMED V
RABAT-AGDAL-B.P. 1014 RABAT
MOROCCO

LATP
AIX-MARSEILLE UNIVERSITÉ
39 RUE F. JOLIOT-CURIE
13453 MARSEILLE
FRANCE
E-mail: hanine@cmi.univ-mrs.fr

abhanine@gmail.com


