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CORRELATION OF PATHS BETWEEN DISTINCT
VERTICES IN A RANDOMLY

ORIENTED GRAPH

MADELEINE LEANDER and SVANTE LINUSSON

Abstract
We prove that in a random tournament the events {s → a} (meaning that there is a directed path
from s to a) and {t → b} are positively correlated, for distinct vertices a, s, b, t ∈ Kn. It is also
proven that the correlation between the events {s → a} and {t → b} in the random graphs G(n, p)

and G(n, m) with random orientation is positive for every fixed p > 0 and sufficiently large n

(with m = �p (
n
2

)�). We conjecture it to be positive for all p and all n. An exact recursion for
P({s → a} ∩ {t → b}) in G(n, p) is given.

1. Introduction

Let G be a graph on n vertices and a, b, s, t ∈ V (G) four different vertices in
the graph. Let further every edge in G be oriented either way with the same
probability independently of each other. This model was first considered in
[4], and a similar model was discussed in [3]. We will study the correlation
between the event that there exists a directed path from s to a, {s → a}, and
the event that there exists a directed path from t to b, {t → b}. Our main result
is that these events are positively correlated for the complete graph and for
two natural models of random graphs. Note however that it is easy to construct
examples when the correlation will be negative, e.g. if G is the path on four
vertices with edges sb, ba, at .

The events {s → a} and {s → b} can be shown to have positive correlation
for any vertices in any graph G. In [1] it was proven, somewhat surprisingly,
that also the events {s → a} and {b → s} have positive correlation in Kn,
when n ≥ 5, but negative correlation if G is a tree or a cycle. Further, in [2] it
was shown that in the random graph models G(n, p) and G(n, m), see proper
definition below, for a fixed probability p and large enough n the correlation
between {s → a} and {b → s} is negative if p is below a critical value and
positive if p is above the critical value. The critical value in G(n, p) was
exactly 1/2 and in G(n, m) approximately 0.799.
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The situation in this paper turns out to be different. We prove positive
correlation when G is Kn and in G(n, p) and G(n, m) for fixed p > 0 and
n sufficiently large. We conjecture that it is in fact non-negative for all pairs
n, p.

For technical reasons we will study the complementary events A := {s �

a}, the event that no directed path from s to a exists, and B := {t � b}. Note
that the events A and B have the same covariance as the events {s → a} and
{t → b}.

The paper is organised as follows. In Section 2 we present a lower bound
for P(A ∩ B) in a random tournament and prove that A and B are positively
correlated for n ≥ 4. An intuitive explanation is that if A is true then the most
likely situations are that no edges are directed from s or no edges are directed
to a, thus s or a cannot be on a path from t to b. Since P(B) is increasing
when n is decreasing this gives positive correlation. We show more precisely
that the relative covariance, (P(A ∩ B)− P(A) · P(B)) /P(A ∩ B), of the two
events converges to 2/3 as n→∞.

In Section 3 we consider the random graph G(n, p) on n vertices. It is a
random graph model in which every edge exists with probability p independ-
ently of each other and then every existing edge is directed in either of the
two directions with the same probability independently of all other edges. The
two random processes can be combined in two different ways. In this paper
we study the joined probability space of G(n, p) and that of edge orientations,
which we call 	G(n, p). This will be referred to as the annealed version. The
other possibility, the quenched version, will be briefly discussed in Section 6.
We prove that for fixed p > 0 and sufficiently large n the events A and B will
be positively correlated in 	G(n, p).

In Section 4 we study the random graph model G(n, m), with uniform
distribution among all graphs with n vertices and m edges. Note that in this
graph the edges do not exist independently of each other since the number of
edges in the graph is fixed. As before every existing edge is directed in either
way with equal probability independent of all other edges. We prove that for
fixed p = m/

(
n

2

)
the events A and B are positively correlated for sufficiently

large n.
In Section 5 we give an exact recursion to compute P(A ∩ B) in G(n, p)

which supports our conjecture that the correlation is positive for all values of
n and p.

The problems studied here were first motivated by the, so far in vain, at-
tempts to prove the so called bunkbed conjecture, see [5].

Acknowledgement. We thank the anonymous referee for several sug-
gestions improving the exposition of the paper.
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2. Correlation in a random tournament

To show that the correlation between A and B is positive we need a sufficient
upper bound for P(A) (and P(B)) and a lower bound for P(A ∩ B). Both an
upper bound and a lower bound for P(A) were given in [1]:

Lemma 2.1 (Theorem 2.1 in [1]). For all n ≥ 2,
(

1

2

)n−2(
1−

(
1

2

)n−1)
≤ P(A) ≤

(
1

2

)n−2(
1+ 3.2 ·

(
7

8

)n−1)
.

The next lemma gives a lower bound for the probability of the event A∩B.

Lemma 2.2. For all n ≥ 4,

P(A ∩ B) ≥
(

1

2

)2n−4(
3−

(
1

2

)2n−7

−
(

1

2

)n−4)

Proof. Define Ia,b to be the set of vertices in [n] \ {a, b} that can reach a

or b in one step, that is with a single edge directed to a or b. Similarly define
Os,t to be the set of vertices in [n]\ {s, t} that can be reached from s or t in one
step. Define further Ia and Ib to be the set of vertices in [n] \ {a} and [n] \ {b}
respectively that can reach a and b respectively in one step, and finally in the
same way define Os and Ot to be the set of vertices in [n] \ {s} and [n] \ {t}
respectively that can be reached from s and t respectively in one step.

Each of Ia,b = ∅, Os,t = ∅, Ia = Ot = ∅ and Ib = Os = ∅ implies A∩B.
Hence we have

P(A ∩ B) ≥ P((Ia,b = ∅) ∪ (Os,t = ∅) ∪ (Ia = Ot = ∅) ∪ (Ib = Os = ∅)).
By inclusion-exclusion we have

P((Ia,b = ∅) ∪ (Os,t = ∅) ∪ (Ia = Ot = ∅) ∪ (Ib = Os = ∅))

= 2 ·
(

1

2

)2(n−2)

+ 2 ·
(

1

2

)2(n−1)−1

−
((

1

2

)4(n−2)−4

+ 4 ·
(

1

2

)3n−6)
+ 2 ·

(
1

2

)4n−10

=
(

1

2

)2n−4(
3−

(
1

2

)2n−7

−
(

1

2

)n−4)

since the events (Ia = ∅) and (Ib = ∅) are disjoint and so are the events
(Os = ∅) and (Ot = ∅). This completes the proof.
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Theorem 2.3. The events A = {s � a} and B = {t � b} are positively
correlated in a random tournament for n ≥ 4.

Proof. From Lemmas 2.1 and 2.2 we get

P(A ∩ B)− P(A)P(B)

= P(A ∩ B)− (P(A))2

≥
(

1

2

)2n−4(
3−

(
1

2

)2n−7

−
(

1

2

)n−4

−
(

1+ 3.2 ·
(

7

8

)n−1)2)

> 0

when n ≥ 13.
To complete the proof, the cases 4 ≤ n ≤ 12 were checked using Lemma 2.2

and the values of P(A) computed by recursion in [1]. The (rounded) values used
are listed below.

n P(A)

4 0.25
5 0.146484
6 0.076416
7 0.036942
8 0.017427
9 0.008309

10 0.004038
11 0.001988
12 0.000986

We can also give an upper bound for P(A ∩ B) to show that limn→∞ P(A ∩
B) ·22n−4 = 3 and limn→∞ P(A∩B)−P(A)·P(B)

P(A∩B)
= 2

3 . These statements are special
cases of Theorems 3.2 and 3.4 below.

3. Random orientations of G(n, p)

Let as usual G(n, p) be the random graph in which every edge exists with
probability p independently of the other edges. We also let every edge be
directed in either way with equal probability independently of each other. We
will call the corresponding random graph model 	G(n, p). For this section, let
x = p/2 be the probability of one edge to exist and be directed in a certain
way and let y = 1 − x be the probability of an edge not to exist in a certain
direction. We will adopt the usual notation f ∼ g to denote that the quotient
of f and g goes to a constant. In [2] the following lemma was proven.
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Lemma 3.1 (Lemma 4.2 in [2]). For any vertices s, a in 	G(n, p)

P(A) ∼ 2yn−1.

Clearly, P(A) = P(B). To find the relative covariance between A and B

when n approaches infinity we need an estimate of P(A ∩ B).
A set X of vertices in Kn is said to be an inset (outset) if all existing edges

from [n] \ X are directed to (from) X. Let IX be the event that X is an inset.
Let also

Zk =
⋃

X:s∈X
a/∈X
|X|=k

IX and Z′k =
⋃

X′:t∈X′
b/∈X′
|X′|=k

IX′ .

Now we have

P(s � a) = P

(n−1⋃
k=1

Zk

)

and

P(A ∩ B) = P(s � a, t � b) = P

(n−1⋃
k=1

Zk ∩
n−1⋃
k=1

Z′k

)
.

Theorem 3.2. For p ∈ (0, 1] we have

lim
n→∞

P(A ∩ B)

y2n−4
= 4− p

Remark 3.3. Exact computations indicate that this convergence is very
slow for small p, see Figure 2 in Section 5.

Proof of Theorem 3.2. First note that

P(A ∩ B) = P

(n−1⋃
k=1

Zk ∩
n−1⋃
k=1

Z′k

)
= s1 + s2 + s3 − s4,

where

s1 = P

(n−3⋃
k=3

Zk ∩
n−1⋃
k=1

Z′k

)
, s2 = P

(n−1⋃
k=1

Zk ∩
n−3⋃
k=3

Z′k

)
,

s3 = P

(( 2⋃
k=1

Zk

n−1⋃
k=n−2

Zk

)
∩

( 2⋃
k=1

Z′k
n−1⋃

k=n−2

Z′k

))
,

s4 = P

(n−3⋃
k=3

Zk ∩
n−3⋃
k=3

Z′k

)
.
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By symmetry s1 = s2 and clearly s4 < s1. We will write PN(IX) for P(IX)

with |X| = N . We show that s1, s2, s4 are negligible compared to s3, and give
an estimate of s3. Starting with s1, first note that Pk(I

X) = yk(n−k) and if
k < l ≤ n

2 we have Pl(I
Y ) < Pk(I

X). This gives us

s1 = P

(n−3⋃
k=3

Zk ∩
n−1⋃
k=1

Z′k

)
≤ P

(n−3⋃
k=3

Zk

)
≤

n−3∑
k=3

(
n

k − 1

)
yk(n−k)

≤ 2 ·
K−1∑
k=3

(
n

k − 1

)
yk(n−k) +

n−K∑
k=K

(
n

k − 1

)
yk(n−k)

Now, since p is fixed we may fix K such that yK<
y3

2 . The sum
∑K−1

k=3

(
n

k−1

)·
yk(n−k) is finite and it is O(y3(n−3)) which is very small compared to y2n, and
hence negligible. Further we get

n−K∑
k=K

(
n

k − 1

)
yk(n−k) < 2n · yK(n−K) < 2n

(
y3

2

)n−K

= O(y3n).

That is s1 ∼ o(y2n) and analogously so is s2 and s4.
To estimate s3, first consider P(Z1 ∩ Z′2) as an example. In this case no

edges will be directed from s. For the inset X′ we have two subcases, either it
contains s and t or t and another vertex (different from s, b). In the first case
we get a total of y2n−3, and for the second case we can choose X′ in n−3 ways
and no edges will be directed from X′, this gives us (n− 3)y3n−9(1− p)2. In
the computations below it will always be the case that if three or more vertices
are involved, then the probability will be negligible, i.e. o(y2n).

We get four contributing cases which can be reduced to two by symmetry.

(1) P((Z1 ∪ Z2) ∩ (Z′1 ∪ Z′2)) = y2n−4 + o(y2n).

(2) P((Zn−1 ∪ Zn−2) ∩ (Z′n−1 ∪ Z′n−2)) = y2n−4 + o(y2n).

(3) P(Z1 ∩ Z′n−1) = y2n−3.

(4) P(Zn−1 ∩ Z′1) = y2n−3.

For (1) we see that if any other vertex than s and t is in the insets for s and
t we will have conditions on at least 3n − 9 edges and thus a probability of
size o(y2n). All the interesting cases are when we have no restriction on the
possible edge between s and t , and no edge must be directed from s, t to any
other vertex. Note that our example above is a subset of this case. Case (2) is
symmetric to (1).
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For (3) no edge may be directed from s or to b, which imposes conditions
on 2n − 3 edges. Case (4) is symmetric to (3). One can easily check that the
remaining six possibilities, four cases symmetric to Z1 ∩ Z′n−2 and two cases
symmetric to Z2 ∩ Z′2, all have probabilities of size o(y2n) and can hence be
ignored.

All together we end up with

2y2n−4 + 2y2n−3 + o(y2n) = 2y2n−4

(
1+

(
1− p

2

))
+ o(y2n)

= y2n−4(4− p)+ o(y2n),

as claimed.

Theorem 3.4. For fixed p ∈ [0, 1]

lim
n→∞

P(A ∩ B)− P(A)P(B)

P(A ∩ B)
= p(3− p)

4− p

Proof. Follows from Lemma 3.1 and Theorem 3.2.

Corollary 3.5. For a fixed p ∈ (0, 1], the correlation between A and B

is always positive for sufficiently large n.

We believe that something stronger is true and we offer the following con-
jecture, which is supported by our calculations in Section 5.

Conjecture 1. For any n ≥ 4 and p ∈ (0, 1], the events {s → a} and
{t → b} are always positively correlated.

4. Random orientations of G(n, m)

In this section we study the same problem on the random graph G(n, m)

where each simple graph with m edges and n vertices is equally likely. We will
also here let every edge have an independent direction and call the combined
probability space 	G(n, m). Again, let y = 1− p

2 , let further q(l) = q(l; n, m)

be the probability that l fixed edges in Kn does not exist in 	G(n, m) with given
directions. In 	G(n, p) this corresponds to yl . If nothing else is written the
graph considered in this section is always 	G(n, m).

In [2] the following lemma was proven.

Lemma 4.1 (Janson, Lemma 3.2 in [2]). Suppose that 0 ≤ m = m(n) ≤ (
n

2

)
.

Then with p = p(n) = m(n)/
(
n

2

)
, as n→∞,

q(l; n, m) ∼ yl exp

(
−

(
l

n

)2
p(1− p)

(2− p)2

)
,

and for any l, n, m we have q(l; n, m) ≤ q ′(l; n, p).
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This lemma together with the proof of Theorem 3.2 gives us an analogue
result of Theorem 3.2 for 	G(n, m).

Theorem 4.2. In the case of 	G(n, m) for fixed 0 < p < 1 we have

P(A ∩ B) ∼ 2y2n−4 exp

(
−4

p(1− p)

(2− p)2

)
+ 2y2n−3 exp

(
−4

p(1− p)

(2− p)2

)

Also we need the following lemma.

Lemma 4.3 (Lemma 4.3 in [2]). For fixed 0 < p < 1

P(A) ∼ 2yn−1 exp

(
−p(1− p)

(2− p)2

)
.

We are now ready to state and prove the main theorem of this section.

Theorem 4.4. For fixed 0 < p < 1 and sufficiently large n, the events A

and B are positively correlated in 	G(n, m) and the relative covariance is

∼ 1− 2
(
1− p

2

)2

2− p

2

· exp

(
2
p(1− p)

(2− p)2

)
.

Proof. We rewrite the relative covariance as

P(A ∩ B)− P(A)P(B)

P(A ∩ B)
= 1− P(A)P(B)

P(A ∩ B)
.

As n approaches∞, Theorem 4.2 and Lemma 4.3 gives

P(A)P(B)

P(A ∩ B)
∼ 4y2n−2 exp

(−2 p(1−p)

(2−p)2

)
2y2n−4 exp

(−4 p(1−p)

(2−p)2

)(
2− p

2

)

= 2
(
1− p

2

)2

(
2− p

2

) exp

(
2
p(1− p)

(2− p)2

)

Let us denote this expression by f . It remains to prove that f is less than one
when 0 < p < 1. This can be proven by using the derivative of f . We have
that

f ′(p) = e
2(1−p)p

(2−p)2
p3 + 4p2 − 8

(4− p)2(2− p)
.

The theorem follows since the derivative is negative in this interval and f (0) =
1.
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We conjecture the covariance to be positive at all times.

Conjecture 2. The events A and B are positivelly correlated in 	G(n, m)

for all p and all n.

The covariance in 	G(n, p) is always less than the covariance in 	G(n, m)

(see [2]). So the conjecture would also imply the correlation to be positive in
	G(n, p).

5. Exact recursion in �G(n, p)

In this section we will give an exact recursion to compute

P 	G(n,p)(a � s, t � b).

Together with the recursion given for fn(p) := P 	G(n,p)(a � s) in [2] we
will be able compute the covariance for n as a rational function in p. Our
computations for n ≤ 34, using Maple, supports our Conjecture 1 that the
covariance is always positive, see Figure 1.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

p
0.2 0.4 0.6 0.8 1.0

Figure 1. The relative covariance P(a�s,t�b)−P(a�s)P(t�b)

P(a�s,t�b)
in 	G(n, p) for

going from right to left n = 6, 10, 14, 18, 22, 26, 30, 34, and the asymptote
p(3− p)/(4− p). All curves are positive for 0 < p ≤ 1.

For a vertex v ∈ V (G), let
→
Cv ⊆ V (G) be the (random) set of all vertices u

for which there is a directed path from v to u. We say that
→
Cv is the out-cluster



296 madeleine leander and svante linusson

8

7

6

5

4

3

2

1
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p
0.2 0.4 0.6 0.8 1.0

Figure 2. Plots of P(a�s,t�b)

y2n−4 in 	G(n, p) for going from right to left n = 6 (dotted),
10, 14, 18, 22, 26, 30, 34 (dashed), and the asymptote 4− p. See Theorem 3.2.

from v. Let analogously the in-cluster,
←
Cv ⊆ V (G) be the (random) set of

all vertices u for which there is a directed path from u to v. We will use the
convention that v ∈ ←Cv ∩ →Cv . Let as before y := 1 − p/2 be the probability
that an edge does not exist with a certain direction, and let q := 1− p be the
probability that there is no edge at all.
For n ≥ 1, s ∈ S ⊆ [n] and |S| = k define:

dp(n, k) := P 	G(n,p)(
→
Cs = S),

where in particular dp(1, 1) = 1. A recursion to compute dp(n, k) as a poly-
nomial in p was given in [2].

Lemma 5.1 (Lemma 5.1 in [2]). We have the following recursions

dp(n, k) = dp(k, k)yk(n−k), for n > k ≥ 1,

and

dp(k, k) = 1−
k−1∑
i=1

(
k − 1

i − 1

)
dp(i, i)yi(k−i).

Note that, by symmetry, also P 	G(n,p)(
←
Cs = S) = dp(n, k).
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It turns out that the following quantity is possible to compute recursively
and enables us to compute hn(p). For n ≥ 2, t ∈ T ⊆ [n], a ∈ A ⊆ [n] with
|T | = τ, |A| = α and |[n] \ (A ∪ T )| = r define:

Np(n, τ, α, r) := P 	G(n,p)(
→
Ct = T ,

←
Ca = A),

where in particular Np(2, 2, 2, 0) = x and Np(2, 1, 1, 0) = y.
We will use the variable j for the size of the intersection |A ∩ T |. If there

is any intersection between A and T then a, t ∈ A ∩ T , so in particular
j = α + τ − (n− r) can never be 1.

Theorem 5.2. We have the following recursions for Np, where τ + α >

n− r ≥ τ, α and τ, α ≥ 1

(i) Np(n, τ, α, r) = Np(n− r, τ, α, 0)qr(r+τ+α−n)yr(2n−2r−τ−α)

for r > 0,

(ii) Np(n, τ, α, r) = Np(n, α, τ, r),

(iii) Np(n, τ, α, 0) =
n−τ∑
ζ=1

(
n− τ − 1

ζ − 1

)
Np(n− ζ, τ, α − ζ, 0) dp(ζ, ζ )

· q(ζ−1)(α+τ−n)y(ζ−1)(2n−τ−α−ζ )(yτ − y2n−α−τ−ζ qα+τ−n),

for n > τ, n ≥ α ≥ 2, j ≥ 2,

(iv) Np(n, τ, α, 0) =
α−1∑
ζ=1

(
α − 2

ζ − 1

)
Np(n− ζ, τ, α − ζ, 0) dp(ζ, ζ )

· y(ζ−1)(τ+α−ζ )yτ (1− yα−ζ ),

for α ≥ 2, j = 0 i.e. n = τ + α,

(v) Np(n, n, n, 0) = 1−
n−1∑
j=2

(
n− 2

j − 2

)

·
n∑

τ=j

(
n− j

τ − j

) n−τ+j∑
α=j

(
n− τ

α − j

)
Np(n, τ, α, n− α − τ + j)

−
n∑

τ=1

(
n− 2

τ − 1

) n−τ∑
α=1

(
n− τ − 1

α − 1

)
Np(n, τ, α, n− α − τ).

Proof. For the first equation we have r > 0, thus [n] \ (A ∪ T ) is non-
empty and no vertex in that set must not have any edge directed to A or from
T . Hence there must be no edge at all to A ∩ T , which gives probability
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q |[n]\A∪T |·|A∩T | = qr(r+τ+α−n). There must not be any edge directed to (A \ T )

and there must not be any edge directed from (T \A). This gives the probability
of y |[n]\A∪T |·|(A\T )∪(T \A)| = yr(2n−2r−τ−α).

The second equation is obtained from the symmetry of reversing all direc-
tions and switching the roles of a and t .

For equation (iii) and (iv), we pick a vertex z ∈ A \ T , such a vertex exists
by the assumption n > τ and r = 0. Let G be any directed graph on n vertices
with

→
Ct = T and

←
Ca = A. If we remove vertex z and all its edges from G the

resulting graph will still have
→
Ct = T since z /∈ T , whereas

←
Cs = A \ Z, for

some Z ⊆ A \ {a} such that Z ∩ T = ∅. This follows from the fact that the
vertices in Z are those that have a path to a only via z and no vertex in T has a
directed path leading to z by assumption. Let ζ = |Z| and sum over all possible
Z. The probability is Np(n− ζ, τ, α − ζ, 0) that the subgraph on [n] \Z is as

needed. The subgraph on Z must have
←
Cz = Z which has probability dp(j, j).

Let us first consider equation (iii) when j = τ + α − n ≥ 2.
There must not be any edge between T ∩ A and Z \ {z}, since the vertices

of the latter do not belong to T and have all directed paths via z. This gives a
factor q(ζ−1)(α+τ−n). No vertex of Z \ {z} can have an edge to A \ (T ∪ Z) or
from T \A , which gives a factor y(ζ−1)(2n−τ−α−ζ ). Finally, we must consider
the edges of z. The main condition is that there must not be any edge from T

to z. However, there must be at least one edge edge directed from z to A \ Z.
This give the last factor. The case of equation (iv) when j = 0 is easier and
obtained similarly.

Equation (v) follows from the fact that for fixed n

∑
T ,A:a∈A,t∈T⊆[n]

P 	G(n,p)(
→
Ct = T ,

←
Ca = A) = 1.

Here j = |A ∩ T | and recall that j = 1 is not an option.

Theorem 5.3. We have the following expression for P 	G(n,p)(a � s, t � b).

P 	G(n,p)(a � s, t � b) =
n−2∑
j=2

(
n− 4

j − 2

)

·
[n−2∑

τ=j

(
n− 2− j

τ − j

) n−τ+j−1∑
α=j

(
n− τ − 1

α − j

)
Np(n, τ, α, n− α − τ + j)

+
n−1∑

τ=j+1

(
n− 2− j

τ − j − 1

) n−τ+j∑
α=j

(
n− τ

α − j

)
Np(n, τ, α, n− α − τ + j)

]
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+
n−3∑
τ=1

(
n− 4

τ − 1

) n−τ−1∑
α=1

(
n− τ − 2

α − 1

)
Np(n, τ, α, n− α − τ)

+
n−2∑
τ=2

(
n− 4

τ − 2

) n−τ∑
α=j

(
n− τ − 1

α − 1

)
Np(n, τ, α, n− α − τ).

Proof. The equation for P 	G(n,p)(a � s, t � b) is obtained by summing
over all possible pairs A, T such that s /∈ A, b /∈ T . Again j = |A ∩ T | and
the formula is split into four cases depending on if s ∈ T or not and if j = 0
or not.

Note that in 	G(n, p) the functions P(s � a) and P(s � a, t � b) are
polynomials in p and hence continuous.

6. The Quenched version

For the quenched version the correlation between A and B is computed for
each graph in G(n, p) (G(n, m)) in the probability space of edge orientations
and then the expected value is taken over all graphs.
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Figure 3. The covariance for G(6, p). The dashed curve represents
the annealed case and the continuous one the quenched case.

We computed the covariance between A and B for G(n, p) as a function over
p, in both the annealed and the quenched case for n ≤ 6. The two cases looks
quite similar, see Figure 3. Note that for n ≤ 6 the expected covariances are
positive also for small p and we conjecture it to be positive for all n. This
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differs from the behavior for the similar problem studied in Section 9 in [2]. It
would also be interesting to find an analogue to Theorem 3.4 for the quenched
version.
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