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A COMPLEX OF MODULES AND ITS APPLICATIONS
TO LOCAL COHOMOLOGY AND EXTENSION

FUNCTORS

KAMAL BAHMANPOUR∗

Abstract
Let (R, m) be a commutative Noetherian complete local ring and let M be a non-zero Cohen-
Macaulay R-module of dimension n. It is shown that,

(i) if projdimR(M) <∞, then injdimR(D(Hn
�(M))) <∞, and

(ii) if injdimR(M) <∞, then projdimR(D(Hn
�(M))) <∞,

where D(−) := HomR(−, E) denotes the Matlis dual functor and E := ER(R/�) is the injective
hull of the residue field R/�.

Also, it is shown that if (R, �) is a Noetherian complete local ring, M is a non-zero finitely
generated R-module and x1, . . . , xk , (k ≥ 1), is an M-regular sequence, then

D(Hk
(x1,...,xk )(D(Hk

(x1,...,xk )(M)))) � M.

In particular, Ann Hk
(x1,...,xk )(M) = Ann M . Moreover, it is shown that if R is a Noetherian ring,

M is a finitely generated R-module and x1, . . . , xk is an M-regular sequence, then

Extk+1
R (R/(x1, . . . , xk), M) = 0.

1. Introduction

Throughout this paper, let R denote a commutative Noetherian ring (with
identity) and I an ideal of R. For an R-module M , the ith local cohomology
module of M with respect to I is defined as

Hi
I (M) = lim−→

n≥1

ExtiR(R/In, M).

We refer the reader to [4] or [2] for more details about local cohomology.
In this paper we introduce a new complex of modules. Then we present

some of its applications to the local cohomology and extension functors.
Recall that an ordered sequence a1, . . . , an ∈ R is said to be an M-

regular sequence if for all 1 ≤ i ≤ n, ai 	∈ ZR(M/(a1, . . . , ai−1)M) and
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(a1, . . . , an)M 	= M , where ZR(M/(a1, . . . , ai−1)M) denotes the set of all
zero-divisors of M/(a1, . . . , ai−1)M in R. In the sequel let (R, �) be a No-
etherian local ring of dimension d. Recall that a finitely generated R-module
is called Cohen-Macaulay if depth(M) = dim(M) and is called maximal
Cohen-Macaulay, when depth(M) = dim(R).

Throughout this paper, for any R-module M we denote the injective di-
mension of M by injdimR(M). Also, we denote the flat dimension and the
projective dimension of M by flatdimR(M) and projdimR(M), respectively.
For any R-module M , the Matlis dual functor of M is denoted by D(M). For
any unexplained notation and terminology we refer the reader to [2] and [5].

2. A complex of modules

For technical reason we need the following new definition.

Definition 2.1. Let R be a ring (not necessary Noetherian) and n be a
positive integer. Let x1, . . . , xn ∈ R and M, N be R-modules. Then we write

M
[x1,...,xn]

� N if and only if there exists an exact sequence;

0 −→ M
ε−→ K1

h1−→ K2 −→ · · · −→ Kn−1
hn−1−→ Kn

θ−→ N −→ 0,

such that for each 1 ≤ i ≤ n, the R-homomorphism Ki

xi−→ Ki is an iso-
morphism.

The following result will be useful in this paper.

Lemma 2.2. Let (R, �) be a Noetherian local ring and M be a non-zero fi-
nitely generated R-module and let x1, . . . , xt ∈ �, (t ≥ 1). Then the following
statements are equivalent:

(i) M
[x1,...,xt ]� Ht

(x1,...,xt )
(M).

(ii) x1, . . . , xt is an M-regular sequence.

Proof. (i)⇒ (ii) It follows from the definition that Hi
(x1,...,xj )

(M) = 0 for
all 0 ≤ i ≤ j − 1 and all 1 ≤ j ≤ t and so the assertion follows from [2,
Exercise 6.2.14].

(ii)⇒ (i) Since by the hypothesis x1, . . . , xt is an M-regular sequence, for
each 1 ≤ i ≤ t , we have AssR(H i

(x1,...,xi )
(M)) = AssR(M/(x1, . . . , xi)M).

Therefore, for each 1 ≤ i ≤ t−1 we have �Rxi+1(H
i
(x1,...,xi )

(M)) = 0. Now let

K1 := Mx1 and Ki := (H i−1
(x1,...,xi−1)

(M))xi
, for each 2 ≤ i ≤ t . Then, in view

of [2, Remark 2.2.17] we have the exact sequence

0 −→ M
ε−→ K1

f1−→ H 1
Rx1

(M) −→ 0
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and the exact sequences

(2.1) 0 −→ Hi−1
(x1,...,xi−1)

(M)
gi−1−→ Ki −→ H 1

Rxi
(H i−1

(x1,...,xi−1)
(M)) −→ 0,

for i = 2, . . . , t . On the other hand, for i = 2, . . . , t , by [6, Corollary 3.5]
there exists an exact sequence

(2.2) 0 −→ H 1
Rxi

(H i−1
(x1,...,xi−1)

(M)) −→ Hi
(x1,...,xi )

(M)

−→ H 0
Rxi

(H i
(x1,...,xi−1)

(M)) −→ 0.

Also, in view of [2, Theorem 3.3.1] we have Hi
(x1,...,xi−1)

(M) = 0 and hence
the exact sequence (2.2) yields the isomorphism

(2.3) H i
(x1,...,xi )

(M) � H 1
Rxi

(H i−1
(x1,...,xi−1)

(M)).

Now, using the isomorphism (2.3), the exact sequence (2.1) yields the exact
sequence

0 −→ Hi−1
(x1,...,xi−1)

(M)
gi−1−→ Ki

fi−→ Hi
(x1,...,xi )

(M) −→ 0,

for i = 2, . . . , t . Using these exact sequences we can construct the following
exact sequence

0 −→ M
ε−→ K1

h1−→ K2 −→ · · ·
−→ Kt−1

ht−1−→ Kt
θ−→ Ht

(x1,...,xt )
(M) −→ 0,

where hi = gi ◦ fi , for i = 1, . . . , t − 1 and θ = ft . Also it is clear that for
each 1 ≤ i ≤ t , the R-homomorphism Ki

xi−→ Ki is an isomorphism.

The following corollary gives a new characterization of Cohen-Macaulay
modules.

Corollary 2.3. Let (R, �) be a Noetherian local ring and M be a non-zero
finitely generated R-module of dimension n ≥ 1. Let x1, . . . , xn be a system
of parameters for M . Then the following statements are equivalent:

(i) M
[x1,...,xn]

� Hn
�(M).

(ii) M is a Cohen-Macaulay R-module.

Proof. The assertion follows from Lemma 2.2 using the fact that

Hn
(x1,...,xn)

(M) � Hn
�(M).

The following theorem is the main result of this section.
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Theorem 2.4. Let R be a ring (not necessary Noetherian) and L, M , N be

R-modules. Letx1, . . . , xn be a sequence of elements in Ann L. IfM
[x1,...,xn]

� N ,
then for each integer i ≥ 0 there are the following isomorphisms:

(i) Exti+n
R (L, M) � ExtiR(L, N),

(ii) Exti+n
R (N, L) � ExtiR(M, L),

(iii) TorR
i+n(N, L) � TorR

i (M, L).

Proof. By hypothesis, there exists an exact sequence of the R-modules as;

(2.4) 0 −→ M
ε−→ K1

h1−→ K2 −→ · · ·
−→ Kn−1

hn−1−→ Kn
θ−→ N −→ 0,

such that for each 1 ≤ i ≤ n, the R-homomorphism Ki

xi−→ Ki is an iso-
morphism. So, for each j ≥ 0, each of the R-homomorphisms

ExtjR(L, Ki)
xi−→ ExtjR(L, Ki)

and ExtjR(Ki, L)
xi−→ ExtjR(Ki, L)

and TorR
j (Ki, L)

xi−→ TorR
j (Ki, L),

is an isomorphism, for each 1 ≤ i ≤ n. Hence, it follows from the hypothesis
x1, . . . , xn ∈ Ann L, that

ExtjR(L, Ki) = 0, ExtjR(Ki, L) = 0 and TorR
j (Ki, L) = 0,

for each j ≥ 0 and each 1 ≤ i ≤ n. Now, using these isomorphisms and by
splitting the exact sequence (2.4) to some short exact sequences, the assertion
easily follows.

We shall use the following consequences of Theorem 2.4 in the next section.

Corollary 2.5. Let R be a ring (not necessary Noetherian) and M be an
R-module. If x1, . . . , xn ∈ R is a regular sequence on M , then for each integer
i ≥ 0 there are the following isomorphisms:

(i) Exti+n
R (R/(x1, . . . , xn), M) � ExtiR(R/(x1, . . . , xn), H

n
(x1,...,xn)

(M)),

(ii) Exti+n
R (Hn

(x1,...,xn)
(M), R/(x1, . . . , xn)) � ExtiR(M, R/(x1, . . . , xn)),

(iii) TorR
i+n(H

n
(x1,...,xn)

(M), R/(x1, . . . , xn)) � TorR
i (M, R/(x1, . . . , xn)).

Proof. By the proof of Lemma 2.2 we have M
[x1,...,xn]

� Hn
(x1,...,xn)

(M), so
the assertion follows from Theorem 2.4.
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Corollary 2.6. Let (R, �) be a Noetherian local ring and M be a non-
zero finitely generated Cohen-Macaulay R-module of dimension n. Let L be
a finitely generated R-module such that M ⊗R L is of finite length. Then for
each integer i ≥ 0 there are the following isomorphisms:

(i) Exti+n
R (L, M) � ExtiR(L, Hn

�(M)),

(ii) Exti+n
R (Hn

�(M), L) � ExtiR(M, L),

(iii) TorR
i+n(H

n
�(M), L) � TorR

i (M, L).

Proof. Since by hypothesis the R-module M ⊗R L is of finite length,
it follows that the ideal Ann L contains a system of parameters for M as

x1, . . . , xn. Also by Corollary 2.3 we have M
[x1,...,xn]

� Hn
�(M). Therefore, the

assertion follows from Theorem 2.4.

3. Vanishing of the extension and torsion functors

The following lemmata are needed in the proof of some results of this paper.

Lemma 3.1 (See [3, Exercise 1.1.12]). Let R be a Noetherian ring and M

be an R-module. Let x1, . . . , xk be an M-regular sequence. Then

TorR
1 (R/(x1, . . . , xk), M) = 0.

Lemma 3.2. Let (R, �) be a Noetherian local ring and M be a finitely
generated R-module of dimension n ≥ 1. Let x1, . . . , xk be an M-regular
sequence. Then x1, . . . , xk is an D(Hk

(x1,...,xk)
(M))-regular sequence.

Proof. We argue, using induction on k. For k = 1, the exact sequence

0 −→ M
x1−→ M −→ M/x1M −→ 0,

yields the exact sequence

0 −→ M/x1M −→ H 1
(x1)

(M)
x1−→ H 1

(x1)
(M) −→ H 1

(x1)
(M/x1M).

But, since M/x1M is (x1)-torsion it follows that H 1
(x1)

(M/x1M) = 0. Hence,
we have the following exact sequence

0 −→ M/x1M −→ H 1
(x1)

(M)
x1−→ H 1

(x1)
(M) −→ 0,

and applying the Matils dual functor to this exact sequence we get the exact
sequence

0 −→ D(H 1
(x1)

(M))
x1−→ D(H 1

(x1)
(M)) −→ D(M/x1M) −→ 0.
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Now, since M/x1M 	= 0, it follows that

D(H 1
(x1)

(M))/x1D(H 1
(x1)

(M)) ∼= D(M/x1M) 	= 0

and so x1 is an D(H 1
(x1)

(M))-regular sequence. Now, let k ≥ 2 and assume
that the result has been proved for all regular sequences of length smaller
than k. Then, since x2, . . . , xk is an M/x1M-regular sequence, it follows from
the inductive hypothesis that, x2, . . . , xk is an D(Hk−1

(x2,...,xk)
(M/x1M))-regular

sequence. On the other hand, the exact sequence

0 −→ M
x1−→ M −→ M/x1M −→ 0,

using [2, Theorem 6.2.7], induces the exact sequence

0 −→ Hk−1
(x1,...,xk)

(M/x1M) −→ Hk
(x1,...,xk)

(M)

x1−→ Hk
(x1,...,xk)

(M) −→ Hk
(x1,...,xk)

(M/x1M).

Moreover, in view of [2, Exercise 2.1.9] and [2, Theorem 3.3.1] we have

Hk
(x1,...,xk)

(M/x1M) ∼= Hk
(x2,...,xk)

(M/x1M) = 0.

Now, the exact sequence

0 −→ Hk−1
(x1,...,xk)

(M/x1M) −→ Hk
(x1,...,xk)

(M)
x1−→ Hk

(x1,...,xk)
(M) −→ 0

yields the exact sequence

0 −→ D(Hk
(x1,...,xk)

(M))
x1−→ D(Hk

(x1,...,xk)
(M))

−→ D(Hk−1
(x1,...,xk)

(M/x1M)) −→ 0.

But, in view of [2, Exercise 2.1.9] we have

Hk−1
(x1,...,xk)

(M/x1M) ∼= Hk−1
(x2,...,xk)

(M/x1M).

So, x2, . . . , xk is an D(Hk−1
(x1,...,xk)

(M/x1M))-regular sequence. Now, it is clear
that x1, . . . , xk is an D(Hk

(x1,...,xk)
(M))-regular sequence. This completes the

inductive step and the proof of the lemma.

The following result is needed in the proof of Theorem 3.4.

Lemma 3.3. Let (R, �) be a Noetherian local ring and M be a finitely
generated R-module. Let x1, . . . , xk be an M-regular sequence. Then

Extk+1
R (R/(x1, . . . , xk), M) = 0.
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Proof. By Corollary 2.5 we have

Extk+1
R (R/(x1, . . . , xk), M) � Ext1

R(R/(x1, . . . , xk), H
k
(x1,...,xk)

(M)).

Moreover, by the adjointness and using Lemmata 3.1 and 3.2 we have

D(Ext1
R(R/(x1, . . . , xk), H

k
(x1,...,xk)

(M)))

� TorR
1 (R/(x1, . . . , xk), D(Hk

(x1,...,xk)
(M))) = 0.

So, Ext1
R(R/(x1, . . . , xk), H

k
(x1,...,xk)

(M)) = 0 and hence

Extk+1
R (R/(x1, . . . , xk), M) = 0.

Theorem 3.4. Let (R, �) is a Noetherian complete local ring, M is a non-
zero finitely generated R-module and x1, . . . , xk , (k ≥ 1), is an M-regular
sequence, then the following statements hold:

(i) D(Hk
(x1,...,xk)

(D(Hk
(x1,...,xk)

(M)))) � M .

(ii) Ann Hk
(x1,...,xk)

(M) = Ann M .

Proof. (i) Since x1, . . . , xk is an M-regular sequence, from [5, Theo-
rem 16.1] it follows that for each positive integer n, the sequence xn

1 , . . . , xn
k

is M-regular. Moreover, since M is �-adically complete, the exercise [5, Ex-
ercise 8.2] implies that M is also (x1, . . . , xk)-adically complete. Therefore,
we have

lim←−
n≥1

M/(xn
1 , . . . , xn

k )M � M.

Now, using adjointness and Corollary 2.5 we have

D(Hk
(x1,...,xk)

(D(Hk
(x1,...,xk)

(M))))

� D
(

lim−→
n≥1

ExtkR
(
R/(xn

1 , . . . , xn
k ), D(Hk

(x1,...,xk)
(M))

))

� D
(

lim−→
n≥1

D(TorR
k

(
R/(xn

1 , . . . , xn
k ), Hk

(x1,...,xk)
(M))

))

� lim←−
n≥1

D(D(TorR
0 (R/(xn

1 , . . . , xn
k ), M)))

� lim←−
n≥1

D(D(M/(xn
1 , . . . , xn

k )M))

� lim←−
n≥1

M/(xn
1 , . . . , xn

k )M � M.
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(ii) Follows from (i).

The following theorem is the main result of this section.

Theorem 3.5. Let R be a Noetherian ring and M be a finitely generated
R-module. Let x1, . . . , xk be an M-regular sequence. Then

Extk+1
R (R/(x1, . . . , xk), M) = 0.

Proof. Suppose that Extk+1
R (R/(x1, . . . , xk), M) 	= 0. Then there exists

� ∈ Supp(Extk+1
R (R/(x1, . . . , xk), M)).

Then
Extk+1

R�
(R�/(x1, . . . , xk)R�, M�) 	= 0.

But, in the situation it is easy to see that x/1, . . . , xk/1 ∈ �R� is an M�-regular
sequence and hence by Lemma 3.3 we have Extk+1

R�
(R�/(x1, . . . , xk)R�, M�) =

0, which is a contradiction.

Corollary 3.6. Let (R, �) be a Noetherian local ring of dimension d ≥ 1
and M be a maximal Cohen-Macaulay R-module. Let x1, . . . , xd be a system
of parameters for R. Then the following statements hold:

(i) TorR
d+1(R/(x1, . . . , xd), H

d
�(M)) = 0,

(ii) TorR
d+1(H

d
�(R), Hd

�(M)) = 0,

(iii) Extd+1
R (R/(x1, . . . , xd), M) = 0.

Proof. The first assertion follows from Corollary 2.6 together with Lem-
ma 3.1. The second assertion follows from part (i) using the isomorphism

Hd
�(R) = Hd

(x1,...,xd )(R) � lim−→
n≥1

R/(xn
1 , . . . , xn

d ),

and the fact that the torsion functor TorR
d+1(−, Hd

�(M)) commutes with direct
limits. The third assertion follows from Theorem 3.5.

4. Top local cohomology modules of Cohen-Macaulay modules

We need the following well known result and its corollary.

Lemma 4.1. Let (R, �) be a Noetherian local ring and let A be a non-zero
Artinian R-module and M be a non-zero finitely generated R-module. Then

flatdimR(A) = sup{ n ∈ N0 : TorR
n (R/�, A) 	= 0 },
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and
projdimR(M) = sup{ n ∈ N0 : TorR

n (R/�, M) 	= 0 },

Proof. See [1, Corollary 2.9] and [5, §19 Lemma 1].

Corollary 4.2. Let (R, �) be a Noetherian local ring and M be a non-
zero finitely generated Cohen-Macaulay R-module of dimension n. Then for
the following statements hold:

(i) projdimR(M) <∞ if and only if flatdimR(Hn
�(M)) <∞.

(ii) If projdimR(M) < ∞, then flatdimR(Hn
�(M)) = n + projdimR(M) =

depth(R).

Proof. The assertion follows from Corollary 2.6, Lemma 4.1, and [5, The-
orem 19.1].

Recall that, in view of the New Intersection Theorem, over a Noetherian
local ring R, the existence of a non-zero Cohen-Macaulay module with finite
projective dimension or the existence of a non-zero finitely generated module
with finite injective dimension is equivalent to the fact that R is a Cohen-
Macaulay ring. The following result shows that, when R is complete then for a
given non-zero Cohen-Macaulay module M with finite projective dimension,
it is easy to find a non-zero finitely generated module N = D(Hn

�(M)) with
finite injective dimension for which Ann N = Ann M .

Theorem 4.3. Let (R, �) be a Noetherian Cohen-Macaulay local ring and
M be a non-zero finitely generated Cohen-Macaulay R-module of dimension
n, such that projdimR(M) <∞. Then injdimR(D(Hn

�(M))) <∞.

Proof. By Corollary 4.2 we have flatdimR(Hn
�(M)) = depth(R). Let

depth(R) = t . Then there is a finite flat resolution

0 −→ Qt −→ Qt−1 −→ · · · −→ Q1 −→ Q0 −→ Hn
�(M) −→ 0,

for the R-module Hn
�(M). Then the exact sequence

0 −→ D(Hn
�(M)) −→ D(Q0) −→ D(Q1)

−→ · · · −→ D(Qt−1) −→ D(Qt) −→ 0,

is an injective resolution for D(Hn
�(M)). So, the R-module D(Hn

�(M)) is of
finite injective dimension.

Proposition 4.4. Let (R, �) be a Noetherian Cohen-Macaulay complete
local ring and M be a non-zero finitely generated Cohen-Macaulay R-module
of dimension n, such that injdimR(M) < ∞. Then projdimR(D(Hn

�(M))) <

∞.
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Proof. Since injdimR(M) < ∞ it follows that ExtiR(R/m, M) = 0, for
each i > dim(R). Therefore, by Theorem 2.4 it follows that ExtiR(R/m,

Hn
�(M)) = 0, for each i > dim(R)−n. So, as Hn

�(M) is anArtinian R-module
we can deduce that injdimR(Hn

�(M)) <∞. Now, as R is complete, applying
the functorD(−) to a minimal injective resolution ofHn

�(M)we get a finite free
resolution for D(Hn

�(M)), which implies that projdimR(D(Hn
�(M))) <∞.

The following result is the main result of this section.

Theorem 4.5. Let (R, �) be a complete Noetherian Cohen-Macaulay local
ring and I a proper ideal of R. Then the following statements are equivalent:

(i) There exists a non-zero Cohen-Macaulay R-module M with injdimR(M)

<∞ such that Ann M = I .

(ii) There exists a non-zero Cohen-MacaulayR-moduleN with projdimR(N)

<∞ such that Ann N = I .

Proof. Using Lemma 3.2, Theorem 4.3 and Proposition 4.4 we can take

N := D(H dim(M)
� (M)) and M := D(H dim(N)

� (N))

with the desired properties. (Note that the conditions on the annihilators follow
from Theorem 3.4.)
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