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AMENABILITY OF THE ENVELOPING

DUAL BANACH ALGEBRA
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Abstract
IfD : A→ X is a derivation from a Banach algebra to a contractive, BanachA-bimodule, then one
can equipX∗∗ with an A∗∗-bimodule structure, such that the second transposeD∗∗ : A∗∗ → X∗∗
is again a derivation. We prove an analogous extension result, where A∗∗ is replaced by F(A), the
enveloping dual Banach algebra of A, and X∗∗ by an appropriate kind of universal, enveloping,
normal dual bimodule of X.

Using this, we obtain some new characterizations of Connes-amenability of F(A). In particular
we show that F(A) is Connes-amenable if and only if A admits a so-called WAP-virtual diagonal.
We show that whenA = L1(G), existence of a WAP-virtual diagonal is equivalent to the existence
of a virtual diagonal in the usual sense. Our approach does not involve invariant means for G.

1. Introduction

Amenability for Banach algebras, as introduced and studied in the pioneering
work of B. E. Johnson [18], has proved to be an important and fertile notion.
However, it was recognized very early on in the development of the subject
that it might not be the “right” notion when dealing with, say, von Neumann
algebras. There is a natural variant of amenability [6] that is better adapted to
categories of normal bimodules over von Neumann algebras, and it turns out
that this version of amenability is equivalent to injectivity for von Neumann
algebras. (See [6] for an indirect proof in the case of separable preduals, which
relies on results from [5]. In general, “amenability” implies injectivity was
shown in [4], while the results of [5, §§6–7] and [12] show that injective
von Neumann algebras are AFD. It had been already been observed in [19]
that AFD von Neumann algebras are “amenable” in an appropriate sense, see
Corollary 6.4 and the proof of Theorem 6.1 in that paper.)

Von Neumann algebras are particular examples of so-called dual Banach
algebras, which are roughly speaking those Banach algebras which possess a
w∗-topology that is suitably compatible with the multiplication. For general
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dual Banach algebras, taking our lead from the results obtained for von Neu-
mann algebras, one can define an analogously modified notion of amenabil-
ity. This property has become known as Connes-amenability, and is usually
defined in terms of the behaviour of certain w∗-continuous derivations from a
dual Banach algebra into normal dual bimodules. Perhaps the first systematic
treatment was given by V. Runde in his papers [23], [25].

In certain cases, Connes-amenability of natural dual Banach algebras built
from a locally compact group characterizes amenability of the group, in ana-
logy with Johnson’s result that amenability of the Banach algebraL1(G) char-
acterizes amenability of G. In particular, we have the following results:

Theorem 1.1 (Runde; Johnson). Let G be a locally compact group. The
following are equivalent:

(i) G is amenable;

(ii) L1(G) is amenable as a Banach algebra;

(iii) WAP(G)∗ is Connes-amenable as a dual Banach algebra;

(iv) M(G) is Connes-amenable as a dual Banach algebra.

Here M(G) is the measure algebra of G, and WAP(G) denotes the space
of weakly almost periodic functions on G, whose dual is equipped with a
natural convolution algebra structure1 in the sense of [16, Definition 19.3].
The implication (i)⇒ (ii) is due to Johnson [18, Theorem 2.5]; the implic-
ations (ii)⇒ (iii)⇒ (iv) are special cases of straightforward, general results
on amenability and Connes-amenability for (dual) Banach algebras; and the
(hard!) implication (iv)⇒ (i) is the main result of Runde’s article [24]. We
mention for sake of completeness that the implication (ii)⇒ (i) is first recor-
ded in [18], where it is attributed to J. R. Ringrose.

One of the original goals of the present work was a more direct proof of the
implication (iii)⇒ (ii) in Theorem 1.1 which does not pass through amenability
of G, and hence might shed light on similar results for more general Banach
algebras. This led to the following question: given a continuous derivation
fromL1(G) to aL1(G)-bimoduleX, is there some way to extend it to a w∗-w∗
continuous derivation from WAP(G)∗ into some suitable dual bimodule? We
shall show that this can be done in a very natural manner. More generally, we
prove (Theorem 4.4) that one can always extend continuous derivations from a
given Banach algebraA to w∗-w∗ continuous derivations out of a dual Banach
algebra canonically associated to A.

1 WAP(G)∗ may also be identified with the convolution algebra of Radon measures on a cer-
tain semitopological semigroup, the WAP-compactification of G, although we will not use this
perspective. See [2, §IV.2] for further details.
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Our approach to Theorem 4.4 is motivated by work of F. Gourdeau. In [14],
he proved that if D is a continuous derivation from a Banach algebra A to a
Banach A-bimodule X, and we equip A∗∗ with the first Arens product, then
we can equip X∗∗ with the structure of a Banach A∗∗-bimodule such that
D∗∗ : A∗∗ → X∗∗ becomes a w∗-w∗ continuous derivation. The argument has
two main ingredients: first, the correspondence between derivations A → X

and homomorphisms from A into a certain ‘triangular’ Banach algebra built
from A and X; second, the observation that if θ : A → B is a continuous
homomorphism between Banach algebras, then θ∗∗ : A∗∗ → B∗∗ is a homo-
morphism when bothA∗∗ andB∗∗ are equipped with their first Arens products.
In our setting, we replace the second dual of a Banach algebra (which is in gen-
eral not a dual Banach algebra) with a certain quotient algebra of this second
dual, which can be regarded as the “enveloping dual Banach algebra” of a
given Banach algebra. The rest is then very similar to Gourdeau’s argument
for the second dual.

Once we have proved our extension result, we obtain some characterizations
of Connes-amenability of the enveloping dual Banach algebra, analogous to
the standard characterizations of amenability in terms of virtual diagonals.
In particular, using our results on extension of derivations, we show that the
enveloping dual Banach algebra of A is Connes-amenable if and only if A
has a so-called WAP-virtual diagonal. Note that [25] already characterizes
Connes-amenability of a given dual Banach algebra B in terms of diagonal-
type elements associated to B; the point of our approach is to work in a space
more closely related to A itself. In the case A = L1(G), we show that a WAP-
virtual diagonal for L1(G) can always be “lifted” to a virtual diagonal for
L1(G), and we also give a description of certain submodules of L∞(G×G)
that arise naturally in our approach and might be of independent interest.

Here is a summary overview of the paper. Sections 2 and 3 set up some
terminology, and review the necessary background on dual Banach algebras
and triangular Banach algebras. These are then combined in Section 4 to ob-
tain the desired extension theorem for derivations (Theorem 4.4). En route,
we are led to a definition of the natural “enveloping normal dual bimodule”
(Theorem 4.3) of a given Banach bimodule. Although our approach does not
require familiarity with category-theoretic machinery, it was guided by the
philosophy of adjoint functors between suitable categories, and we shall make
some further comments along these lines in the relevant sections. Section 5
collects some basic functorial properties of these constructions.

Section 6 introduces the notion of a WAP-virtual diagonal for a given
Banach algebraA, and uses it to characterize Connes-amenability of the corres-
ponding enveloping dual Banach algebra. Section 7 contains technical results
concerning certain subspaces of (A ⊗̂ A)∗, with respect to which one can
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define analogues of virtual diagonals. These are used in Section 8 to show
that if L1(G) has a WAP-virtual diagonal, then it has a virtual diagonal. The
proof is a lifting argument, based on techniques used by Runde in [24]. In Sec-
tion 9 we describe the “essential part” and “WAP part” of theL1(G)-bimodule
L∞(G ×G), since both these subspaces play an important role in Section 8.
Finally, Section 10 offers some closing remarks and questions.

2. Preliminaries

2.1. General terminology and background

We refer to standard sources such as [3] for the definitions of Banach algebras
and Banach bimodules. In particular, our (bi)modules need not be contractive
unless this is explicitly stated. However, in order to reduce needless repetition,
we will adopt some terminology throughout this paper that the reader should
take heed of. We speak only of modules or bimodules over a given Banach
algebra: it should be understood that these always refer to Banach modules
or Banach bimodules, in the sense of [3]. Given such a module, whenever
we refer to a submodule, we always mean a closed submodule; similarly for
sub-bimodules. Throughout, all morphisms, derivations etc. are linear and
norm-continuous.

Our definitions of dual Banach algebras and normal dual bimodules over
them are taken from [23], although that paper uses the terminology “w∗-
bimodule”. For convenience and consistency of terminology, we repeat the
definitions.

Definition 2.1. Let B be a Banach algebra, and regard B∗ as a B-bimodule
in the usual way. We say B is a dual Banach algebra with predual B∗, if there
exists a sub-bimodule B∗ ⊆ B∗ such that the composition of the two natural
maps B → B∗∗ (embedding in the bidual) and B∗∗ → (B∗)∗ (adjoint of the
inclusion B∗ ↪→ B∗) is bijective. More succinctly but less precisely, this means
we require B to itself be a dual B-bimodule.

The definition of a dual Banach algebra requires us to specify the predual,
but usually we will omit this for sake of brevity, when it is clear from context
what the intended predual should be. If we wish to emphasize a particular
choice of predual, we shall say “B = (B∗)∗ is a dual Banach algebra”.

Definition 2.2. Let B = (B∗)∗ be a dual Banach algebra, let M∗ be a B-
bimodule, and let M = (M∗)∗ be the resulting dual B-bimodule. We say that
M is a normal dual B-bimodule if, for each x ∈ E, the orbit maps

RB
x : B→ M, b 	→ b · x and LB

x : B→ M, b 	→ x · b
are both w∗-w∗ continuous (with respect to B∗ and M∗).
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Remark 2.3. In the later paper [25], the following alternative definition is
used for a dual Banach algebra: it is a Banach algebra B, equipped with a (not
necessarily isometric) Banach space predual B∗, such that the multiplication
map B × B → B is separately σ(B, B∗)-continuous. The equivalence of this
with the definition given above is noted in [25, §1.1], and is a straightforward
exercise which we omit.

For technical reasons, we work mainly with bimodules and normal dual
bimodules that are contractive. Since notions such as amenability and Connes-
amenability are usually defined in terms of wider classes of bimodules, we
should explain briefly why the contractive classes are good enough for our
purposes. Firstly: given a Banach algebra A and an A-bimoduleX, a standard
renorming argument produces a contractiveA-bimoduleX1 and an isomorph-
ism ofA-bimodulesX ∼= X1. Secondly: given a dual Banach algebra B and two
dual B-bimodules M and N which are w∗-isomorphic as bimodules, normality
of one implies normality of the other. (Indeed, if this statement were not true,
then somehow normality would not be a ‘natural’ notion for dual bimodules
over a dual Banach algebra.)

Lemma 2.4. Let B be a dual Banach algebra and let M be a normal dual
B-bimodule. Then there exists a contractive, normal dual B-bimodule N which
is w∗-module isomorphic to M.

Proof. By the observations before the lemma, M1∗ is a contractive B-
bimodule which is isomorphic to M∗. Hence N := (M1∗)∗ is a contractive
dual B-bimodule that is w∗-bimodule-isomorphic to M; and it is moreover
normal, since M is.

2.2. The enveloping dual Banach algebra

It is natural to consider the category DBA of dual Banach algebras and w∗-w∗
continuous algebra homomorphisms. At present, this category is less well un-
derstood than the usual category BA of Banach algebras and norm-continuous
homomorphisms; but the two categories are related via the existence of a “uni-
versal enveloping dual Banach algebra” associated to a given Banach algebra.
This was shown in [25], but since we shall use slightly different notation in
this article, we briefly review the relevant definitions.

Definition 2.5 ([25, Definition 4.1]). LetA be a Banach algebra andE an
A-bimodule. We denote by AWAPA(E) the set of all elements x ∈ E for which
the orbit maps RAx : A→ E, a 	→ a ·x and LAx : A→ E : a 	→ x ·a are both
weakly compact. It follows from standard properties of weakly compact linear
maps – in particular, the fact that they form an operator ideal – that AWAPA(E)
is a closed sub-bimodule of E.
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Example 2.6 (The motivating ur-example). Let A = L1(G), and regard
A∗ = L∞(G) as anA-bimodule in the usual way. Then by a result of Ülger [27],
AWAPA(A∗) coincides with the space WAP(G) of weakly almost periodic
functions on G. (We recall, for sake of completeness, that f ∈ CB(G) is said
to be weakly almost periodic if the set of left translates and the set of right
translates of f are relatively weakly compact subsets of CB(G).)

Definition 2.7. Given a Banach algebraA and aA-bimoduleX, we write
FA(X)∗ for theA-bimodule AWAPA(X∗), whereX∗ is equipped with the usual
bimodule action induced from X. We then define FA(X) to be the dual A-
bimodule (FA(X)∗)∗. In the special case where X = A, regarded as an A-
bimodule in the canonical way, we shall usually omit the subscripts, and simply
use the notation F(A).

We denote by ηX : X → FA(X) the map obtained by composing the
canonical inclusion of X in its second dual with the adjoint of the inclusion
map AWAPA(X∗) ↪→ X∗. Observe that ηX is a norm-continuous A-bimodule
map, as it is the composition of two such maps.

The space F(A)∗ = AWAPA(A∗) is an example of an introverted subspace of
A∗: for the definition in the context of Banach algebras, see [21, §1], although
the analogous notion in the caseA = L1(G) goes back much further. It follows
from the introversion property that F(A) can be equipped with the structure
of a Banach algebra with the following property: if A∗∗ is equipped with its
first Arens product, then the adjoint of the inclusion map F(A)∗ ↪→ A∗ is a
w∗-w∗ continuous quotient homomorphism of Banach algebras A∗∗ → F(A).
(See e.g. [21, §1] for details.) Note that this condition uniquely determines
the multiplication on F(A), and that ηA : A → F(A) is a norm-continuous
homomorphism with w∗-dense range.

Notation. It is customary to denote the firstArens product inA∗∗ by �, and
we shall use the same symbol to denote the product in F(A). It is a standard
result (see e.g. [8, Theorem 3.14] or [22, Theorem 1.4.11]) that A is Arens
regular if and only if F(A)∗ = A∗, in which case F(A) = A∗∗.

Runde observed (see the proof of [25, Theorem 4.10]) that F(A) = (F(A)∗)∗
is actually a dual Banach algebra. Thus, although in general A∗∗ is not a dual
Banach algebra, it has a canonical quotient algebra which is a dual Banach
algebra, namely F(A). It was also shown in [25] that F(A) is not just a canonical
dual Banach algebra associated to A; it is a universal one, in the following
sense.

Theorem 2.8 ([25, Theorem 4.10]). Let A be a Banach algebra, B a dual
Banach algebra, and f : A→ B a continuous algebra homomorphism. Then
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there exists a unique w∗-w∗ continuous linear map h : F(A) → B such that
hηA = f . Moreover, h is an algebra homomorphism.

Although this is not observed explicitly in [25], F( ) defines a functor from
BA to DBA. We could show this directly – see Remark 2.10 below – but it can
also be deduced from Theorem 2.8 by “soft” means, as follows.

Corollary 2.9. Let f : A→ B be a continuous algebra homomorphism
between Banach algebras. Then there exists a unique w∗-w∗ continuous linear
map F(f ) : F(A)→ F(B) making the diagram

(2.1)

F(A)
F(f )−−−−−→ F(B)

ηA ηB

A −−−−−−−−→
f

B

commute. Moreover, F(f ) is an algebra homomorphism.
The assignment f 	→ F(f ) is functorial. That is: F(idA) = idF(A); and if

g : B → C is another continuous algebra homomorphism between Banach
algebras, then F(gf ) = F(g)F(f ).

Proof. The existence, uniqueness and homomorphism properties of F(f )
follow by applying Theorem 2.8 to the homomorphism ηBf : A → F(B).
Because of uniqueness, F(idA) = idF(A).

If f : A → B and g : B → C are continuous homomorphisms between
Banach algebras, then by the first part of this corollary, both squares in the
following diagram commute:

F(A)
F(f )−−−−−→ F(B)

F(g)−−−−−→ F(C)

ηA ηB ηC

A −−−−−−−→
gf

B −−−−−−−→
gf

C

Therefore the outer rectangle commutes, which by the uniqueness property of
F(gf ) in the commuting diagram

F(A)
F(gf )−−−−−−→ F(C)

ηA ηC

A −−−−−−−−→
gf

C

implies that F(gf ) = F(g)F(f ).
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The proof of Corollary 2.9 illustrates a general category-theoretic proced-
ure. In the language of adjunctions between categories, F : BA → DBA is
left adjoint to the forgetful functor DBA → BA. A basic result in category
theory tells us that to find left adjoint functors, it suffices to construct universal
objects as done in Theorem 2.8; functoriality then follows automatically from
the universal property, by a general version of the arguments used in proving
Corollary 2.9.

Remark 2.10. Given a norm-continuous homomorphism f : A → B,
one can define F(f ) and prove its functorial nature more directly, without the
machinery of adjunctions. Standard properties of weakly compact maps imply
that f ∗(F(B)∗) ⊆ F(A)∗, and then the adjoint of f ∗|F(B)∗ is our desired map
F(f ). Checking that F(f ) is a homomorphism, and that F(gf ) = F(g)F(f ), is
slightly tedious but routine.

Returning to the definition of FA(X) when X is an arbitrary A-bimodule:
it is important for our intended applications that FA(X) is not just a dual A-
bimodule, but is in fact a normal dual F(A)-bimodule. Instead of giving a direct
proof, we prefer to obtain this result via the technique of triangular Banach
algebras, as discussed in the next section.

3. Triangular Banach algebras, modules, and derivations

The following construction, which is a natural Banach-algebraic analogue of
classical ideas in ring theory, appears to have been reinvented independently on
several occasions. LetA be a Banach algebra andX a contractiveA-bimodule.
We write A⊕1 X for the �1-sum of A and X, and define an associative binary
product on A⊕1 X by

(3.1) (a, x) · (b, y) := (ab, a · y + x · b) (a, b ∈ A, x, y ∈ X).
Equipped with this norm and this product, A⊕1X becomes a Banach algebra,
which we denote byA⊕�X and call the triangular Banach algebra associated
to (A,X). Our notation is chosen in analogy with the corresponding semidirect
product construction for groups, and our terminology is chosen since one can
interpret this product as given by multiplication of certain upper-triangular
matrices, viz. [

a x

0 a

] [
b y

0 b

]
=

[
ab a · y + x · b
0 ab

]

Other authors have referred toA⊕�X as a “module extension Banach algebra”;
in older work [17] it is called a “strongly decomposable, topological extension
of A by X”.
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Remark 3.1. We have restricted to contractive bimodules to ensure that
the norm on A⊕� X is submultiplicative, so that we get a “genuine” Banach
algebra – this is not mentioned explicitly in [14], but is also needed there. If
we wish to make the same construction for bimodules that are not contractive,
there seem to be two reasonable options. One could equip the Banach space
A⊕1X with an equivalent norm for which multiplication is submultiplicative,
but the choice would be far from canonical. Alternatively one could work
throughout not with Banach algebras per se, but with Banach spaces equipped
with an associative product that is separately (hence jointly) norm-continuous.

The second option mentioned in Remark 3.1 is arguably the more natural
one, since when dealing with dual Banach algebras and weak compactness,
what matters is not the norm but the topology. However, this alternative defin-
ition2 of a “Banach algebra” is less standard in the literature, so we would face
difficulties in quoting results we need, and would have to repeatedly make
trivial adaptations. Therefore we do not pursue this here, and have preferred
to work with contractive bimodules whenever we can, just to keep the ex-
position cleaner. Note that a dual Banach space, equipped with an associative
product that is separately w∗-continuous, can be renormed to give a genuine
dual Banach algebra in the usual sense; see, for instance, [9, Proposition 2.1].

The algebraA⊕�X comes with two canonical maps ı : A→ A⊕�X and
q : A⊕� X→ A, defined by

(3.2) ı(a) = (a, 0) and q(a, x) = a.
Clearly both maps are algebra homomorphisms. Also, given a linear map D :
A→ X, we define θD : A→ A⊕� X by

(3.3) θD(a) = (a,D(a)) (a ∈ A).
Lemma 3.2. Let D : A → X be a linear map. Then D is a derivation if

and only if θD : A→ A⊕� X is an algebra homomorphism. Moreover, each
homomorphism θ : A → A ⊕� X satisfying qθ = id is of the form θD for
some derivation D : A→ X.

This correspondence between derivations and splittings of square-zero sin-
gular extensions goes back to the original work of G. Hochschild on his
eponymous cohomology groups, if not further. In the context of Banach al-
gebras it seems to be folklore. The proof is a simple calculation which we
omit.

2 The first author would like to thank N. Weaver (personal communication) for pointing out
that this notion was originally taken as the definition of a “normed ring” in the seminal work of
I. M. Gel’fand.
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Remark 3.3 (A wider categorical perspective). As ker(q) is an ideal in
A ⊕� X, it is naturally a contractive A ⊕� X-bimodule, and hence is a con-
tractive A-bimodule via the homomorphism ı : A → A ⊕� X. In this way
we may identify X and ker(q) as A-bimodules. Moreover, A-bimodule maps
X→ Y correspond naturally to algebra homomorphismsA⊕�X→ A⊕� Y

which fix the embedded copy of A, while derivations A → X correspond
naturally to homomorphisms A → A ⊕� X which split the quotient map q.
All this gives rise to a slogan which we wish to highlight:

One can recover the notion of “module” from an appropriate notion of
“split extension of algebras”; the notion of “module morphism” from
an appropriate notion of morphism between such extensions; and the
notion of “derivation” from an appropriate notion of splitting for such
an extension.

This slogan could be made much more precise using additional category-
theoretic language (a readable exposition can be found in [1, §6.1]), but we
will avoid this to keep the present account more focused. Nevertheless, the
slogan strongly suggests that if we take the category DBA seriously, then we
should be led naturally to consider a corresponding class of modules, module
morphisms, and derivations. Moreover, the functor F : BA → DBA should
relate modules, module morphisms and derivations for a Banach algebra A to
corresponding notions for the dual Banach algebra F(A). (This line of thought
is what originally led us to Proposition 3.4 and Theorem 4.3; the definition of
FA(X) came later.)

We turn now to triangular Banach algebras associated to dual Banach
algebras. Given a dual Banach algebra B = (B∗)∗ and a dual B-bimodule
M = (M∗)∗, there is an obvious choice of predual for B⊕� M at the level of
Banach spaces, namely

(3.4) (B⊕� M)∗ := B∗ ⊕∞ M∗ ⊆ B∗ ⊕∞ M∗ = (B⊕� M)
∗.

In general, however, (3.4) will not be enough to make B ⊕� M into a dual
Banach algebra. The correct result is given in the following proposition, which
should be compared with the “slogan” given in Remark 3.3. It provides further
evidence that, when working with modules over a dual Banach algebra, the
class of normal dual bimodules is the right one to consider.

Proposition 3.4. Let B = (B∗)∗ be a dual Banach algebra, and let M be
a B-bimodule which is the dual of some Banach spaceM∗. Then the following
are equivalent:

(i) M is a normal dual B-bimodule, with predual M∗;
(ii) B⊕� M is a dual Banach algebra, with predual (B⊕� M)∗.
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After the present work was done, we found that the implication (i)⇒ (ii)
has been obtained independently in [13], where the authors chose to omit the
proof as being obvious. For sake of completeness we will give a full proof
of the proposition, taking an algebraic approach rather than an argument with
approximating nets.

Proof. Suppose B⊕�M = ((B⊕�M)∗)∗ is a dual Banach algebra, i.e. that
B∗ ⊕∞M∗ = (B⊕�M)∗ is a B⊕�M-submodule of B∗ ⊕∞M∗ = (B⊕�M)

∗.
Let ψ ∈ M∗, a ∈ B. Then (0, ψ) · (a, 0) ∈ B∗ ⊕M∗; by assumption it lies in
B∗ ⊕M∗ ,̇ and a quick calculation shows it annihilates all elements of the form
(b, 0) where b ∈ B, so lies in {0} ⊕M∗. Since

〈ψ · a, y〉 = ψ(a · y) = 〈(0, ψ) · (a, 0), (0, y)〉 (y ∈ M),
we see thatψ ·a ∈ M∗. A similar argument, with left and right reversed, shows
that a · ψ ∈ M∗. Thus M∗ is a sub-B-bimodule of M∗, making M = (M∗)∗ a
dual B-bimodule.

It remains to prove M is normal. Fix y ∈ M , and define RB
y : B → M by

RB
y (a) = a ·y. Givenψ ∈ M∗, we know (0, ψ) ∈ B∗⊕M∗, so (0, y) · (0, ψ) ∈

B∗ ⊕M∗. Moreover, since

〈(0, y) · (0, ψ), (0, x)〉 = 0 for all x ∈ M
this implies that (0, y) · (0, ψ) = (φ, 0) for some φ ∈ B∗. As

φ(a) = 〈(0, y) · (0, ψ), (a, 0)〉 = ψ(a · y) = 〈(RB
y )
∗(ψ), a〉,

this shows that (RB
y )
∗(ψ) ∈ B∗. Hence (RB

y )
∗(M∗) ⊆ B∗, and so RB

y is w∗-
w∗ continuous. A similar argument shows that the map a 	→ y · a is w∗-w∗
continuous from B→ M . Thus M is normal.

Conversely, suppose M is a normal dual bimodule, and fix (φ, ψ) ∈ B∗ ⊕
M∗. Given (b, y) ∈ B⊕M , we have

〈(b, y) · (φ, ψ), (a, x)〉 = φ(ab)+ ψ(a · y)+ ψ(x · b)
= 〈(b · φ + (RB

y )
∗(ψ), b · ψ), (a, x)〉

for every (a, x) ∈ B⊕M , where RB
y : B→ M is as defined above. Since B∗ is

a left B-submodule of B∗, we have b · φ ∈ B∗; since M∗ is a left B-submodule
of M∗, we have b · ψ ∈ M∗; and since M is a normal dual (left) B-module,
we have (RB

y )
∗(ψ) ∈ B∗. This shows that (b, y) · (φ, ψ) ∈ B∗ ⊕M∗, so that

(B⊕� M)∗ is a left B⊕� M-submodule of (B⊕� M)
∗. By an exactly similar

but left-right-reversed argument, one can show that (φ, ψ) · (b, y) ∈ B∗ ⊕M∗,
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so that (B⊕�M)∗ is a right B⊕�M-submodule of (B⊕�M)
∗. Thus B⊕�M

is a dual Banach algebra with predual (B⊕� M)∗.

Remark 3.5. In proving this theorem, it might have been more natural
(in the informal sense) to use the characterization of dual Banach algebras in
terms of separately w∗-continuous multiplication. We chose to use the original
description in terms of predual modules, since the resulting argument is more
in keeping with our algebraic approach, and suggests possible generalizations
to other situations. On the other hand, in the next section, particularly in the
proof of Theorem 4.3, it will be convenient to have both descriptions in mind.

4. Creating contractive, normal dual F(A)-modules

Given a Banach algebra A and an A-bimodule X, we are seeking some kind
of universal, normal dual, F(A)-bimodule associated to X. Our candidate is
FA(X), but it is not immediately clear that this has all the required properties.
For instance, although it is easy to check that FA(X)∗ is a sub A-bimodule of
X∗, it is not immediate that it becomes an F(A)-bimodule. However, if X is
contractive we can form the Banach algebraA⊕�X and then by Theorem 2.8
we can form the universal enveloping dual Banach algebra F(A ⊕� X). Our
strategy is to recover FA(X) as the ‘corner’ of this algebra, and then appeal to
Proposition 3.4. As mentioned in the introduction, this approach is similar to,
and motivated by, that of Gourdeau to putting an A∗∗-bimodule structure on
X∗∗, see [14].

Let V and W be Banach spaces and let β : V × W → C be a bilinear
form. It follows from Gantmacher’s theorem (or the Grothendieck double limit
criterion) that the map V → W ∗, x 	→ β(x, ·), is weakly compact if and only
if the map W → V ∗, y 	→ β(·, y) is weakly compact. If this is the case, we
shall say that β is a weakly compact bilinear form (this is also the terminology
used in e.g. [28]). If β : V × W → C is a weakly compact bilinear form,
X and Y are Banach spaces, and S : X → V , T : Y → W are bounded
linear, then by standard properties of weakly compact operators the bilinear
form β ◦ (S × T ) : X × Y → C is also weakly compact.

If N is an A-bimodule and ψ ∈ N∗, we define Lψ : A × N → C and
Rψ : N × A→ C by

Lψ(a, x) = 〈ψ, a · x〉, Rψ(x, a) = 〈ψ, x · a〉
The previous remarks now imply the following result.

Lemma 4.1. Let M = (M∗)∗ be a dual A-bimodule, and let ψ ∈ M . Then
ψ ∈ AWAPA(M) if and only if Lψ and Rψ are weakly compact bilinear forms
on A×M∗ and M∗ × A respectively.
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Proposition 4.2. Let X be a contractive A-bimodule. If we identify (A⊕�

X)∗ with A∗ ⊕∞ X∗, the subspace F(A ⊕� X)∗ is identified with F(A)∗ ⊕∞
FA(X)∗. Consequently, F(A ⊕� X) can be identified as a dual Banach space
with F(A)⊕1 FA(X).

Proof. For this proof, let T denote A⊕� X. Let π : T × T → T be the
product map. By Lemma 4.1, it is enough to identify those � ∈ T ∗ such that
�π is a weakly compact bilinear form on T . Write� = (φ, ψ)where φ ∈ A∗
and ψ ∈ X∗. Let a1, a2 ∈ A and x1, x2 ∈ X; then

(4.1)

�π((a1, x1), (a2, x2)) = �(a1a2, a1 · x2 + x1 · a2)

= φ(a1a2)+ ψ(a1 · x2)+ ψ(x1 · a2)

= φ(a1a2)+ Lψ(a1, x2)+ Rψ(a2, x1).

It is clear from (4.1) that if φ ∈ AWAPA(A∗) and ψ ∈ AWAPA(X∗) then
the bilinear form �π is weakly compact. Conversely, suppose that �π is a
weakly compact bilinear form. Then so is its restriction toA×X ⊆ T ×T , and
therefore the bilinear form Lψ is weakly compact; similarly, the bilinear form
Rψ is weakly compact. Hence by Lemma 4.1, ψ ∈ AWAPA(X∗) = FA(X)∗.
The restriction of �π to A×Amust also be a weakly compact bilinear form,
and therefore by (4.1) the bilinear form (a1, a2) 	→ φ(a1a2) is weakly compact,
so that φ ∈ AWAPA(A∗) = F(A)∗.

We now come to the main theorems of this section. At this point it is con-
venient to introduce the following short-hand notation, which will also be used
later in the paper. IfX is anA-bimodule, and ηX : X→ FA(X) is the canonical
map (which need not be injective), then we write x instead of ηX(x). This just
makes various formulas or chains of equations more legible.

Theorem 4.3 (Creation of normal bimodules). Let X be a contractive A-
bimodule. Given x ∈ FA(X) and a ∈ F(A), there exist unique elements a · x
and x · a in FA(X) which satisfy

(a, 0) � (0, x) = (0, a · x) and (0, x) � (a, 0) = (0, x · a) in F(A⊕� X).

The operations (a, x) 	→ a · x and (x, a) 	→ x · a make FA(X) into a F(A)-
bimodule. Moreover

• we have a · x = a · x and x · a = x · a for all a ∈ A, x ∈ X;

• FA(X) is a normal dual F(A)-bimodule, with predual FA(X)∗ =
AWAPA(X∗);
• F(A⊕� X) = F(A)⊕� FA(X) as dual Banach algebras.
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We note that in the conclusion of this theorem, not only is FA(X)made into
an F(A)-bimodule, but so is its predual FA(X)∗.

Proof. As in the previous proposition, we write T for A ⊕� X. By that
proposition, we can identify F(T ) as a dual Banach space with F(A)⊕1 FA(X)
(with predual identified with F(A)∗ ⊕∞ FA(X)∗). Observe that for a ∈ A and
x ∈ X, (a, x) = (a, x). The natural embedding and projection maps

EF(A) : F(A) ↪→ F(T ), PF(A) : F(T )→ F(A), PFA(X) : F(T )→ FA(X)

are w∗-continuous and satisfy EF(A)(a) = (a, 0), PF(A)((a, x)) = a. As ηA
and ηT are homomorphisms with w∗-dense ranges, it follows from separate
w∗-w∗ continuity of multiplication in F(A) and F(T ) (cf. Remark 2.3) that
EF(A) and PF(A) are algebra homomorphisms. Hence, the subspace {(0, x) :
x ∈ FA(X)} = ker PF(A) is a w∗-closed ideal in F(T ), so that for any a ∈ F(A)
and x ∈ FA(X), there are elements a · x, x · a ∈ FA(X) such that

(a, 0) � (0, x) = (0, a · x) ∈ ker PF(A)

and
(0, x) � (a, 0) = (0, x · a) ∈ ker PF(A),

where � denotes theArens product in F(T ). In this way, FA(X) is a Banach F(A)-
bimodule: associativity and the bimodule property follow from associativity
of multiplication in F(T ).

Now let a, b ∈ F(A), x, y ∈ FA(X). Observe that

{(a, 0) : a ∈ F(A)} = ImEF(A) = ker PFA(X)

is a w∗-closed subalgebra of F(T ), isometrically isomorphic as a dual Banach
algebra with F(A). Hence

(a, 0) � (b, 0) = EF(A)(a) � EF(A)(b) = EF(A)(a � b) = (a � b, 0).

Taking nets (xi), (yj ) in X such that xi → x, yj → y w∗ in FA(X), we obtain

(0, x) � (0, y) = w∗-lim
i

w∗-lim
j

(0, xi) � (0, yj )

= w∗-lim
i

w∗-lim
j

(0, xi)(0, yj )

= (0, 0).

Hence, (a, x) � (b, y) = (a � b, a · y + x · b), which is exactly the product in
the triangular algebra F(A)⊕� FA(X). Thus, we can identify the dual Banach
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algebra F(T ) with F(A) ⊕� FA(X). By Proposition 3.4, FA(X) is a normal
dual F(A)-bimodule. (Note that this proposition ensures FA(X) is not merely
a module which happens to be a dual space, but that it is a dual module.)

Here is the promised “extension” theorem for derivations, which should be
compared with [14, Lemma 2.2].

Theorem 4.4 (‘Extension’ of derivations). LetA be a Banach algebra,X a
contractive A-bimodule, andD : A→ X a continuous derivation. Then there
exists a unique w∗-w∗ continuous derivation D̃ : F(A)→ FA(X) which makes
the diagram

F(A) D̃−−−−→ FA(X)

ηA ηX

A −−−−−−−→
X

D

commute.

Proof. Let q : A ⊕� X → A be the canonical quotient homomorph-
ism and ı : A → A ⊕� X the canonical inclusion homomorphism. Define
θD : A → A ⊕� X by θD(a) = (a,D(a)); this is a norm-continuous al-
gebra homomorphism, by Lemma 3.2. Then F(θD) : F(A) → F(A ⊕� X) is
a w∗-w∗ continuous algebra homomorphism between dual Banach algebras
(Corollary 2.9).

By Theorem 4.3 we may identify F(A⊕� X) with F(A)⊕� FA(X), where-
upon F(q) is just the canonical quotient homomorphism F(A) ⊕� FA(X) →
F(A). Since qθD = id, we have F(q)F(θD) = id by functoriality, and so
by Lemma 3.2, F(θD) = θD̃ for some derivation D̃ : F(A) → FA(X). As
F(θD)ηA = η(A⊕�X)θD , it follows that D̃ηA = ηXD.

Since θD̃(a) = (a, D̃(a)) for all a ∈ F(A), the w∗-w∗ continuity of θD̃ =
F(θD) implies that D̃ is w∗-w∗ continuous. Uniqueness follows either by using
uniqueness of the extended homomorphism F(θD), or more directly by noting
that ηA(A) is w∗-dense in F(A).

Remark 4.5. We stated the theorem only for contractive A-bimodules,
because our proof goes through triangular Banach algebras (see Remark 3.1).
This restriction could easily be dropped if we were prepared to think of Banach
algebras as Banach spaces equipped with continuous associative multiplica-
tion, and relaxed the condition that the norm be submultiplicative. We would
then find that the proofs of Theorems 4.3 and 4.4 go through without changes,
and so both theorems are valid even for bimodules that are not contractive.
(One could also employ a slightly ad hoc renorming argument, see the com-
ments before Lemma 2.4.) However, contractive bimodules are good enough
for our purposes in the present paper.
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Remark 4.6. Given Theorem 4.4, if ηA and ηX are injective with norm-
closed range and D̃ is inner, one might hope to find a net of inner derivations
A → X which approximate D. When AWAPA(X∗) = X∗ then this can be
done using Goldstine’s lemma and Mazur’s theorem, just as in Gourdeau’s
article [14]. However, it is not clear if this will work in general.

5. Some functorial properties of FA, and a canonical map
from F(A) × F(A) to FA(A ̂⊗ A)

Our next main goal is to use Theorem 4.4 to give an alternative description of
when the dual Banach algebra F(A) is Connes-amenable. This will be done in
Section 6, but we need to prepare for this by setting up some general machinery.
Moreover, the approach in Section 6 uses certain elements in the bimodule
FA(A ⊗̂A) which behave in some sense like virtual diagonals forA. Handling
such elements requires us to take a closer look at how F(A)⊗̂F(A) and FA(A⊗̂
A) are related.

Note that any F(A)-bimodule may be regarded as an A-bimodule via the
homomorphismηA : A→ F(A), and we shall do this automatically throughout
this section and the following ones.

Theorem 5.1 (Universal property of FA(X)). Let X be a contractive A-
bimodule and N a contractive, normal dual F(A)-bimodule. Let g : X → N
be an A-bimodule map; then there exists a unique w∗-w∗ continuous F(A)-
bimodule map gWAP : FA(X)→ N such that gWAPηX = g.

Proof. Since ηX(X) is w∗-dense in FA(X), there can be at most one w∗-w∗
continuous map gWAP with the required properties.

Letψ ∈ N∗. By [25, Proposition 4.2] (or a direct argument using normality
of N), the F(A)-orbit maps of ψ are weakly compact as maps F(A) → N∗.
Hence, when we regard N as an A-bimodule, the A-orbit maps RAψ and LAψ are
weakly compact. Consider g∗(ψ) ∈ X∗; since g∗ is an A-bimodule map, the
A-orbit maps of g∗(ψ) factorize as RAg∗(ψ) = g∗ ◦ RAψ and LAg∗(ψ) = g∗ ◦ LAψ .
Since RAψ and LAψ are weakly compact, so are RAg∗(ψ) and LAg∗(ψ), i.e. g∗(ψ) ∈
AWAPA(X∗).

Thus g∗(N∗) ⊆ AWAPA(X∗) = FA(X)∗. Define gWAP to be the adjoint
of g∗ : N∗ → FA(X)∗. By construction gWAP is an A-bimodule map, and
since FA(X) and N are both normal dual modules, a straightforward w∗-
approximation argument shows gWAP is in fact a F(A)-bimodule map.

Corollary 5.2 (Naturality of X → FA(X)). Let X and Y be contractive
A-bimodules, and let f : X → Y be an A-bimodule map. Then there exists
a unique w∗-w∗ continuous F(A)-module map FA(f ) : FA(X)→ FA(Y ) such
that FA(f )ηX = ηYf .
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Proof. Apply Theorem 5.1 with N = FA(Y ) and g = ηYf .

Corollary 5.3 (Co-unit property for FA). Let M = (M∗)∗ be a contractive,
normal dual F(A)-bimodule; regard it as an A-bimodule in the natural way,
and consider the normal dual F(A)-bimodule FA(M). Then there is a w∗-w∗
continuous F(A)-bimodule map εM : FA(M)→ M satisfying εMηM = id.

Proof. Apply Theorem 5.1 with X = M, N = M and g = identity map
on M.

Remark 5.4. We can describe the homomorphism εM : FA(M)→ M from
Corollary 5.3 more explicitly, as follows. The main calculation used in the proof
of Theorem 5.1 shows that M∗ ⊆ AWAPA(M∗), and the adjoint of the inclusion
map M∗ ↪→ AWAPA(M∗) is then the desired quotient homomorphism εM.

Remark 5.5 (Adjoint functors, slight return). Recall that Theorem 2.8 and
the ensuing corollaries can be encapsulated in the statement

“F is left adjoint to the forgetful functor from dual Banach algebras to
Banach algebras”.

Likewise, Theorem 5.1 and the ensuing corollaries can be encapsulated in the
statement

“FA is left adjoint to the forgetful functor from contractive normal dual
F(A)-bimodules to contractive A-bimodules.”

Remark 5.6. One can deduce Theorem 5.1 from earlier results in this paper,
without explicit use of [25, Proposition 4.2]. The idea is as follows: consider
the map f : A ⊕� X → F(A) ⊕� N, (a, x) 	→ (a, g(x)); this is a norm-
continuous algebra homomorphism, and F(A)⊕� N is a dual Banach algebra
(Proposition 3.4), hence by Runde’s universality result (Theorem 2.8) there
is a unique w∗-w∗ continuous algebra homomorphism h : F(A ⊕� X) →
F(A)⊕� N such that f = hηA⊕�X. Identifying F(A⊕�X)with F(A)⊕� FA(X)
and restricting h to the embedded copy of FA(X), we obtain the desired map
gWAP : FA(X)→ N which “extends” g.

This approach would be in keeping with our theme of deducing results about
modules from results about algebras, and would reinforce the philosophy that
all constructions are dictated by naturality and the properties of the functor
F on the category of Banach algebras. However, there are two shortcomings.
Firstly, spelling out all the algebraic details is rather tedious, and leads to a
proof that seems overly indirect. Secondly, this approach relies onTheorem 2.8,
which is itself proved using [25, Proposition 4.2]; so we might as well use that
proposition directly.
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We now turn to aspects of the bimodule FA(A ⊗̂ A). Recall that the Arens
products onA∗∗ can be constructed3 by first defining two bilinear mapsA∗∗ ×
A∗∗ → (A ⊗̂ A)∗∗ that extend the canonical bilinear map A × A→ A ⊗̂ A;
composing each of these maps with 
∗∗ : (A ⊗̂ A)∗∗ → A∗∗ then yields the
left and right Arens products. Following a suggestion of the referee, we can
approach the Arens-type product on F(A) = AWAPA(A∗) in the same way,
factorizing it through a suitable bilinear map� : F(A)× F(A)→ FA(A ⊗̂A).

We start in greater generality. Let M and N be left and right A-modules,
respectively, and let �0 : M × N → M ⊗̂ N be the canonical bilinear map.
(Left) Arens extension of �0 proceeds in three stages. First we define �1 :
(M ⊗̂N)∗ ×M → N∗ as follows: if β ∈ (M ⊗̂N)∗ and m ∈ M∗, let

(5.1) �1(β,m) : n 	→ β(m⊗ n) (n ∈ N).
Next, we define �2 : N∗∗ × (M ⊗̂ N)∗ → M∗ as follows: for n ∈ N∗∗ and
β ∈ (M ⊗̂N)∗,
(5.2) �2(n, β) : m→ 〈n,�1(β,m)〉 (m ∈ M).
Finally, we define �3 : M∗∗ × N∗∗ → (M ⊗̂ N)∗∗, the (left) Arens extension
of �0, as follows: for m ∈ M∗∗ and n ∈ N∗∗,
(5.3) �3(m, n) : β 	→ 〈m,�2(n, β)〉 (β ∈ (M ⊗̂N)∗).
Note that �3( , n) is w∗-w∗ continuous for each n ∈ N∗∗.

RegardingM⊗̂N as anA-bimodule in the standard way, we equip (M⊗̂N)∗
with the dual bimodule structure. The next lemma is a routine if somewhat
tedious calculation.

Lemma 5.7. Let a ∈ A. Then:

(i) �1(a · β,m) = a · �1(β,m) and �1(β · a,m) = �1(β, a · m) for all
β ∈ (M ⊗̂N)∗, m ∈ M;

(ii) �2(n, a · β) = �2(n · a, β) and �2(n, β · a) = �2(n, β) · a for all
n ∈ N∗∗, β ∈ (M ⊗̂N)∗;

(iii) �3(a · m, n) = a · �3(m, n) and �3(m, n · a) = �3(m, n) · a for all
m ∈ M∗∗, n ∈ N∗∗.

Proof. The proof of part (i) is a straightforward argument using the defin-
ition of�1 and the definition of the module action on (M ⊗̂N)∗. Then, using

3 This appears to be an old observation, perhaps even known to Arens himself. We do not know
the first explicit reference, but a discussion of this point of view can be found in [10, §3].
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part (i) and the definition of �2 (Equation (5.2)), we find that for n ∈ N∗∗,
β ∈ (M ⊗̂N)∗ and m ∈ M we have

〈�2(n, a · β),m〉 = 〈n,�1(a · β,m)〉 = 〈n, a ·�1(β,m)〉
= 〈n · a,�1(β,m)〉 = 〈�2(n · a, β),m〉

and
〈�2(n, β · a),m〉 = 〈n,�1(β · a,m)〉 = 〈n,�1(β, a ·m)〉

= 〈�2(n, β), a ·m〉 = 〈�2(n, β) · a,m〉
which proves (ii). In a similar way, using part (ii) and Equation (5.3), we can
show that for m ∈ M∗∗, n ∈ N∗∗ and β ∈ (M ⊗̂N)∗ we have

〈�3(a ·m, n), β〉 = 〈a ·�3(m, n), β〉, 〈�3(m, n·a), β〉 = 〈�3(m, n)·a, β〉;
the details are left to the reader.

Given a leftA-moduleM , let LWAPA(M) = {μ ∈ M : RAμ is weakly com-
pact}, and for a right A-module N , define RWAPA(N) in the analogous way.

Lemma 5.8.

(i) Ifβ ∈ LWAPA((M⊗̂N)∗) then�1(β,m) ∈ LWAPA(N∗) for allm ∈ M .

(ii) If β ∈ RWAPA((M ⊗̂ N)∗) then �2(n, β) ∈ RWAPA(M∗) for all n ∈
N∗∗.

(iii) If m ∈ M∗∗ and n ∈ LWAPA(N∗)⊥ then �3(m, n) ∈ LWAPA((M ⊗̂
N)∗)⊥. If m ∈ RWAPA(M∗)⊥ and n ∈ N∗∗ then �3(m, n) ∈
RWAPA((M ⊗̂N)∗)⊥.

Proof. Let β ∈ (M ⊗̂ N)∗, m ∈ M and n ∈ N∗∗. By Lemma 5.7(i),
RA�1(β,m)

= �1(R
A
β ( ),m) as maps A→ N∗, and by Lemma 5.7(ii), LA�2(n,β)

= �2(n, LAβ ( )) as maps A→ M∗.
So if β ∈ LWAPA((M ⊗̂ N)∗) then RA�1(β,m)

factors through a weakly
compact map, hence is weakly compact, which proves part (i). On the other
hand, if β ∈ RWAPA((M ⊗̂ N)∗) then LA�2(n,β)

factors through a weakly
compact map, hence is weakly compact, which proves part (ii).

Finally: part (iii) follows easily from the results proved in parts (i) and (ii),
once we recall how �3 is defined (see Equation (5.3)).

Now we specialize to the case M = N = A. It is well-known that when
considering weak almost periodicity of functions on groups, it suffices to look
at either left translates or right translates without having to check both. The
following observation is an abstract version of this result; since we did not find
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an explicit statement in the literature we consulted, we include a proof for the
reader’s convenience.

Lemma 5.9. Let ψ ∈ A∗. Then RAψ = (LAψ)
∗ ◦ κ and LAψ = (RAψ)

∗ ◦ κ .
Consequently, LWAPA(A∗) = RWAPA(A∗) = AWAPA(A∗).

Proof. Let ψ ∈ A∗, a ∈ A, b ∈ B. Then

〈RAψ(a), b〉 = 〈a · ψ, b〉 = 〈ψ · b, a〉 = 〈LAψ(b), a〉
= 〈κ(a), LAψ(b)〉 = 〈(LAψ)∗κ(a), b〉.

Thus RAψ = (LAψ)
∗ ◦ κ , and the other identity is proved similarly. The final

part of the lemma now follows from Gantmacher’s theorem that an operator is
weakly compact if and only if its adjoint is.

Consider �3 : A∗∗ × A∗∗ → (A ⊗̂ A)∗∗. By Lemma 5.8(iii) and Lem-
ma 5.9, basic linear algebra yields a bounded bilinear map� : F(A)×F(A)→
FA(A ⊗̂ A) which makes the following diagram commute:

(5.4)

A∗∗ × A∗∗ �3−−−−−→ (A ⊗̂ A)∗∗
qA×qA qA⊗̂A

F(A)× F(A) −−−−→
�

FA(A ⊗̂ A)
Here, qA : A∗∗ → F(A) and qA⊗̂A : (A ⊗̂ A)∗∗ → FA(A ⊗̂ A) denote the
natural quotient maps. Since ηA = qAκA and ηA⊗̂A = qA⊗̂AκA⊗̂A, we have
�(ηA × ηA) = ηA⊗̂A�0, or in our abbreviated notation,

�(a, b) = a ⊗ b for all a, b ∈ A.
Remark 5.10. By chasing through the definitions, one can show that


∗∗�3 : A∗∗ ×A∗∗ → A∗∗ is precisely the usual first Arens product (a, b)→
a � b. Also, there is a commutative diagram

(5.5)

(A ⊗̂ A)∗∗ 
∗∗−−−−−−−→ A∗∗

qA⊗̂A qA

FA(A ⊗̂ A) −−−−−−→
WAP
F(A)

(c.f. the proof of Theorem 5.1). Combining the commutative diagrams (5.4)
and (5.5), we see that
WAP� : F(A)× F(A)→ F(A) is just the multiplication
map for the algebra F(A). (If one revisits the original calculations of Lau and
of Runde, this is in effect how one defines the multiplication map on F(A) to
make it into a dual Banach algebra.)
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Lemma 5.11 (A-bimodule property of�). For any m, n ∈ F(A) and x ∈ A
we have �(m, n · x) = �(m, n) · x and �(x ·m, n) = x ·�(m, n).

Proof. Lift m, n to representatives m′, n′ ∈ A∗∗. By Lemma 5.7(iii), we
have �3(m′, n′ · x) = �3(m′, n′) · x. Now apply qA⊗̂A to both sides. Noting
that qA and qA⊗̂A are A-bimodule maps, and using Diagram (5.4), we get

�(m, n · x) = qA⊗̂A�3(m
′, n′ · x) = qA⊗̂A

[
�3(m

′, n′) · x] = �(m, n) · x
as required. The other identity is proved similarly and we omit the details.

It is natural to ask if � is separately w∗-w∗ continuous as a bilinear map
between dual Banach spaces. The answer turns out to be positive if F(A) has
an identity element, but showing this requires some work. However, for the
intended applications in Section 6, we only need the following weaker version.

Proposition 5.12. Let b, c ∈ A. Then the linear maps x 	→ �(x, c) and
x 	→ �(b, x) are both w∗-w∗ continuous from F(A)→ FA(A ⊗̂ A).

Proof. As observed earlier, �3 is w∗-w∗ continuous in the first variable.
Therefore, considering Diagram (5.4) and noting that qA : A∗∗ → F(A) is
a quotient map for the w∗-topologies, we deduce that � is w∗-w∗ continu-
ous in the first variable. To handle the second variable, fix a ∈ A. Then
〈�3(κ(a), y), β〉 = 〈κ(a),�2(y, β)〉 = 〈y,�1(β, a)〉 for all y ∈ A∗∗ and
β ∈ (A ⊗̂ A)∗. This shows that �3(κ(a), · ) : A∗∗ → (A ⊗̂ A)∗∗ is w∗-w∗
continuous. By the definition of �, there is a commutative diagram

A∗∗ �3(κ(a), ·)−−−−−−−→ (A ⊗̂ A)∗∗
qA qA⊗̂A

F(A) −−−−−−−→
�(a, ·) FA(A ⊗̂ A)

and since the vertical arrows are quotient maps for the w∗-topologies,�(a, · )
is w∗-w∗ continuous.

For sake of completeness, in the remainder of this section we show how one
can push Proposition 5.12 further, at least when F(A) has an identity element.

Theorem 5.13 (� is an F(A)-bimodule map). Let a, b, c ∈ F(A). Then
a ·�(b, c) = �(a � b, c) and and �(a, b � c) = �(a, b) · c.

Corollary 5.14. Suppose F(A) has an identity element e. Then� : F(A)×
F(A)→ FA(A ⊗̂ A) is separately w∗-w∗ continuous.

Proof of the corollary. By Theorem 5.13, for every a, b ∈ F(A) we
have �(a, b) = a · �(e, e) · b. The result now follows from normality of
FA(A ⊗̂ A).
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If Corollary 5.14 held without assuming F(A) has an identity element, then
Theorem 5.13 would follow quickly from Lemma 5.11 by w∗-w∗ continuity.
As pointed out by the referee, some assumption onA is necessary: for ifA is a
Banach space equipped with the zero product then F(A) = A∗∗, FA(A ⊗̂A) =
(A ⊗̂ A)∗∗ and � = �3 is usually not w∗-w∗ continuous in the 2nd variable.
Therefore, to prove Theorem 5.13 we take an indirect route.

Lemma 5.15. Let a ∈ A and b ∈ F(A). Then �(a, b � c) = �(a, b) · c for
all c ∈ F(A).

Proof. Given a ∈ A and b ∈ F(A) we define two linear maps f1, f2 :
F(A)→ FA(A ⊗̂A) by f1(c) := �(a, b � c), f2(c) := �(a, b) · c. Since F(A)
is a dual Banach algebra, LF(A)

b : c 	→ b � c is w∗-w∗ continuous; therefore, by
Proposition 5.12, f1 is w∗-w∗ continuous. Since FA(A ⊗̂ A) is a normal dual
F(A)-bimodule, f2 is also w∗-w∗ continuous. By Lemma 5.11, f1 and f2 agree
on ηA(A), which is w∗-dense in F(A), and so they agree everywhere on F(A).

Proof of Theorem 5.13. We start by recalling that� is w∗-w∗ continuous
in the first variable (see the proof of Proposition 5.12). Now, fix b, c ∈ F(A),
and define maps g1, g2 : F(A) → FA(A ⊗̂ A) by g1(a) := a · �(b, c) and
g2(a) := �(a � b, c), for a ∈ F(A). Since FA(A ⊗̂ A) is a normal F(A)-
bimodule, g1 is w∗-w∗ continuous. g2 is also w∗-w∗ continuous, since � is
w∗-w∗ continuous in the first variable and multiplication in a dual Banach
algebra is separately w∗-w∗ continuous. By Lemma 5.11, g1 and g2 agree on
ηA(A), and so they agree on all of F(A) by w∗-density.

The second identity requires a similar idea, but more than just a simple
left-right switch. Consider the maps h1, h2 : F(A) → FA(A ⊗̂ A) defined
by h1(a) := �(a, b � c) and h2(a) := �(a, b) · c, for a ∈ F(A). h1 is w∗-w∗
continuous, since� is w∗-w∗ continuous in the first variable; and since FA(A⊗̂
A) is a dual F(A)-bimodule, h2 is also w∗-w∗ continuous. By Lemma 5.15, h1

and h2 agree on ηA(A), so once again by w∗-density they coincide on F(A).

6. Connes-amenability of F(A)

Recall that a dual Banach algebra B is said to be Connes-amenable if each
w∗-w∗ continuous derivation from B to a normal dual B-bimodule is inner. In
this section, we apply the algebraic machinery developed in previous sections
to give an alternative description of when F(A) is Connes-amenable.

Remark 6.1. By our previous remarks on renorming normal dual bimod-
ules, to decide if a dual Banach algebra B is Connes-amenable, it suffices to
only consider derivations into contractive normal dual B-bimodules.

We require a small observation that is not new but is worth stating explicitly.
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Theorem 6.2 (Connes-amenability of F(A)). Let A be a Banach algebra.
Then the following statements are equivalent:

(i) F(A) is Connes-amenable;

(ii) for every contractive A-bimoduleM and every derivationD : A→ M ,
the derivation ηMD : A→ FA(M) is inner;

(iii) Every derivation fromA into a contractive, normal dual F(A)-bimodule
is inner.

Proof. (i)⇒ (ii). Let M be a contractive A-bimodule and D : A→ M a
derivation. Applying Theorem 4.4, there exists a w∗-w∗ continuous derivation
D̃ : F(A)→ FA(M) which makes the following square commute:

F(A) D̃−−−−−→ FA(M)

ηA ηM

A −−−−−−−→
D

M

As FA(M) is normal, Connes-amenability of F(A) implies that D̃ is inner;
hence D̃ηA is inner. Since D̃ηA = ηMD, (ii) holds.

(ii)⇒ (iii). Let M be a contractive, normal dual F(A)-bimodule andd : A→
M be a derivation. By hypothesis, the derivation D = ηMd : A → FA(M) is
inner, say D = ady for some y ∈ FA(M). By Corollary 5.3 there is a w∗-w∗
continuousA-bimodule map εM : FA(M)→ M such that εMηM = id. Hence, if
we put w = εM(y), we have d(a) = εMD(a) = εM(a ·y−y·a) = a ·w−w·a =
adw(a) for all a ∈ A. Thus d is inner.

(iii)⇒ (i). Let N be a contractive, normal dual F(A)-bimodule and let D :
F(A) → N be a w∗-w∗ continuous derivation. Then DηA : A → N is a
derivation, so by hypothesis DηA = adn : A → N for some n ∈ N. Since N
is a normal dual module, adn extends to a w∗-w∗ continuous inner derivation
adn : F(A) → N. As D and adn are w∗-w∗ continuous and agree on the w∗-
dense subset ηA(A), they agree on all of F(A), and so D = adn is inner. In
view of Remark 6.1, F(A) is Connes-amenable.

The theorem has the following consequence, which we will need later.

Corollary 6.3. LetA be a Banach algebra. The following are equivalent:

(a) F(A) is Connes-amenable;

(b) F(A) has an identity element, and every derivation from A into a unit-
linked, contractive, normal dual F(A)-bimodule is inner.

Proof. Suppose (a) holds. By [23, Proposition 4.1] F(A) has an identity
element, e say. The rest of (b) follows by (i)⇒ (iii) of Theorem 6.2.
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Conversely, suppose (b) holds. Let e be the identity element of F(A), and
let N be a contractive, normal dual F(A)-bimodule. Let I denote the formal
identity operator N→ N; then we have an isomorphism of normal dual F(A)-
bimodules

N = (I − e)N(I − e)⊕ eN(I − e)⊕ (I − e)Ne⊕ eNe.

Now let D : F(A) → N be a w∗-w∗ continuous derivation. By a standard
argument for derivations on unital Banach algebras (see, for instance, the
remarks in [18, §1.c]), we can write D = D0 +D1 where D1 takes values in
the unit-linked, normal dual bimodule eNe, andD0 is inner. By the assumption
(b), D1 is inner, so D is inner, and (a) holds.

Just as amenability for Banach algebras may be characterized in terms
of the existence of virtual diagonals, Connes-amenability for dual Banach
algebras may be characterized in terms of the existence of certain “diagonal-
type” elements. To be more precise: the paper [25] introduces the notion of
a σWC-diagonal for a given dual Banach algebra B, which is by definition
a certain kind of linear functional on a particular subspace of (B ⊗̂ B)∗, and
proves [Theorem 4.8, ibid.] that B is Connes-amenable if and only if B has a
σWC-diagonal.

In the case where B = F(A) for some Banach algebra A, we can obtain a
more convenient characterization with the same flavour, phrased in terms of
certain elements in FA(A ⊗̂ A). To state the relevant definition, we first need
some notation.

Notation. We write 
 for the product map A ⊗̂ A → A and 
WAP for
the induced map FA(
) : FA(A ⊗̂ A) → F(A), which is well-defined by
Corollary 5.2.

Definition 6.4. An element m ∈ FA(A ⊗̂ A) is called a WAP-virtual
diagonal for A if a ·m = m · a and 
WAP(m) · a = a for each a ∈ A.

Remark 6.5. If m ∈ FA(A ⊗̂ A) is a WAP-virtual diagonal for A, then it
follows from normality of FA(A ⊗̂A) and w∗-continuity that a ·m = m ·a and

WAP(m) · a = a for all a ∈ F(A) (and not just those in ηA(A)).

Runde has shown in [26] that whenever G is an amenable non-compact
[SIN] group, WAP(G)∗ is a Connes-amenable dual Banach algebra which
fails to have a normal virtual diagonal. Nevertheless, we will show below
(Theorem 6.12) that F(A) is Connes-amenable if and only if A has a WAP-
virtual diagonal. We shall take a somewhat indirect route, first discussing and
constructing a “universal” derivation for F(A) in the case where F(A) is unital.
This follows the philosophy, going back to Hochschild’s original papers, that in
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order to show cohomology groups with coefficients in some class of modules
vanish, it is often enough to show this for one particular module in that class.
The framework developed along the way may be of interest in other problems
concerning derivations out of dual Banach algebras.

Definition 6.6. Let A be a Banach algebra such that F(A) has an identity
element. We denote by FDERA the class of all pairs (D,N) where N is a unit-
linked, contractive, normal dual F(A)-bimodule and D : A → N is a (norm-
continuous) derivation. A pair (d,X) ∈ FDERA is said to be weakly universal for
FDERA if, for each (D,N) ∈ FDERA, there is a w∗-w∗ continuous A-bimodule
map g : X→ N such that gd = D.

Remark 6.7. This terminology is motivated by category theory. Univer-
sal constructions can often be interpreted as being initial objects in certain
categories, and in the present case one can make FDERA into a category in a
natural way. There is a notion of a “weakly initial object” in a given category,
and in this case it would correspond to a weakly universal element of FDERA
in the sense defined above.

Theorem 6.8. Suppose F(A) has an identity element e. Then there exists
s ∈ FA(A ⊗̂ A) with the following properties:

• 
WAP(s) = e;

• if we put dA(a) = s · a − a · s for all a ∈ A, then dA : A→ ker
WAP is
weakly universal for FDERA.

The proof of Theorem 6.8 is patterned after known ideas for derivations from
unital Banach algebras. However, since A need not have an identity element,
we cannot obtain dA directly from a derivation A→ ker
 in any reasonable
way, and must work a little harder. The next lemma is inspired by the proof
of [25, Lemma 4.9]. (Note that there is a typographical error in the statement
of that lemma; the conclusion should be that a certain map takes values in
σWC((� ⊗̂ �)∗).

Lemma 6.9. Let D : A → N be a (norm-continuous) derivation from A

into an A-bimodule N , and define h : A ⊗̂ A→ N by h(b ⊗ c) = b ·D(c).
(i) For all a, b, c ∈ A we have a ·h(b⊗ c) = h(ab⊗ c) and h(b⊗ c) · a =

h(b ⊗ ca)− bc ·D(a).
(ii) h∗(AWAPA(N∗)) ⊆ AWAPA((A ⊗̂ A)∗).

Proof. Part (i) is proved by direct calculation using the definition of h
and the derivation identity for D. To prove part (ii) it is convenient to use
Lemma 4.1. Let ψ ∈ AWAPA(N∗) and consider the bilinear forms Lh∗(ψ) :
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A× A ⊗̂ A→ C, Rh∗(ψ) : A ⊗̂ A× A→ C. From part (i) we have

Lh∗(ψ)(a, b ⊗ c) = 〈h∗(ψ), ab ⊗ c〉 = 〈ψ, h(ab ⊗ c)〉
= 〈ψ, a · h(b ⊗ c)〉 = Lψ(a, h(b ⊗ c)) (a, b, c ∈ A).

By linearity and continuityLh∗(ψ) = Lψ ◦ (id×h), which is a weakly compact
bilinear form since Lψ is.

Part (i) also implies that

Rh∗(ψ)(b ⊗ c, a) = 〈h∗(ψ), b ⊗ ca〉 = 〈ψ, h(b ⊗ ca)〉
= 〈ψ, h(b ⊗ c) · a〉 + 〈ψ, bc ·D(a)〉
= Rψ(h(b ⊗ c), a)+ Lψ(bc,D(a)) (a, b, c ∈ A).

By linearity and continuity, Rh∗(ψ) = Rψ ◦ (h× id)+ Lψ ◦ (
×D), which
is the sum of two weakly compact bilinear forms and so is weakly compact.
Thus h∗(ψ) ∈ AWAPA((A ⊗̂ A)∗), and this proves part (ii).

The next lemma makes use of the map� : F(A)× F(A)→ FA(A ⊗̂A) that
was defined in the previous section (see Diagram (5.4)), as suggested by the
referee in response to an earlier proof of Theorem 6.8.

Lemma 6.10. Let h be as in Lemma 6.9, and define hWAP : FA(A ⊗̂ A)→
FA(N) to be the adjoint of the map h∗ : AWAPA(N∗)→ AWAPA((A ⊗̂A)∗).

(i) hWAP(b ⊗ c) = h(b ⊗ c) for all b, c ∈ A;

(ii) the restriction ofhWAP to ker
WAP is anA-bimodule map from ker
WAP

to FA(N).

Moreover, if we let D̃ : F(A) → FA(N) be the extension of D provided by
Theorem 4.4, then

hWAP�(b, c) = b · D̃(c) and hWAP�(b, c) = b · D̃(c) = b ·D(c)
for all b, c ∈ A and all b, c ∈ F(A).

Proof. Part (i) is a direct calculation. For part (ii), let a ∈ A and w ∈
FA(A ⊗̂ A). Using part (i) of the present lemma, part (i) of Lemma 6.9, and
w∗-continuity, we obtain

a · hWAP(w) = hWAP(a ·w)
hWAP(w) · a = hWAP(w · a)−
WAP(w) · ηND(a).

Hence, given w ∈ ker
WAP, we have a·hWAP(w) = hWAP(a·w) andhWAP(w)·
a = hWAP(w · a) for all a ∈ A.
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For the last part of the lemma: by part (i) we have

(6.1) b · D̃(c) = b ·D(c) = b ·D(c) = hWAP�(b, c) for all b, c ∈ A.

Fixing b ∈ A, consider the two maps F(A) → FA(A ⊗̂ A) defined by c 	→
b · D̃(c) and c 	→ hWAP�(b, c). The first map is w∗-w∗ continuous, since D̃
is and FA(A ⊗̂ A) is a dual module; the second map is w∗-w∗ continuous by
Proposition 5.12; and they agree on ηA(A) by (6.1). Therefore they agree on
all of F(A). Similarly, if we fix c ∈ A, we consider the two maps F(A) →
FA(A ⊗̂ A) defined by b 	→ b · D̃(c) and b 	→ hWAP�(b, c). The first map
is w∗-w∗ continuous, since FA(A ⊗̂ A) is a normal dual module; the second
map is w∗-w∗ continuous, again by Proposition 5.12; and the two maps agree
on ηA(A) by (6.1). Therefore they agree on all of F(A), and this completes the
proof.

Remark 6.11. We would have liked to construct the map hWAP as some
kind of extension of an existing bimodule map. The problem is that although
h|ker
 : ker
→ N is an A-bimodule map, the extension given “by abstract
nonsense” would be FA(h) : FA(ker
) → FA(N), and it is not obvious how
to show FA(ker
) coincides with ker
WAP.

Proof of Theorem 6.8. Let s := �(e, e). Then for each a ∈ A we have

dA(a) := s · a − a · s = �(e, a)−�(a, e),

the second equality following from Lemma 5.11. It is easily checked that
dA : A → FA(A ⊗̂ A) is a derivation, which takes values in the unit-linked,
normal dual F(A)-bimodule ker
WAP (see Remark 5.10).

Now let (D,N) ∈ FDERA. Define h : Z → N by b ⊗ c 	→ b · D(c),
and let hWAP : FA(A ⊗̂ A) → FA(N) be the w∗-w∗ continuous map hWAP :
FA(A ⊗̂A)→ FA(N) produced by Lemma 6.9. By Lemma 6.10, hWAP|ker
WAP

is an A-bimodule map, and it also satisfies

hWAP�(b, c) = b · D̃(c) and hWAP�(b, c) = b · D̃(c) = b ·D(c)
for all b, c ∈ A and all b, c ∈ F(A). (Here D̃ : F(A) → FA(N) is the w∗-w∗
continuous “extension” of D that is provided by Theorem 4.4.) Since FA(N)
is unit-linked, a standard argument for derivations into unit-linked bimodules
shows us that D̃(e) = 0. Therefore

hWAPdA(a) = hWAP�(e, a)− hWAP�(a, e)

= e · D̃(a)− a · D̃(e) = D(a) for all a ∈ F(A).
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So f := εNhWAP|ker
WAP is an A-bimodule map satisfying f dA = D, as
required.

Theorem 6.12. LetA be a Banach algebra. Then F(A) is Connes-amenable
if and only if A has a WAP-virtual diagonal.

Proof. Either hypothesis – Connes-amenability of F(A), or the existence
of a WAP-virtual diagonal for A – implies that F(A) has an identity element,
e say. So by the first part of Theorem 6.8, there exists s ∈ FA(Z) such that

WAP(s) = e.

Suppose F(A) is Connes-amenable. As ker
WAP is a normal dual F(A)-
bimodule, and the derivation F(A) → ker
WAP, a 	→ s · a − a · s is w∗-w∗
continuous, this derivation must be inner. Hence there exists n ∈ ker
WAP

with a · n− n · a = s · a − a · s for all a ∈ A. Rearranging, we find that s+ n
is a WAP-virtual diagonal for A.

Conversely, suppose A has a WAP-virtual diagonal m ∈ FA(Z). Then m−
s ∈ ker
WAP, and

(6.2) a · (m− s)− (m− s) · a = −s · a + a · s for all a ∈ A.

Let (D,N) ∈ FDERA, and let dA : A→ ker
WAP be the derivation dA(a) =
s·a−a ·s (a ∈ A). By Theorem 6.8 the pair (dA, ker
WAP) is weakly universal
for FDERA, hence there exists an A-bimodule map f : ker
WAP → N such
that f dA = D. Setting y = f (m− s) ∈ N we deduce from (6.2) that

D(a) = f (a · (m− s)− (m− s) · a) = a · y − y · a (a ∈ A).
Since D is w∗-w∗ continuous and N is normal, D = ady. By Corollary 6.3,
F(A) is Connes-amenable.

Remark 6.13. As pointed out to us by the referee, work of Daws charac-
terizes the Connes-amenability of F(A) by the existence of quasi-expectations
for representations of A on reflexive Banach spaces, see [9, Proposition 6.15].
Daws obtains this as a special case of more general results on dual Banach
algebras: in one direction, a σWC-diagonal is used to construct quasi-expec-
tations; and in the other direction (which is in our view harder), a quasi-
expectation for a suitable representation is shown to give rise to a σWC-
diagonal. It seems likely that by adapting his proofs in the obvious way, one
could use a WAP-virtual diagonal to construct quasi-expectations, and obtain
a WAP-virtual diagonal from a well-chosen quasi-expectation. Since this is
somewhat orthogonal to the goals of the present paper, and since we do not
have anything new to add to the arguments given in [9, §6], we will not discuss
this circle of ideas.
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One might hope that, under suitable conditions on a Banach algebra A, we
can lift a WAP-virtual diagonal to obtain a virtual diagonal, thereby giving a
proof (for such examples) that Connes-amenability of F(A) implies amenability
of A. The next section sets up some machinery which can assist us.

7. Diagonal-type functionals on subspaces of (A ̂⊗ A)∗

Throughout this section, A is a Banach algebra and 
 : A ⊗̂ A→ A is as in
previous sections. We keep to our standing conventions that a bimodule over a
Banach algebra always means a “Banach bimodule”, and that a sub-bimodule
is always assumed to be closed. For convenience, we also adopt the common
abbreviation “b.a.i.” to stand for “bounded approximate identity”.

Notation. For several choices of closed subspace E ⊆ A∗, we will con-
sider the adjoint of the map
∗ : E→ (A⊗̂A)∗. Rather than the cumbersome
notation (
∗|E)∗, we shall write 
E for this adjoint. By abuse of notation, if
V ⊆ (A ⊗̂ A)∗ is a closed subspace that contains 
∗(E), we shall also use

E to denote the adjoint of the map 
∗ : E → V ; it should be clear from
context which subspace V is being considered. This notation, which will be
used several times in Section 8, is in analogy with our use of 
WAP to denote
the adjoint of 
∗ : WAP(A∗)→ AWAPA((A ⊗̂ A)∗).

Definition 7.1. Let V ⊆ (A ⊗̂ A)∗ be a sub-A-bimodule, and let E =
(
∗)−1(V ) ⊆ A∗. We say V is diagonally suitable if E separates points of A
(that is, for each non-zero a ∈ A, there exists ψ ∈ E with ψ(a) �= 0). Given
such a V , we say that a functional F ∈ V ∗ is a V -virtual diagonal for A if

(7.1) a · F = F · a and 〈
E(F) · a, φ〉 = 〈φ, a〉 (a ∈ A, φ ∈ E).

Remark 7.2.
(a) One could clearly make the same definition without requiring V to be

diagonally suitable, but then this allows trivial cases where F = 0.

(b) The second condition in the definition of a V -virtual diagonal F ∈ V ∗ is
rather weak. For even if E = (
∗)−1(V ) is a norming subspace of A∗,
and u ∈ A∗∗ satisfies 〈u · a, φ〉 = 〈φ, a〉 for all a ∈ A and φ ∈ E, this
does not guarantee that 〈u · a,ψ〉 = 〈ψ, a〉 for all a ∈ A and ψ ∈ A∗.

(c) Our notion of a V -virtual diagonal is distinct from the notion of a �-
virtual diagonal that is considered in [7], which was introduced to gener-
alize the notion of a normal virtual diagonal for a dual Banach algebra.
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Example 7.3.
(1) SupposeA is a non-zero Banach algebra. By the Hahn-Banach theorem,

(A ⊗̂A)∗ is itself diagonally suitable, and an (A ⊗̂A)∗-virtual diagonal
is just a virtual diagonal in the usual sense.

(2) SupposeA is a non-zero Banach algebra, and letW denote AWAPA((A⊗̂
A)∗). Recall that W is a sub-A-bimodule of (A ⊗̂ A)∗, and that


∗(F(A)∗) ⊆ FA(A ⊗̂ A)∗ ≡ W.
Therefore, if ηA : A → F(A) is injective, W is diagonally suitable.
Assume moreover that 
 : A ⊗̂ A → A is surjective (this is always
the case if A has a b.a.i., for instance). Then by Lemma 7.4 below,
(
∗)−1(W) = AWAPA(A∗) ≡ F(A)∗, and so for such A a W -virtual
diagonal for A is the same thing as a WAP-virtual diagonal in the sense
of Definition 6.4.

Lemma 7.4. Suppose that 
∗ : A∗ → (A ⊗̂ A)∗ is bounded below (equi-
valently, that 
 : A ⊗̂ A→ A is surjective). Then AWAPA(A∗) = {ψ ∈ A∗ :

∗(ψ) ∈ AWAPA((A ⊗̂ A)∗)}.

Proof. Let ψ ∈ A∗. Since 
∗ : A∗ → (A ⊗̂ A)∗ is an A-bimodule map,

(∗) 
∗({a · ψ : a ∈ A, ‖a‖ ≤ 1}) = {a ·
∗(ψ) : a ∈ A, ‖a‖ ≤ 1},

∗({ψ · a : a ∈ A, ‖a‖ ≤ 1}) = {
∗(ψ) · a : a ∈ A, ‖a‖ ≤ 1}.

Given two Banach spaces X and Y and a bounded linear map f : X → Y

which is bounded below, a subset S ⊆ X is relatively weakly compact if
and only if f (S) is. (This is a straightforward consequence of the fact that
f ∗ : Y ∗ → X∗ is surjective.) Lemma 7.4 now follows from the equations (∗)
and the definition of weakly almost periodic elements.

Recall that an A-bimodule X is said to be neo-unital or pseudo-unital if
each x ∈ X can be written as a · y · b for some a, b ∈ A and y ∈ Y .

Lemma 7.5 (The essential part of a bimodule). Suppose A has a b.a.i., and
letX be anA-bimodule. The subspaceXess := lin{a ·x ·b : a, b ∈ A, x ∈ X}
is a neo-unital sub-A-bimodule of X. Moreover, there exists a projection of
A-bimodules from X∗ onto the sub-bimodule X⊥ess.

Proof. This is a standard argument using Cohen’s factorization theorem,
and can be found in the proof of [18, Proposition 1.8].

Remark 7.6. Suppose A has a b.a.i. and X is a neo-unital A-bimodule.
It follows from a variant of Cohen’s factorization theorem (see [3, Theo-
rem 11.10]) that every A-submodule of X is also neo-unital. In particular,
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every A-submodule of X is naturally a bimodule for the multiplier algebra
M(A). (For background on the multiplier algebra of a Banach algebra, see
e.g. [22, §1.2], with the caveat that this source uses the older terminology of
“double centralizer algebra”. The construction ofM(A)-actions on neo-unital
A-bimodules can be found in [18, §1.d]; a recent exposition is given in [10,
Theorem 3.2].)

Notation. To make some of the formulas which follow more legible, we
adopt the convention that ifM is anA-bimodule thenM∗ess denotes the essential
part of M∗, i.e. we omit the parentheses. The dual of Mess, if we ever need it,
will be denoted by (Mess)

∗.

IfA has a b.a.i., it follows from the Hahn-Banach theorem and the definition
of ( · )ess that A∗ess is a separating subset of A∗. Moreover, 
∗(A∗ess) ⊆ (A ⊗̂
A)∗ess, as 
∗ is an A-bimodule map. Thus (A ⊗̂ A)∗ess is diagonally suitable,
and we can consider the notion of an (A ⊗̂ A)∗ess-virtual diagonal. But before
proceeding, we should identify (
∗)−1[(A ⊗̂ A)∗ess] explicitly, in view of the
second part of Definition 7.1.

Lemma 7.7. Suppose A has a b.a.i. Then A∗ess = {ψ ∈ A∗ : 
∗(ψ) ∈
(A ⊗̂ A)∗ess}.

Proof. Since 
∗ is an A-bimodule map, 
∗(A∗ess) ⊆ (A ⊗̂ A)∗ess. Con-
versely, let ψ ∈ A∗ be such that 
∗(ψ) ∈ (A ⊗̂ A)∗ess. Let (ei) be a b.a.i. for
A: then

(†) lim
i
‖ei ·
∗(ψ)−
∗(ψ)‖ = lim

i
‖
∗(ψ) · ei −
∗(ψ)‖ = 0.

Now, ei ·
∗(ψ) = 
∗(ei ·ψ) and
∗(ψ) · ei = 
∗(ψ · ei). Also, since A has
a b.a.i, 
 : A ⊗̂ A → A is surjective, so 
∗ : A∗ → (A ⊗̂ A)∗ is bounded
below. Therefore, (†) implies that

lim
i
‖ei · ψ − ψ‖ = lim

i
‖ψ · ei − ψ‖ = 0.

It follows easily that ψ ∈ A∗ess, as required.

Proposition 7.8. Let A be a Banach algebra with a b.a.i. If A has an (A ⊗̂
A)∗ess-virtual diagonal, then it has a virtual diagonal, and hence is amenable.

Proof. Throughout this proof, we let V denote (A ⊗̂ A)∗, just to improve
legibility. By the remarks before Lemma 7.7, V is diagonally suitable. By
Lemma 7.5, there is an A-bimodule projection P from (A ⊗̂ A)∗∗ onto the
sub-bimodule V ⊥. The natural quotient map (A ⊗̂A)∗∗ → V ∗ factors through
I −P , yielding an isomorphism ofA-bimodules ı : (I −P)(A ⊗̂A)∗∗ → V ∗,
which satisfies ı−1(T )|V = T for all T ∈ V ∗.
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Now suppose F ∈ V ∗ is a V -virtual diagonal for A. Let M = ı−1(F ) ∈
(A ⊗̂ A)∗∗. Then

(7.2) a ·M = ı−1(a · F) = ı−1(F · a) = M · a for all a ∈ A.

Moreover, let a ∈ A and ψ ∈ A∗. By Cohen’s factorization theorem, a = xby
for some x, b, y ∈ A. Then

(7.3)

〈
∗∗(M) · a,ψ〉 = 〈x ·
∗∗(M) · by,ψ〉 (using (7.2))

= 〈
∗∗(M), by · ψ · x〉
= 〈M,
∗(by · ψ · x)〉.

But 
∗(by · ψ · x) ∈ V , and by its definition M|V = ı−1(F )|V = F , so

(7.4)

〈M,
∗(by · ψ · x)〉 = 〈F,
∗(by · ψ · x)〉
= 〈
∗∗(F ), by · ψ · x〉
= 〈
∗∗(F ) · b, y · ψ · x〉
= 〈y · ψ · x, b〉,

where the last equality holds since 
∗(y · ψ · x) ∈ V and F is a V -virtual
diagonal. Combining (7.3) and (7.4) gives 〈
∗∗(M) · a,ψ〉 = 〈ψ, a〉. ThusM
is a virtual diagonal for A.

Recall that F(A) is Connes-amenable if and only if A has a WAP-virtual
diagonal (Theorem 6.12), while by the previous proposition, A is amenable if
and only if it has a b.a.i. and an (A ⊗̂ A)∗ess-virtual diagonal. We are therefore
led to ask how the spaces AWAPA((A ⊗̂ A)∗) and (A ⊗̂ A)∗ess are related.

Lemma 7.9. Let A be a Banach algebra with a b.a.i. Let X be a neo-unital
A-bimodule. Then AWAPA(X∗) is neo-unital (and in particular is contained
in X∗ess).

Proof. It suffices to prove that AWAPA(X∗)ess = AWAPA(X∗), since es-
sential A-bimodules are neo-unital (by Lemma 7.5, or a direct argument with
Cohen’s factorization theorem).

Let φ ∈ AWAPA(X∗), and let (ei) be a b.a.i. for A, with norm ≤ C say.
Then {ei · φ} is relatively weakly compact in X∗, so by passing to a subnet
if necessary, we may assume that there exist ψ ∈ X∗ such that ei · φ → ψ

weakly in X∗. On the other hand, since X is neo-unital, ei · φ→ φ w∗ in X∗.
Hence φ = ψ , showing that φ belongs to the weak closure of {ei · φ}. Taking
convex combinations and using Mazur’s theorem, it follows that φ belongs to
the norm closure of {a · φ : a ∈ A, ‖a‖ ≤ C}.
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By a similar argument, considering the net (φ · ei), we see that φ belongs
to the norm closure of {φ · b : b ∈ A, ‖b‖ ≤ C}. Therefore φ belongs to the
essential part of AWAPA(X∗), as required.

Remark 7.10. The proof of Lemma 7.9 is probably folklore, as it is a
straightforward generalization of the case A = X = L1(G). Indeed, it has
already been noted elsewhere in the literature: see [8, Proposition 3.12] and
[10, Lemma 3.1], or [20, Proposition 3.3(b)] for a one-sided version. We have
kept the proof here since it is fairly short and instructive.

We can now try to prove that in certain cases, Connes-amenability of F(A)
implies amenability of A. To illustrate the method, we consider an atypically
simple case: namely the semigroup algebra �1(Nmin), where Nmin denotes the
set of natural numbers equipped with the product (m, n) 	→ min(m, n). The
following result is [9, Theorem 7.6].

Theorem 7.11 (Daws). Let A = �1(Nmin). Then F(A) is not Connes-
amenable.

The proof in [9] uses results linking Connes-amenability to a suitable notion
of injectivity for representations of dual Banach algebras. We can give an
alternative proof, using the following observation.

Lemma 7.12. Let A = �1(Nmin).

(i) The sequence (δn)n≥1 is a b.a.i. for the algebra A;

(ii) (A ⊗̂ A)∗ess ⊆ AWAPA((A ⊗̂ A)∗).
Proof. Part (i) is straightforward, since

‖δna − a‖ = ‖aδn − a‖ =
∥∥∥∥ ∑
k≥n+1

ak(δn − δk)
∥∥∥∥ ≤ 2

∑
k≥n+1

|ak| → 0

as n→∞.
For part (ii), let � ∈ (A ⊗̂ A)∗ess. Then (Cohen factorization) there exists

� ∈ (A ⊗̂ A)∗ and a, b ∈ A such that � = a · � · b. By part (i), δna → a

as n→∞. Hence, the left Nmin-orbit {δn · � : n ∈ Nmin}, when indexed as a
sequence in the obvious way, converges in norm to �. In particular this orbit
is relatively compact, and by taking convex combinations we see that the set
{c ·� : c ∈ A, ‖c‖1 ≤ 1} is also compact, so in particular is weakly compact.
Similarly, {� · c : a ∈ A, ‖c‖1 ≤ 1} is (weakly) compact, which completes
the proof of (ii).

Proof of Theorem 7.11. We argue by contradiction. Suppose F(A) is
Connes-amenable. Then by Theorem 6.12, Proposition 7.8 and Lemma 7.12,
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A = �1(Nmin) would be amenable. But A admits finite-dimensional quotients
with arbitrarily large amenability constants (see [11, Theorem 10]), and this
gives the desired contradiction.

Naturally we would like to carry out similar arguments for other Banach
algebras A: in particular, as promised in the introduction, for A = L1(G)

whenG is a locally compact groupG. This case is much harder than �1(Nmin),
because in general the inclusion of AWAPA((A ⊗̂ A)∗) into (A ⊗̂ A)∗ess is
not surjective, as can be seen even for the case A = �1(Z). Nevertheless, the
following is true.

Theorem 7.13. LetG be a locally compact group. The following are equi-
valent, and characterize amenability of G:

(i) L1(G) has a WAP-virtual diagonal;

(ii) L1(G) has an L∞(G×G)ess-virtual diagonal;

(iii) L1(G) has a virtual diagonal.

Note that the implication (i)⇒ (iii), combined with the easy direction of
Theorem 6.12, gives another proof that Connes-amenability of F(L1(G)) =
WAP(G)∗ implies amenability of L1(G), cf. Theorem 1.1 and the remarks
after it.

Some parts of Theorem 7.13 are easily proved from what we already
know: (ii)⇒ (iii) follows by taking A = L1(G) in Proposition 7.8; while
(iii)⇒ (i) follows by taking a virtual diagonal for L1(G) and restricting it to
L1(G)WAPL1(G)(L

∞(G×G)). To complete the proof of Theorem 7.13, we need
to show that (i) implies (ii). This is the hard part, and will be addressed in the
next section.

Remark 7.14. The reader may wish to have a more concrete description
of L∞(G ×G)ess and L1(G)WAPL1(G)(L

∞(G ×G)) as concrete subspaces of
L∞(G ×G). This is not too difficult, and one obtains descriptions similar to
the known identifications

L∞(G)ess = UC(G), L1(G)WAPL1(G)(L
∞(G)) =WAP(G).

Here, UC(G) denotes the space of uniformly continuous bounded functions
on G, sometimes denoted in the literature by UCB(G). Since we do not need
these descriptions to complete the proof of Theorem 7.13, we have deferred
them to Section 9.
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8. Obtaining a L∞(G × G)ess-diagonal from a WAP-virtual diagonal

Given a WAP-virtual diagonal forL1(G), we wish to produce aL∞(G×G)ess-
virtual diagonal. Our approach uses some results of Runde from the article [24],
and adapts some of his arguments. Thus, some of what we do is a recasting of
his work into a new mold. However, since it is not always easy to find what
we need, stated explicitly in the form we need, we shall repeat some of the
necessary details, albeit with some technical modifications.

Notation. For convenience of notation, for the rest of this section we shall
denote L∞(G×G)ess by U, and L1(G)WAPL1(G)(L

∞(G×G)) by W . Also, to
reduce potential confusion, we shall denote the pointwise products in L∞(G)
and in L∞(G×G) by •, and likewise we shall use • to denote certain adjoint
module actions that are induced from pointwise product. (The reader should
beware that the symbol • is also used in [24], but has a different meaning.) We
reserve the symbol · for the action ofL1(G) on various submodules ofL∞(G)
andL∞(G×G). Although it might be more natural to use convolution notation,
our choice reflects some hope of applying the arguments here to other Banach
algebras.

In view of our standing convention that “bimodule” really means “Banach
bimodule”, we use the terminology “Gd -bimodule” to mean a Banach space
that is a bimodule for G in the purely algebraic sense. This is distinct from
the standard notion in the literature of a “Banach G-bimodule”, where one
requires the orbit maps to be continuous as functions on G.

8.1. Submodules for the actions of Gd , M(G) and L1(G)

We need to consider not only the L1(G)-bimodule actions on L∞(G×G) and
on its subspaces U and W , but also the induced Gd -bimodule actions. To fix
notation, let us briefly review how this works.

Since L1(G) has a b.a.i., there are left and right actions of the measure
algebra M(G) on the space L1(G), which extend the usual left and right
multiplication action of L1(G) on itself. This makes L1(G×G) = L1(G) ⊗̂
L1(G) an M(G)-bimodule, in a way that extends the natural action of L1(G)

onL1(G)⊗̂L1(G), and hence by dualityL∞(G×G) = L1(G×G)∗ becomes
an M(G)-bimodule. Note that with this bimodule structure, the left action of
M(G) on L∞(G × G) acts on the second variable of G × G, and the right
action acts on the first variable in G×G.

Via the inclusion of �1(Gd) into M(G) as the subalgebra of discrete meas-
ures, L∞(G×G) is then a Gd -bimodule in a way that is compatible with the
L1(G)-bimodule structure. Explicitly, one can check using the usual formulas
for convolution of measures and using the definition of adjoint actions on the
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dual of a bimodule, that for each x ∈ G we have

(8.1)
(δx · h)(s, t) l.a.e.= h(s, tx) (h ∈ L∞(G×G); s, t,∈ G),
(h · δx)(s, t) l.a.e.= h(xs, t) (h ∈ L∞(G×G); s, t,∈ G),

where “l.a.e.” stands for “locally almost everywhere”.
We will consider various submodules of L∞(G × G). This requires the

following caveat: if X is a general M(G)-bimodule, it is both an L1(G)-
bimodule and a Gd -bimodule, but not every sub-Gd -module of X will be a
sub-L1(G)-bimodule. (For instance, take the canonical copy of �1(Gd) inside
X = M(G).) Fortunately, things are fine if we are working inside a neo-unital
L1(G)-bimoduleX. By a standard general procedure (see, e.g. Sections 1.d and
2 of [18]), X becomes a M(G)-bimodule; moreover, every sub-Gd -bimodule
V is automatically a sub-M(G)-bimodule, and hence a sub-L1(G)-bimodule.
This follows becauseV is neo-unital and �1(Gd) is dense inM(G)with respect
to the strict topology.

8.2. The key space

Recall that
 denotes the multiplication mapL1(G×G)→ L1(G) (i.e. convo-
lution), so that
∗ : L∞(G)→ L∞(G×G) is given by
∗(f )(s, t) = f (st)
for every s, t ∈ G.

Definition 8.1. Let I denote the closed ideal in U generated by the sub-
algebra 
∗(C0(G)), that is,

I := lin{
∗(f ) • h : f ∈ C0(G), h ∈ U}.
It is clear from its definition, and from the formulas (8.1), that I is a sub-
Gd -bimodule of U. Therefore, by the previous remarks, it is a (neo-unital)
sub-L1(G)-bimodule of U and a sub-M(G)-bimodule of U.

The next lemma, which is crucial, collates several parts of results in [24].

Lemma 8.2 (Runde). I ⊆ W .

Proof. Let LUC SC0(G×Gop) be the closed subspace ofL∞(G×G) that
is defined in [24, Definition 4.2]. By [Lemma 5.3, ibid.] it is an ideal in U, and
by [Theorem 4.6(iii), ibid.] it contains 
∗(C0(G)); therefore it contains I .

Now fix h ∈ I . Since h ∈ LUC SC0(G ×Gop), [24, Lemma 4.4] implies
that the G-orbits {δx · h : x ∈ G} and {h · δx : x ∈ G} are relatively weakly
compact. Since absolutely convex hulls of weakly compact sets are weakly
compact, it follows that the sets CLh := {a · h : a ∈ �1(Gd), ‖a‖ ≤ 1} and
RLh := {h · a : a ∈ �1(Gd), ‖a‖ ≤ 1} are relatively weakly compact.
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By standard approximation results for measures, given any μ ∈ M(G)
there is a net (ai) ⊂ �1(Gd) with ‖ai‖ ≤ ‖μ‖ for all i and ai → μ in the
strict topology ofM(G). See e.g. [15, Lemma 1.1.3]. As I is neo-unital as an
L1(G)-bimodule, it follows that ‖ai · h − μ · h‖ → 0. Hence {μ · h : μ ∈
M(G), ‖μ‖ ≤ 1} is contained in the norm closure of CLh , and so is relatively
weakly compact. Repeating the argument with left and right reversed, we see
that {h · μ : μ ∈ M(G), ‖μ‖ ≤ 1} is also relatively weakly compact. As
L1(G) ⊆ M(G) this shows h ∈ W .

Remark 8.3. In the proof of Lemma 8.2, we passed from relatively weakly
compactG-orbits to weak compactness of orbit mapsM(G)→ I . The same
argument works more generally: see the proof of Theorem 9.6 in the next
section. We chose to prove the special case first, since it is slightly easier: see
Remark 9.5.

8.3. The key technical results

The next two results (Lemma 8.4 and Proposition 8.5) are based very closely on
ideas from the proof of [24, Theorem 5.4]. However, it seems clearer to isolate
and state them in the form we require, rather than to explain in piecemeal
fashion how one modifies the proof of that theorem.

Since I is a commutative C∗-algebra, its bidual I ∗∗ is unital, with identity
element P , say. We equip I ∗∗ with the natural M(G)-bimodule structure
induced from that of I .

Lemma 8.4 (Runde). Let x ∈ G. Then δx · P = P = P · δx . Consequently,
if (vi) is a bounded net in I that converges w∗ in I to P , then so are (δx · vi)
and (vi · δx).

For convenience we give the proof.

Proof. Given x ∈ G, define Lx : I → I and Rx : I → I by Lx(h) =
δx ·h andRx(h) = h·δx , forh ∈ I . BothLx andRx are algebra automorphisms
of I , with inversesLx−1 andRx−1 respectively. The second adjoint of an algebra
automorphism is always an automorphism of the second dual (with respect to
either Arens product). Thus L∗∗x and R∗∗x are automorphisms of the unital
algebra I ∗∗, and so must fix the identity element of I ∗∗, which is P . This
proves the first part.

Now fix x ∈ G, and suppose (vi) ⊂ I with vi → P w∗. Then for any
φ ∈ I ∗ we have

〈φ, δx · vi〉I ∗−I = 〈φ · δx, vi〉I ∗−I

−→ 〈P, φ · δx〉I ∗∗−I ∗ = 〈δx · P, φ〉I ∗∗−I ∗ = 〈P, φ〉I ∗∗−I ∗ ,
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and so δx · vi → P w∗. A similar argument shows that (vi · δx)→ P w∗.

Consider the natural right action of U on I ∗ (the adjoint of the left action
U × I → I that is given by multiplication of functions). This gives rise to
a bounded, bilinear map I ∗∗ × I ∗ → U∗, denoted by (F,ψ) 	→ Fψ for
F ∈ I ∗∗ and ψ ∈ I ∗, and defined by 〈Fψ, h〉 = 〈F,ψ • h〉 for all ψ ∈ I ∗
and h ∈ I . (We are performing the first two stages of the canonical Arens
extension of the module action of U on I .)

Recall that 
∗(UC(G)) = 
(L∞(G)ess) ⊆ L∞(G × G)ess ≡ U, giving
us the adjoint map 
UC : U∗ → UC(G)∗. Let ı : M(G) → UC(G)∗ be the
natural inclusion map, defined by

(8.2) 〈ı(μ), f 〉UC(G)∗−UC(G) :=
∫
G

f dμ (μ ∈ M(G), f ∈ UC(G)).

Proposition 8.5. There is aGd -bimodule map S : I ∗ → U∗ which makes
the following diagram commute.

(8.3)

C0(G)
∗ 
C0←−−−−−− I ∗

ı S

UC(G)∗ ←−−−−−−

UC

U∗

Proof. Let P be the identity element of I ∗∗, and define S(φ) = Pφ ∈ U∗
for each φ ∈ I ∗. Thus, for any h ∈ U, and any bounded net (vi) ⊂ I which
converges to P in the w∗-topology of I ∗∗, we have

〈S(φ), h〉U∗−U = lim
i
〈φ, h • vi〉I ∗−I .

Fix x ∈ G. Then

〈S(δx · φ), h〉U∗−U = lim
i
〈δx · φ, h • vi〉I ∗−I

= lim
i
〈φ, (h • vi) · δx〉I ∗−I

= lim
i
〈φ, (h · δx) • (vi · δx)〉I ∗−I

= lim
i
〈φ • (h · δx), vi · δx〉I ∗−I .

But by Lemma 8.4, the net (vi · δx) also converges to P in the w∗-topology of
I ∗∗. Hence

lim
i
〈φ • (h · δx), vi · δx〉I ∗−I = 〈S(φ), h · δx〉U∗−U = 〈δx · S(φ), h〉U∗−U .
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Combining the previous equations, we see that S is a left Gd -module map.
A similar argument, with left and right switched, shows that S is a right Gd -
module map.

We need to show that the diagram in (8.3) commutes. Let φ ∈ I ∗ and let
μ = 
C0(φ) ∈ C0(G)

∗ = M(G). Then

〈ı
C0(φ), f 〉UC(G)∗−UC(G) =
∫
G

f dμ (f ∈ UC(G)).

Now let (ui) ⊂ C0(G) be a b.a.i. and let f ∈ UC(G). The net (
(ui)) is a
b.a.i. for 
∗(C0(G)), and hence also for I . Passing to a subnet if necessary,
we may assume that 
∗(ui)→ P w∗ in I ∗∗. Therefore,

〈S(φ),
∗(f )〉U∗−U = lim
i
〈φ,
∗(f ) •
∗(ui)〉I ∗−I

= lim
i
〈φ,
∗(f • ui)〉I ∗−I

= lim
i
〈
C0(φ), f • ui〉C0(G)∗−C0(G)

= lim
i

∫
G

f • ui dμ =
∫
G

f dμ,

where the last equality holds because μ is a finite Radon measure onG. (Note
that in general, ui • f does not converge to f in norm.) Thus,

〈
UC(S(φ)), f 〉UC(G)∗−UC(G) = 〈ı(
C0(φ)), f 〉UC(G)∗−UC(G)

for all φ ∈ I ∗ and f ∈ UC(G), as required.

We would really like the map S constructed in Proposition 8.5 to be not just
aGd -bimodule map, but an L1(G)-bimodule map. It is not clear to us if this is
always possible, since even though I ∗ is an L1(G)-bimodule, it is usually not
neo-unital. This may be related to an issue left unaddressed4 in [24]. However,
we can sidestep this obstacle using the following lemma.

Lemma 8.6. Let V be a neo-unital L1(G)-bimodule, so that V and V ∗ are
M(G)-bimodules, and let s ∈ V ∗. Then the following are equivalent:

(i) δx · s = s · δx for all x ∈ G;

(ii) μ · s = s · μ for all μ ∈ M(G).
(iii) a · s = s · a for all a ∈ L1(G).

4 At the top of p. 655 in [24], it is claimed that a certain embedding of LUC (G × Gop)

into LUCSC0(G × Gop)∗∗ is a M(G)-bimodule map. This appears to need extra justification.
However, at that point in [24] one only requires that this embedding is an �1(Gd)-bimodule map,
which is what is shown.
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Proof. (i)⇒ (ii). Since V is neo-unital for L1(G), a short calculation
shows the orbit maps of s are strict-to-w∗ continuous as maps M(G)→ V ∗.
Moreover, the natural embedding �1(Gd) ↪→ M(G) has strictly dense range.
So (ii) follows from (i) by density.

(ii)⇒ (iii). This is trivial.
(iii)⇒ (i). Suppose (iii) holds, and let φ ∈ V . We have

(∗∗) 〈s, φ · a〉 = 〈a · s, φ〉 = 〈s · a, φ〉 = 〈s, a · φ〉 (a ∈ L1(G)).

Now let (ei) be a b.a.i. in L1(G). Since V is a neo-unital L1(G)-bimodule,
for any x ∈ V ∗ we have w∗ limi x · ei = w∗ limi ei · x = x. Hence

〈μ · s, φ〉V ∗−V = lim
i
〈μ · s, φ · ei〉V ∗−V

= lim
i
〈s, φ · ei · μ〉V ∗−V

= lim
i
〈s, (ei · μ) · φ〉V ∗−V (by (∗∗))

= 〈s, μ · φ〉V ∗−V

= 〈s · μ, φ〉.
Thus (ii) holds. This completes the proof of Lemma 8.6.

8.4. The proof of Theorem 7.13, (i)⇒ (ii)

Let m ∈ FL1(G)(L
1(G × G)) = W ∗ be a WAP-virtual diagonal for L1(G).

Then for any a ∈ L1(G) and φ ∈WAP(L∞(G)), a ·m = m · a and

〈
WAP(m) · a, φ〉WAP(L∞(G))∗−WAP(L∞(G)) = 〈φ, a〉WAP(L∞(G))−L1(G).

By Lemma 8.2, 
∗(C0) ⊆ I ⊆ W , and so m can be restricted to a
functional on I . Let S : I ∗ → U∗ be the map provided by Proposition 8.5,
and put n = S(m|I ) ∈ U∗. We will show n is a U-virtual diagonal.

Let x ∈ G. By Lemma 8.6, δx · (m|I ) = (m|I ) · δx . By Proposition 8.5, S
is a Gd -bimodule map, and so

δx · n = S (δx · (m|I )) = S ((m|I ) · δx) = n · δx.
Using Lemma 8.6 in the other direction, we have a ·n = n·a for all a ∈ L1(G).

Let μ = 
C0(m|I ) ∈ M(G). Since m is a WAP-virtual diagonal, μ · a =
a as elements of L1(G), for all a ∈ L1(G), hence μ = δe. Therefore, by
Proposition 8.5,


UC(n) = ı(
C0(m|I )) = ı(δe).
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For each a ∈ L1(G), ı(δe)·a = a as elements of UC(G)∗: one can either check
this by a direct calculation, or else observe that ı(δe)·a coincides with theArens-
type product of ı(δe) and a in the algebra UC(G)∗, which is known to be unital
with identity ı(δe). Hence 〈
UC(n) · a,ψ〉UC(G)∗−UC(G) = 〈ψ, a〉UC(G)−L1(G)

for all a ∈ L1(G) and allψ ∈ UC(G), which, in view of Lemma 7.7, completes
the proof that n is a U-virtual diagonal.

9. The essential and 2-sided-WAP parts of L∞(G × G)

In this section we obtain natural “bivariate” counterparts (Theorems 9.2 and 9.6
below) of the existing, standard characterizations of L∞(G)ess and
L1(G)WAPL1(G)(L

∞(G)), see Remark 7.14. As in the previous section, we de-
note the product in the algebra L1(G) by juxtaposition and the induced action
on L∞(G) and L∞(G×G) by a dot, reserving • for the pointwise product of
functions. In order to fix notation and remove potential ambiguity, we include
the following definition.

Definition 9.1. Given a locally compact group H , we define LUC(H) to
be the space of all f ∈ CB(H) for which the map f 	→ f · δx , defined by
(f · δx)(t) := f (xt), is continuous as a function H 	→ (CB(H), ‖·‖∞).

Warning: In some older sources, this space is denoted by RUC(H) or
UCr (H), but the present notation appears to be more commonly used in recent
work.

It is a classical result that LUC(H) coincides with L∞(H) ·L1(H). Armed
with this, we can now state our characterization of L∞(G×G)ess. The reader
may find it helpful to recall that when we considerL1(G)·L∞(G×G)·L1(G),
the left action operates on the second variable of G×G, and the right action
on the first variable, so that this space naturally contains (L∞(G) · L1(G))⊗
(L1(G) · L∞(G)).

Theorem 9.2. L∞(G×G)ess = LUC(G×Gop).

Proof. For this proof, denote the action of the group algebra L1(G×Gop)

on its dual,L∞(G×Gop), by�. ThenL∞(G×Gop)�L1(G×Gop) coincides
as a subspace of L∞(G × Gop) with LUC(G × Gop), so it suffices to prove
that

(‡) L∞(G×Gop)� L1(G×Gop) = L∞(G×G)ess

as subspaces of L∞(G×G).
The basic idea is straightforward. The opposite algebra L1(G)op is iso-

morphic to the group algebra L1(Gop), where Gop is G equipped with the
opposite multiplication. Therefore, since L1(G)-bimodules can be regarded
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as one-sided modules over the enveloping algebra L1(G) ⊗̂L1(G)op, they can
(by a suitable change of variables) be regarded as one-sided modules over the
group algebra L1(G×Gop). However, since we want to identify both sides of
(‡) as concrete spaces of functions onG×G, not just as abstractly isomorphic
modules, we proceed in some detail.

Let λ be the chosen left Haar measure onG and
 the modular function, so
that
−1 •λ is a left Haar measure onGop. Direct calculation, using properties
of the modular function, shows that the map θ : L1(G)op → L1(Gop), f 	→
f •
, is an isometric isomorphism of Banach algebras. Now, let a, b, u, v ∈
L1(G) and let F ∈ L∞(G×G) = L∞(G×Gop). Then b⊗θ(a) and u⊗θ(v)
lie in L1(G×Gop), and

〈F � (b ⊗ θ(a)), u⊗ θ(v)〉L∞(G×Gop)−L1(G×Gop)

= 〈F, bu⊗ θ(a)θ(v)〉L∞(G×Gop)−L1(G×Gop)

= 〈F, bu⊗ θ(va)〉L∞(G×Gop)−L1(G×Gop)

= 〈F, bu⊗ va〉L∞(G×G)−L1(G×G)
= 〈a · F · b, u⊗ v〉L∞(G×G)−L1(G×G).

By continuity, we therefore haveF�(b⊗θ(a)) = a ·F ·b for all a, b ∈ L1(G)

and all F ∈ L∞(G×G), from which (‡) follows.

We now turn to characterizing L1(G)WAPL1(G)(L
∞(G×G)). First, we have

a general lemma: it could have gone in Section 7, but it is only needed here.

Lemma 9.3. Let A be a Banach algebra with a b.a.i. and let M(A) be its
multiplier algebra. Let X be a neo-unital A-bimodule, and regard it as an
M(A)-bimodule in the natural way (see e.g. [18, §1.d] or [10, Theorem 3.2]
for details). Then AWAPA(X∗) = M(A)WAPM(A)(X∗).

Proof. By the way we define the action ofM(A) onX and hence onX∗, the
inclusion M(A)WAPM(A)(X∗) ⊆ AWAPA(X∗) is straightforward. Conversely,
letφ ∈ AWAPA(X∗), and letRM(A)φ : M(A)→ X∗ be the orbit mapF 	→ F ·φ.
Since AWAPA(X∗) isA-neo-unital by Lemma 7.9, we have φ = a ·ψ for some
a ∈ A andψ ∈ AWAPA(X∗). ThereforeRM(A)φ can be factorized asRAψ◦RM(A)a ,
using the fact that A is a right ideal inM(A). Since the second map is weakly
compact, RM(A)φ is weakly compact. A similar argument, with left and right
reversed, shows that the orbit map F 	→ φ · F is also weakly compact. Thus
φ ∈ M(A)WAPM(A)(X∗) as required.

Recall that �1(Gd) acts naturally on L∞(G×G) by left and right transla-
tions, with these actions arising from the naturalM(G)-bimodule structure on
L∞(G×G).
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Definition 9.4. DefineGWAPG(G×G) to be the set of all f ∈ CB(G×G)
such that both the left and right G-orbits of f are relatively weakly compact.

Notation. It is useful, as in the previous section, to write

W := L1(G)WAPL1(G)(L
∞(G×G)).

Similarly, we write

WM := M(G)WAPM(G)(L
∞(G×G))

and Wd := �1(Gd)WAP�1(Gd)(L
∞(G×G)).

Remark 9.5. Since convex hulls of weakly compact sets are weakly com-
pact, it follows from the definitions that GWAPG(G×G) = Wd ∩CB(G×G).
What is not immediate from the definition of GWAPG(G × G) is that it is
contained in L∞(G × G)ess. This makes the proof of the following result a
little more tricky than one might hope; in particular, the argument used in the
proof of Lemma 8.2 no longer suffices.

Theorem 9.6. The spaces GWAPG(G×G), W , WM and Wd all coincide.
In particular, they are all subspaces of CB(G×G).

Proof. By Lemma 9.3, W = WM . Also, by Lemma 7.9 and Theorem 9.2,
W ⊆ LUC(G×Gop) ⊆ CB(G×G). Hence

W = WM = WM ∩ CB(G×G) ⊆ Wd ∩ CB(G×G) = GWAPG(G×G),
the inclusion being a trivial consequence of the inclusion �1(Gd) ⊂ M(G),
and the final equality holding by Remark 9.5. The only thing left to prove is
that Wd ⊆ WM .

Let h ∈ Wd . As G · h is relatively weakly compact, and convex hulls
of weakly compact sets are weakly compact, the set S = {a · h : a ∈
�1(Gd), ‖a‖ ≤ 1} is a relatively weakly compact subset of L∞(G × G).
When a subset of a dual space is relatively weakly compact, its weak and w∗

closures coincide. Therefore, S
w∗

is weakly compact.
Now, given μ ∈ M(G) with ‖μ‖ ≤ 1, there is a net (fi) in the unit ball

of �1(Gd) such that fi → μ in the strict topology of M(G): see, e.g. [15,
Lemma 1.1.3]. It follows that ‖w · fi − w · μ‖ → 0 for all w ∈ L1(G ×G)
(one can first prove this forw an elementary tensor inL1(G)⊗L1(G), and then
observe that such tensors have dense linear span in L1(G × G)). Therefore
fi · h → μ · h w∗ in L∞(G × G), so that {μ · h : μ ∈ M(G), ‖μ‖ ≤
1} ⊆ S

w∗
. By the previous paragraph, this implies that the left orbit map

R
M(G)
h : M(G)→ L∞(G×G) is weakly compact.
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A similar argument, with left and right swapped, shows that the right orbit
map LM(G)h : M(G)→ L∞(G ×G) is also weakly compact. Thus h ∈ WM ,
as required.

10. Closing remarks and questions

Having developed the basic machinery of the functor FA, which associates to
each A-bimodule a canonical normal dual AWAPA(A∗)∗-bimodule, it would
be interesting to understand FA in more detail. For instance, the proof of
Lemma 6.9 (and hence, the proof of Theorem 6.8) could have been made
more transparent if we knew that FA preserves short exact sequences of A-
bimodules. A proof of this, or a class of counterexamples, would be desirable.
One would also like to know what FA does to projective, injective or flat A-
bimodules: are they sent to normal dual modules that satisfy appropriate and
non-artificial notions of projectivity, injectivity or flatness for the category of
normal dual F(A)-bimodules?

The initial motivation for introducing and studying FA was an attempt to
find a systematic approach, for suitable classes of algebras, to the problem of
whether Connes-amenability of AWAPA(A∗) implies amenability of A. With
this in mind, the methods of Section 8 might be applicable, with suitable
modifications, to the study of Connes-amenability for F(M∗) when M is a
commutative Hopf–von Neumann algebra: the cases M = L∞(G) and M =
�∞(Nmin) have been treated in the present paper. The general setting is left for
possible future research.

Moving away from topics related to amenability: the space GWAPG(G×G)
seems deserving of further study. In particular, while it contains WAP(G ×
G) = WAP(G × Gop), how much bigger is it in general? Also, it is easy to
show that each h ∈ GWAPG(G×G) is separately weakly almost periodic, in
the sense that h(· , x) ∈ WAP(G) and h(x, ·) ∈ WAP(G) for all x ∈ G. Does
this characterize the functions in GWAPG(G×G)? We intend to return to these
questions in other future work.
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