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THE CONVERGENCE OF SOME PRODUCTS IN
THE ADAMS SPECTRAL SEQUENCE

YUYU WANG and JIANBO WANG

Abstract
In this paper, we will use the family of homotopy elements ζn ∈ π∗S, represented by h0bn ∈
Ext3,pn+1q+q

A (Zp, Zp) in the Adams spectral sequence, to detect a ζn-related family γs+3β2ζn−1
in π∗S. Our main methods are the Adams spectral sequence and the May spectral sequence, here
prime p ≥ 7, n > 3, q = 2(p − 1).

1. Introduction

The problem of understanding the stable homotopy groups of sphere π∗S has
long been one of the important problem of algebraic topology. We are interested
in the detection of nontrivial elements in the stable homotopy groups of sphere.

After the detection of ηj ∈ πpj q+pq−2S, for p = 2, j �= 2, by Mahowald,

in [9], which is represented by h1hj ∈ Ext2,pj q+pq

A (Zp, Zp), many infinite
families in π∗S were found. In this paper, Zp = Z/pZ. In [3], for p > 2,
R. L. Cohen proved that a family ζn ∈ πpnq+q−3S in the Adams spectral

sequence (Adams SS) is represented by h0bn ∈ Ext3,pn+1q+q

A (Zp, Zp). Zhou
and Lee proved that β1ξj , β1ζn and β

p−1
1 ζn are all nontrivial, see [5] and [15].

Furthermore, Lin proved in [4] that b0hn − h1bn−1 survives to E∞ in the
Adams SS. Liu also detected some new families of homotopy elements, see
[7], [8]. Wang and Zhong established the convergence of β̃sh0hn under the
condition of p + 1 < s < 2p − 1 and n > 4 ([14]).

In this paper, we show that the product with the R. L. Cohen’s ζ -element is
nontrivial. The main result is obtained as follows:

Theorem 1.1. Let p ≥ 7, 0 ≤ s < p − 4, n > 3, then γs+3β2ζn−1 �= 0 in
π∗S.

For the convenience of the reader, let us briefly indicate the necessary pre-
liminaries in the proof of the above theorem. Let S be the sphere spectrum, M
be the Moore spectrum modulo an odd prime p given by the cofibration

S
P

S
i1

M
j1

�S.

Received 2 July 2013.



the convergence of some products 305

Let α : �qM → M be the Adams map and V (1) is its cofibre given by the
cofibration

�qM
α

M
i2

V (1)
j2

�q+1M.

Let β : �(p+1)qV (1) → V (1) be the ν2-mapping. It is well known that,
in the Adams SS, the β-element βs = j1j2β

si2i1 is a nontrivial element in
πspq+(s−1)q−2S, where p ≥ 5 [12]. V (2) is the cofibre of β : �(p+1)qV (1) →
V (1) sitting in the cofibration sequence

�(p+1)qV (1)
β

V (1)
i3

V (2)
j3

�(p+1)q+1V (1).

Let γ : �(p2+p+1)qV (2) → V (2) be the ν3-mapping and the γ -element
γs = j1j2j3γ

si3i2i1 is also a nontrivial element in πsp2q+(s−1)pq+(s−2)q−3S,
where p ≥ 7 [13].

Furthermore,
βs ∈ πspq+(s−1)q−2S,

γs ∈ πsp2q+(s−1)pq+(s−2)q−3S

is represented by the second, third Greek letter family element

β̃s ∈ Exts,spq+(s−1)q+s−2,∗
A (Zp, Zp),

γ̃s ∈ Exts,sp
2q+(s−1)pq+(s−2)q+s−3,∗

A (Zp, Zp)

in theAdams SS and β̃s , γ̃s are represented by the elements s(s−1)as−2
2 h2,0h1,1

and s(s − 1)(s − 2)as
3h3,0h2,1h1,2 in the May spectral sequence (May SS).

Several methods have been found to determine π∗S. For example, we have
the Adams SS based on the Eilenberg-Maclane spectrum KZp,

E
s,t
2 = Exts,tA (Zp, Zp), dr : Es,t

r → Es+r,t+r−1
r ,

where A denotes the mod p Steenrod algebra, see [1]. Furthermore, we also
have the Adams-Novikov spectral sequence (Adams-Novikov SS), see [10],
[11].

From [6], Ext1,∗
A (Zp, Zp) has a Zp-basis consisting of

a0 ∈ Ext1,1
A (Zp, Zp), hi ∈ Ext1,piq

A (Zp, Zp)

for all i ≥ 0. Ext2,∗
A (Zp, Zp) has a Zp-basis consisting of

α2, a2
0, a0hi (i > 0), gi, ki, bi, hihj (i ≥ 0, j ≥ i + 2),

whose internal degrees are 2q + 1, 2, piq + 1, q(pi+1 + 2pi), q(2pi+1 + pi),
pi+1q and q(pi+pj ) respectively. Ext3,∗

A (Zp, Zp) for p > 2 has been computed
by Aikawa [2].
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The Adams SS and May SS play very important roles in the proof of the
main results, especially the May SS. In this paper, three problems must be re-
solved: Calculation of the E2-terms Ext∗,∗

A (Zp, Zp), computation of the Adams
differentials, and the extensions from E∞ to π∗S.

Remark 1.1. Note that in the Adams SS, when s �= 0, 1, 2 (mod p), γ̃s ,
β̃2, h0bn−1 are all permanent cycles, so γ̃s β̃2h0bn−1 is a permanent cycle, that
is dr(γ̃s β̃2h0bn−1) = 0 (r ≥ 2).

The paper is organized as follows: after giving some useful knowledge
about the May SS in Section 2, we will make use of the May SS to prove some
important results on Ext groups. The proof of Theorem 1.1 will be given in the
last section.

2. The May spectral sequence

To compute π∗S with the Adams SS, we must compute the E2-term of the
Adams SS, Ext∗,∗

A (Zp, Zp). The most successful method for computing it is the
May SS.

From [11], there is a May SS {Es,t,∗
r , dr}, which converges to Exts,tA (Zp, Zp)

with E1-term

(2.1) E
∗,∗,∗
1 = E(hi,j |i > 0, j ≥ 0) ⊗ P(bi,j |i > 0, j ≥ 0) ⊗ P(ai |i ≥ 0),

where E( ) denotes the exterior algebra, P( ) denotes the polynomial algebra,
and

hi,j ∈ E
1,2(pi−1)pj ,2i−1
1 , bi,j ∈ E

2,2(pi−1)pj+1,p(2i−1)

1 , ai ∈ E
1,2pi−1,2i+1
1 .

One has dr : Es,t,M
r → Es+1,t,M−r

r , for r ≥ 1, and if x ∈ Es,t,∗
r , y ∈ Es ′,t ′,∗

r ,
then

(2.2) dr(x · y) = dr(x) · y + (−1)sxdr(y).

Furthermore, the May E1-term is graded commutative in the sense that:⎧⎪⎨⎪⎩
amhn,j = hn,j am, hm,khn,j = −hn,jhm,k,

ambn,j = bn,j am, hm,kbn,j = bn,jhm,k,

aman = anam, bm,nbi,j = bi,j bm,n.
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The first May differential d1 is given by

(2.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d1(hi,j ) = −
∑

0<k<i

hi−k,k+jhk,j

d1(ai) = −
∑

0<k<i

hi−k,kak

d1(bi,j ) = 0.

For each element x ∈ E
s,t,∗
1 , if we denote dim x = s, deg x = t , then we have

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dim hi,j = dim ai = 1, dim bi,j = 2

deg hi,j = 2(pi − 1)pj = q(pi+j−1 + · · · + pj ),

deg bi,j = 2(pi − 1)pj+1 = q(pi+j + · · · + pj+1)

deg ai = 2pi − 1 = q(pi−1 + · · · + 1) + 1,

deg a0 = 1,

where i ≥ 1, j ≥ 0.

Remark 2.1. Any integer t ≥ 0 can be expressed uniquely as

t = q(cnp
n + cn−1p

n−1 + · · · + c1p + c0) + e,

where 0 ≤ ci < p(0 ≤ i < n), p > cn > 0, 0 ≤ e < q.

3. Some preliminaries on Ext groups

In this section, we will prove some results on Ext groups which will be used
in the proof of the main Theorem 1.1.

Lemma 3.1. Let p ≥ 7, n > 3, 0 ≤ s < p−4 and r ≥ 1. The May E1-term
satisfies

E
s+8−r,t (s,n)+1−r,∗
1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
G1, r = 1 and s = p − 5,

G2, r = 1 and s = p − 6,

G3, r = 1 and s = p − 7,

0, others.

where t (s, n) = q[pn + (s + 3)p2 + (s + 4)p + (s + 3)] + s.

(1) G1 is the Zp-module generated by the following elements⎧⎪⎪⎨⎪⎪⎩
g1 = a

p−5
3 h1,0h2,0h3,0h2,1b2,0h1,n,

g2 = a
p−5
3 h1,0h2,0h3,0h2,1h1,2h1,1h1,n,

g3 = ap−5
n hn,0hn−1,1hn−3,3hn−k,khk,0h2,0h1,3 (4 ≤ k < n − 1).
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(2) G2 is generated by two elements{
g4 = a

p−6
3 h1,0h2,0h3,0h2,1b2,0h1,n,

g5 = a
p−6
3 h1,0h2,0h3,0h2,1h1,2h1,1h1,n.

(3) G3 is generated by two elements{
g6 = a

p−7
3 h1,0h2,0h3,0h2,1b2,0h1,n,

g7 = a
p−7
3 h1,0h2,0h3,0h2,1h1,2h1,1h1,n.

Proof. It is easy to show that E
s+8−r,t (s,n)+1−r,∗
1 = 0 (r ≥ s + 2). Thus, in

the rest of the proof, we assume that 1 ≤ r < s + 2.
In the May SS, let g = ω1ω2 . . . ωl ∈ E

s+8−r,t (s,n)+1−r,∗
1 , where ωi is one of

ak , hr,j or bu,z, 0 ≤ k, r + j ≤ n + 1, 0 ≤ u + z ≤ n, and r, j, z ≥ 0, u > 0.
Assume that

deg ωi = q(ci,np
n + ci,n−1p

n−1 + · · · + ci,1p + ci,0) + ei,

where ci,j = 0 or 1, ei = 1 if ωi = aki
, or ei = 0. It follows that

dim g =
l∑

i=1

dim ωi = s + 8 − r,

deg g =
l∑

i=1

deg ωi

= q

[( l∑
i=1

ci,n

)
pn + · · · +

( l∑
i=1

ci,2

)
p2

+
( l∑

i=1

ci,1

)
p +

l∑
i=1

ci,0

]
+

l∑
i=1

ei

= q[pn + (s + 3)p2 + (s + 4)p + (s + 3)] + (s + 1 − r).

Note that dim hi,j = dim ai = 1, dim bi,j = 2, 1 ≤ r < s + 2 and 0 ≤ s <

p − 4. From dim g = ∑l
i=1 dim ωi = s + 8 − r , we have l ≤ s + 8 − r <

p + 4 − r ≤ p + 3. Using 0 ≤ s + 4, s + 1 − r < p, and the knowledge on
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p-adic expression (Remark 2.1), we have
(3.1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l∑
i=1

ei = s + 1 − r;
l∑

i=1
ci,0 = s + 3;

l∑
i=1

ci,1 = s + 4;
l∑

i=1
ci,2 = s + 3;

l∑
i=1

ci,3 = 0 + λ3p, λ3 ≥ 0;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l∑
i=1

ci,4 + λ3 = 0 + λ4p, λ4 ≥ 0;
l∑

i=1
ci,5 + λ4 = 0 + λ5p, λ5 ≥ 0;

...

l∑
i=1

ci,n−1 + λn−2 = 0 + λn−1p, λn−1 ≥ 0;
l∑

i=1
ci,n + λn−1 = 1.

Consider the fifth equation of (3.1),
∑l

i=1 ci,3 = 0 + λ3p. Since ci,3 = 0 or 1
and l ≤ p + 1, we see that λ3 = 0 or λ3 = 1.

Case 1: λ3 = 0. We claim that λ4 = 0. If λ4 = 1, we would have the
following equations,

l∑
i=1

ci,2 = s + 3,

l∑
i=1

ci,3 = 0,

l∑
i=1

ci,4 = p.

By
∑l

i=1 ci,2 = s + 3 and (2.4), there exist s + 3 factors among g such that

deg xi = q(higher terms on p + p2 + lower terms on p) + δi,

where δi may equal 0 or 1. Similarly, according to
∑l

i=1 ci,4 = p, there would
be p factors among g such that

deg ωi = q(higher terms on p + p4 + lower terms on p) + δi .

Thus, by l ≤ p+1 and by (2.4), there would be at leastp+3+s−(p+1) = s+1
factors in g such that

deg ωi = q(higher terms on p + p4 + p3 + lower terms on p) + δi .

Thus we would have
∑l

i=1 ci,3 ≥ s + 2, which contradicts
∑l

i=1 ci,3 = 0. The
claim that λ4 = 0 is proved.

By induction on j , we have that λj = 0 (4 ≤ j ≤ n − 1). Hence, we have
the following two cases.
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Case 1.1: If there is a factor h1,n in g, up to sign g = h1,ng̃ with g̃ ∈
E

s+7−r,q[(s+3)p2+(s+4)p+(s+3)]+(s+1−r),∗
1 . By (2.4), for r = 1, we have that

E
s+6,q[(s+3)p2+(s+4)p+(s+3)]+s

1

= Zp{as
3h1,0h2,0h3,0h2,1b2,0, a

s
3h1,0h2,0h3,0h2,1h1,2h1,1}.

When r ≥ 2, we can make use of (2.4) to get

E
s+7−r,q[(s+3)p2+(s+4)p+(s+3)]+(s+1−r),∗
1 = 0.

Case 1.2: If there is a factor b1,n−1 in g, then up to sign g = b1,n−1g̃ with

g̃ ∈ E
s+6−r,q[(s+3)p2+(s+4)p+(s+3)]+(s+1−r),∗
1 = 0.

Thus, in this case, the generator g exists, and up to sign g can equal one of
the following

as
3h1,0h2,0h3,0h2,1b2,0h1,n or as

3h1,0h2,0h3,0h2,1h1,2h1,1h1,n.

Case 2: λ3 = 1. If r ≥ 4, then we would have l ≤ s+8−r < p+4−r ≤ p.
It is easy to see that λ3 can not be equal to 1. Thus, in the rest of this case, we
always assume r ≤ 3.

By the sixth equation of (3.1),
∑l

i=1 ci,4 + 1 = λ4p and as also 0 ≤∑l
i=1 ci,4 ≤ l < p +1, we can deduce λ4 = 1. By induction on j , λj = 1(4 ≤

j ≤ n − 1), thus, the equations of (3.1) turn into

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l∑
i=1

ei = s + 1 − r;
l∑

i=1
ci,0 = s + 3;

l∑
i=1

ci,1 = s + 4;
l∑

i=1
ci,2 = s + 3;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l∑
i=1

ci,3 = p;
l∑

i=1
ci,4 = p − 1;

...

l∑
i=1

ci,n−1 = p − 1;
l∑

i=1
ci,n = 0.

From the fifth equation of (3.2),
∑l

i=1 ci,3 = p, using ci,3 = 0 or 1, we
must have that l ≥ p. Note that l ≤ s + 7, thus s ≥ p − 7. By 0 ≤ s < p − 4,
s may equal p − 7, p − 6 or p − 5.

Case 2.1: When s = p − 7, g = ω1ω2 . . . ωl ∈ E
p+1−r,t (p−7,n)+1−r,∗
1 , in

this case, l = p. From the following two equations:
∑l

i=1 ei = p − 6 − r and
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i=1 ci,n−1 = p − 1, we have that up to sign the generator g must be of the

form g = a
p−7−r
n xp−6−r . . . xp. In this case, r must equal 1, then, we have that

up to sign g = a
p−8
n xp−7 . . . xp, where

xp−7 . . . xp ∈ E
8,q(6pn−1+6pn−2+···+6p4+8p3+4p2+5p+4)+1,∗
1 = 0,

which is trivial by (2.4). Thus, the generator g doesn’t exist.

Case 2.2: When s = p − 6, g = ω1ω2 . . . ωl ∈ E
p+2−r,t (p−6,n)+1−r,∗
1 .

Case 2.2.1: l = p. From the following two equations:
∑l

i=1 ei = p−5−r

and
∑l

i=1 ci,n−1 = p − 1, we have that up to sign the generator g must be of
the form g = a

p−6−r
n xp−5−r . . . xp.

If r = 1, then we have that up to sign g = a
p−7
n xp−6 . . . xp, and by (2.4),

xp−6 . . . xp ∈ E
8,q(6pn−1+6pn−2+···+6p4+7p3+4p2+5p+4)+1,∗
1 = 0.

If r = 2, then g = a
p−8
n xp−7 . . . xp, by (2.4),

xp−7 . . . xp ∈ E
8,q(7pn−1+7pn−2+···+7p4+8p3+5p2+6p+5)+1,∗
1 = 0.

Case 2.2.2: l = p + 1. In this case, it is easy to see that r must equal 1.
From the following two equations:

∑l
i=1 ei = p − 5 − r and

∑l
i=1 ci,n−1 =

p − 1, we have that up to sign the generator g must be of the form g =
a

p−7−r
n xp−6−r . . . xp+1. Then we have that up to sign g = a

p−8
n xp−7 . . . xp+1,

and by (2.4),

xp−7 . . . xp+1 ∈ E
9,q(7pn−1+7pn−2+···+7p4+8p3+5p2+6p+5)+2,∗
1 = 0.

Thus, the generator g doesn’t exist.

Case 2.3: When s = p − 5, g = ω1ω2 . . . ωl ∈ E
p+3−r,t (p−5,n)+1−r,∗
1 .

Case 2.3.1: l = p. From the following two equations:
∑l

i=1 ei = p−4−r

and
∑l

i=1 ci,n−1 = p − 1, we have that up to sign the generator g must be of
the form g = a

p−5−r
n xp−4−r . . . xp.

If r = 1, we have that up to sign g = a
p−6
n xp−5 . . . xp, and by (2.4),

xp−5 . . . xp ∈ E
8,q(5pn−1+5pn−2+···+5p4+6p3+4p2+5p+4)+1,∗
1

= Zp{anhn,0hn−1,1hn−3,3hn−k,khk,0h2,0h1,3}
(4 ≤ k < n − 1).
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If r = 2, we have that up to sign g = a
p−7
n xp−6 . . . xp, and by (2.4),

xp−6 . . . xp ∈ E
8,q(6pn−1+6pn−2+···+6p4+7p3+5p2+6p+5)+1,∗
1 = 0.

If r = 3, we have that up to sign g = a
p−8
n xp−7 . . . xp, and by (2.4),

xp−7 . . . xp ∈ E
8,q(7pn−1+7pn−2+···+7p4+8p3+6p2+7p+6)+1,∗
1 = 0.

Case 2.3.2: l = p + 1. From the following two equations:
∑l

i=1 ei =
p − 4 − r and

∑l
i=1 ci,n−1 = p − 1, we have that up to sign the generator g

must be of the form g = a
p−6−r
n xp−5−r . . . xp+1.

If r = 1, we have that up to sign g = a
p−7
n xp−6 . . . xp+1, and by (2.4),

xp−6 . . . xp+1 ∈ E
9,q(6pn−1+6pn−2+···+6p4+7p3+5p2+6p+5)+2,∗
1

= Zp{a2
nhn,0hn−1,1hn−3,3hn−k,khk,0h2,0h1,3}

(4 ≤ k < n − 1).
If r = 2, we have that up to sign g = a

p−8
n xp−7 . . . xp+1, and by (2.4),

xp−7 . . . xp+1 ∈ E
9,q(7pn−1+7pn−2+···+7p4+8p3+6p2+7p+6)+2,∗
1 = 0.

Case 2.3.3: l = p + 2. From the following two equations:
∑l

i=1 ei =
p − 4 − r and

∑l
i=1 ci,n−1 = p − 1, we have that up to sign the generator g

must be of the form g = a
p−7−r
n xp−6−r . . . xp+2. In this case, r must equal 1,

and then we have that up to sign g = a
p−8
n xp−7 . . . xp+2, and by (2.4),

xp−7 . . . xp+2 ∈ E
10,q(7pn−1+7pn−2+···+7p4+8p3+6p2+7p+6)+3,∗
1 = 0.

From the above discussion,

g = ap−5
n hn,0hn−1,1hn−3,3hn−k,khk,0h2,0h1,3 (4 ≤ k < n − 1).

Summing up Case 1 and Case 2, the Lemma follows.

Lemma 3.2. (1) For the generator of E
p+2,t (p−5,n),∗
1 , we have that⎧⎪⎨⎪⎩

M(g1) = 10p − 20,

M(g2) = 7p − 18,

M(g3) = (2n + 1)p − 2n − 14.



the convergence of some products 313

For the generator of E
p+1,t (p−6,n),∗
1 , we have that{

M(g4) = 10p − 27,

M(g5) = 7p − 25.

For the generator of E
p,t(p−7,n),∗
1 , we have that{

M(g6) = 10p − 34,

M(g7) = 7p − 31.

(2) For the May E1-module G1 in Lemma 3.1, we have

G1 = E
p+2,t (p−5,n),10p−20
1 ⊕E

p+2,t (p−5,n),7p−18
1 ⊕E

p+2,t (p−5,n),(2n+1)p−2n−14
1 ,

where ⎧⎪⎪⎨⎪⎪⎩
E

p+2,t (p−5,n),10p−20
1 = Zp{g1},

E
p+2,t (p−5,n),7p−18
1 = Zp{g2},

E
p+2,t (p−5,n),(2n+1)p−2n−14
1 = Zp{g3};

G2 = E
p+1,t (p−6,n),10p−27
1 ⊕ E

p+1,t (p−6,n),7p−25
1 , where{

E
p+1,t (p−6,n),10p−27
1 = Zp{g4},

E
p+1,t (p−6,n),7p−25
1 = Zp{g5};

and G3 = E
p,t(p−7,n),10p−34
1 ⊕ E

p,t(p−7,n),7p−31
1 , where{

E
p,t(p−7,n),10p−34
1 = Zp{g6},

E
p,t (p−7,n),7p−31
1 = Zp{g7}.

Proof. (1) It is an easy calculation.
(2) By Lemma 3.1 and the above result (1), it is an easy conclusion.

Lemma 3.3. For r ≥ 2, about the May Er -module, we have the following
results:

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ep+2,t (p−5,n),10p−20
r = 0,

Ep+1,t (p−6,n),10p−27
r = 0,

Ep+1,t (p−6,n),7p−25
r = 0,

E
p,t (p−7,n),10p−34
1 = 0,

Ep,t (p−7,n),7p−31
r = 0.
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(2) Ep+2,t (p−5,n),(2n+1)p−2n−14
r = 0.

(3) E
p+2,t (p−5,n),7p−18
r has an unique generator a

p−5
3 h1,0h2,0h3,0h2,1b2,0h1,n.

Proof. (1) From Lemma 3.2 (2),

E
p+2,t (p−5,n),10p−20
1 = Zp{g1}.

By using of (2.2), we have that up to sign

d1(g1) = ap−5
n h1,0h2,0h3,0h1,2h1,1b2,0h1,n + · · · �= 0.

That is E
p+2,t (p−5,n),10p−20
2 = 0. Thus,

Ep+2,t (p−5,n),10p−20
r = 0 (r ≥ 2).

Similarly, we can get the other results in (1).
(2) From Lemma 3.2 (2),

E
p+2,t (p−5,n),(2n+1)p−2n−14
1 = Zp{g3}.

By using of (2.2), we have that up to sign

d1(g3) = ap−5
n hn,0hn−1,1hn−3,3hn−k,kh1,0hk−1,1h2,0h1,3 + · · · �= 0.

So E
p+2,t (p−5,n),(2n+1)p−2n−14
2 = 0, and also

Ep+2,t (p−5,n),(2n+1)p−2n−14
r = 0 (r ≥ 2).

(3) By Lemma 3.2 (2),

E
p+2,t (p−5,n),7p−18
1 = Zp{ap−5

3 h1,0h2,0h3,0h2,1b2,0h1,n}.
By using of (2.2),

d1(a
p−5
3 h1,0h2,0h3,0h2,1b2,0h1,n) = 0.

This shows that the MayEr -moduleE
p+2,t (p−5,n),7p−18
r has only one permanent

cycle for r ≥ 2.

By using the above Lemmas, we will next prove some results on Ext groups,
which will be used in the proof of the main theorem.

Theorem 3.1. Let p ≥ 7, n > 3, 0 ≤ s < p − 4. There exists nontrivial
product

0 �= γ̃s+3k0h0bn−1 ∈ Exts+8,t (s,n)
A (Zp, Zp),
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where t (s, n) = pnq + (s + 3)p2q + (s + 4)pq + (s + 3)q + s.

Proof. It is known that

h1,0, b1,j , h2,0h1,1, as
3h3,0h2,1h1,2 ∈ E

∗,∗,∗
1

are all permanent cycle in the May SS converging nontrivially to

h0, bj , k0, γ̃s+3 ∈ Ext∗,∗
A (Zp, Zp), j ≥ 0.

So
h1,0b1,n−1h2,0h1,1a

s
3h3,0h2,1h1,2 ∈ E

s+8,t (s,n),∗
1

is a permanent cycle in the May SS that converges nontrivially to

γ̃s+3k0h0bn−1 ∈ Exts+8,t (s,n)
A (Zp, Zp).

Now we need to show that the permanent cycle

h1,0b1,n−1h2,0h1,1a
s
3h3,0h2,1h1,2

is not hit by any of the May differentials dr (r ≥ 1). Firstly, let us consider the
structure of E

s+7,t (s,n),∗
1 in the May SS.

Case 1: When 0 ≤ s < p − 7, by Lemma 3.1, we know that, in the
May SS, Es+7,t (s,n),∗

1 = 0. Then Es+7,t (s,n),∗
r = 0 (r ≥ 1). Thus in the May SS,

the permanent cycle

h1,0b1,n−1h2,0h1,1a
s
3h3,0h2,1h1,2

doesn’t bound and converges nontrivially to

γ̃s+3k0h0bn−1 ∈ Exts+8,t (s,n)
A (Zp, Zp),

then γ̃s+3k0h0bn−1 �= 0.

Case 2: When s = p − 7, by Lemma 3.1 and 3.2 (2), we have that G3 =
E

p,t(p−7,n),10p−34
1 ⊕ E

p,t(p−7,n),7p−31
1 , thus{
M(E

p,t(p−7,n),10p−34
1 ) = 10p − 34,

M(E
p,t (p−7,n),7p−31
1 ) = 7p − 31.

Furthermore,

M(h1,0b1,n−1h2,0h1,1a
p−7
3 h3,0h2,1h1,2) = 8p − 35,
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and because d1 : E
s,t,M
1 → E

s+1,t,M−1
1 , we know that{

h1,0b1,n−1h2,0h1,1a
p−7
3 h3,0h2,1h1,2 �∈ d1(E

p,t (p−7,n),7p−31
1 ),

h1,0b1,n−1h2,0h1,1a
p−7
3 h3,0h2,1h1,2 �∈ d1(E

p,t (p−7,n),10p−34
1 ).

Moreover, by Lemma 3.3, one has E
p,t(p−7,n),10p−34
r = 0 (r ≥ 2) and

E
p,t(p−7,n),7p−31
r = 0 (r ≥ 2). Thus, from the above discussion, the permanent

cycle
h1,0b1,n−1h2,0h1,1a

p−7
3 h3,0h2,1h1,2

doesn’t bound and converges nontrivially to

γ̃p−4k0h0bn−1 ∈ Extp+1,t (p−7,n)

A (Zp, Zp)

in the May SS. Consequently, γ̃p−4k0h0bn−1 �= 0.

Case 3: When s = p − 6, the proof is the same as Case 2.

Case 4: When s = p − 5, from Lemma 3.1 and 3.2 (2), we have that

G1 = E
p+2,t (p−5,n),10p−20
1 ⊕E

p+2,t (p−5,n),7p−18
1 ⊕E

p+2,t (p−5,n),(2n+1)p−2n−14
1 .

Thus, ⎧⎪⎪⎨⎪⎪⎩
M(E

p+2,t (p−5,n),10p−20
1 ) = 10p − 20,

M(E
p+2,t (p−5,n),7p−18
1 ) = 7p − 18,

M(E
p+2,t (p−5,n),(2n+1)p−2n−14
1 ) = (2n + 1)p − 2n − 14.

Furthermore, M(h1,0b1,n−1h2,0h1,1a
p−5
3 h3,0h2,1h1,2) = 8p − 21 and d1 :

E
s,t,M
1 → E

s+1,t,M−1
1 , we know that⎧⎪⎪⎨⎪⎪⎩

h1,0b1,n−1h2,0h1,1a
p−5
3 h3,0h2,1h1,2 �∈ d1(E

p+2,t (p−5,n),10p−20
1 ),

h1,0b1,n−1h2,0h1,1a
p−5
3 h3,0h2,1h1,2 �∈ d1(E

p+2,t (p−5,n),7p−18
1 ),

h1,0b1,n−1h2,0h1,1a
p−5
3 h3,0h2,1h1,2 �∈ d1(E

p+2,t (p−5,n),(2n+1)p−2n−14
1 ).

Moreover, by Lemma 3.3, when r ≥ 2, one has⎧⎪⎨⎪⎩
Ep+2,t (p−5,n),10p−20

r = 0,

Ep+2,t (p−5,n),7p−18
r = 0,

Ep+2,t (p−5,n),(2n+1)p−2n−14
r = 0.
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Thus, from the above discussion, the permanent cycle

h1,0b1,n−1h2,0h1,1a
p−5
3 h3,0h2,1h1,2

doesn’t bound and converges nontrivially to

γ̃p−2k0h0bn−1 ∈ Extp+3,t (p−5,n)

A (Zp, Zp)

in the May SS. This means that γ̃p−2k0h0bn−1 �= 0.
From Case 1 to 4, the Theorem follows.

Theorem 3.2. Let p ≥ 7, n > 3, 0 ≤ s < p − 4, 2 ≤ r ≤ s + 8. Then

Exts+8−r,t (s,n)+1−r
A (Zp, Zp) = 0,

where t (s, n) = pnq + (s + 3)p2q + (s + 4)pq + (s + 3)q + s.

Proof. We only need to prove that E
s+8−r,t (s,n)+1−r,∗
1 = 0 in the May SS.

From Lemma 3.1, the desired result follows.

4. The proof of Theorem 1.1

Proof. From [3], h0bn−1 ∈ Ext3,q(pn+1)

A (Zp, Zp) is a permanent cycle in the
Adams SS and converges to a nontrivial element ζn−1 ∈ πq(pn+1)−3S.

Consider the composition of maps

f = (j1j2j3γ
s+3i3i2i1)(j1j2β

2i2i1)(ζn−1).

Since ζn−1 is represented by h0bn−1 ∈ Ext3,q(pn+1)

A (Zp, Zp) in the Adams SS,
then f is represented by

ϕ = (j1j2j3γ
s+3i3i2i1)∗(j1j2β

2i2i1)∗(h0bn−1)

in the Adams SS. By using theYoneda products, we know that the composition

Ext0,0
A (Zp, Zp)

(i2i1)∗−−−−→ Ext0,0
A (H ∗V (1), Zp)

(j1j2)∗(β2)∗−−−−−−−→ Ext2,2pq+q

A (Zp, Zp)

is multiplication by β̃2 ∈ Ext2,2pq+q

A (Zp, Zp), and the composition

Ext0,0
A (Zp, Zp)

(i3i2i1)∗−−−−−→ Ext0,0
A (H ∗V (2), Zp)

(j1j2j3)∗(γ s+3)∗−−−−−−−−−−→ Exts+3,q[(s+3)p2+(s+2)p+(s+1)]+s

A (Zp, Zp)

is also multiplication by γ̃s+3 ∈ Exts+3,q[(s+3)p2+(s+2)p+(s+1)]+s

A (Zp, Zp).
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Hence the composite map γs+3β2ζn−1 ∈ π∗S is represented by

γ̃s+3k0h0bn−1 ∈ Exts+8,t (s,n)
A (Zp, Zp)

in the Adams SS.
From Theorem 3.1, we see that

γ̃s+3k0h0bn−1 �= 0.

Moreover, from Theorem 3.2, it follows that γ̃s+3k0h0bn−1 can not be hit by
any differential in the Adams SS. Thus, the γ̃s+3k0h0bn−1 survives nontrivially
to a homotopy element of π∗S.
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