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UNIMODULAR EQUIVALENCE OF ORDER
AND CHAIN POLYTOPES

TAKAYUKI HIBI and NAN LI

Abstract
Order polytope and chain polytope are two polytopes that arise naturally from a finite partially
ordered set. These polytopes have been deeply studied from viewpoints of both combinatorics
and commutative algebra. Even though these polytopes possess remarkable combinatorial and
algebraic resemblance, they seem to be rarely unimodularly equivalent. In the present paper, we
prove the following simple and elegant result: the order polytope and chain polytope for a poset
are unimodularly equivallent if and only if that poset avoid the 5-element “X” shape subposet. We
also explore a few equivalent statements of the main result.

Introduction

A finite posetP (partially ordered set) yield naturally two poset polytopes. One
is the order polytope O (P ) and the other is the chain polytope C (P ). From
viewpoints of both combinatorics and commutative algebra, both polytopes
O (P ) and C (P ) have been studied by many authors. For example, the com-
binatorial structure of O (P ) and C (P ) is explicitly discussed in Stanley [4].
Stanley also showed that O (P ) and C (P ) have the same volume and Ehrhart
polynomial. On the other hand, in [1] and [3], it is shown that the toric ring of
each of O (P ) and C (P ) is an algebra with straightening laws ([2, p. 124]) on
the distributive lattice L = J (P ), where J (P ) is the set of all poset ideals
of P , ordered by inclusion. It then turns out that the behavior of O (P ) and
C (P ) is remarkably resemblant. However, O (P ) and C (P ) seem to be rarely
unimodularly equivalent. In general, in the study on integral convex polytopes,
the notion of unimodular equivalence is of importance. For example, if two in-
tegral polytopes P and Q are unimodularly equivalence, then their toric ideals
([6]) coincide. In the present paper, we provide a simple and elegant answer
to this question: O (P ) and C (P ) are unimodularly equivalent if and only if
the poset P avoid the 5-element “X” shape subposet (Theorem 2.1). We also
proved that for O (P ) and C (P ), unimodularly equivalent, combinatorially
equivalent, and affinely equivalent are the same (Corollary 2.3).
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The outline of this paper is as follows. In section 1, we first recall funda-
mental materials on order polytopes and edge polytopes from [4]. We refer the
reader to [4] for detailed information on these polytopes. A crucial fact in our
discussion is that the number of facets of O (P ) is less than or equal to that
of C (P ) (Corollary 1.2). Then in Theorem 1.3 we give a characterization of
a poset P for which the number of facets of O (P ) is equal to that of C (P ).
Clarly Theorem 1.3 give a necessary condition for O (P ) and C (P ) to be un-
imodularly equivalent. Then, in Theorem 2.1 of Section 2, we show that the
necessary condition of Theorem 1.3 is, in fact, sufficient for the unimodular
equivalence of O (P ) and C (P ).

1. The number of facets of chain and order polytopes

Let P = {x1, . . . , xd} be a finite poset. To each subset W ⊂ P , we associate
ρ(W) = ∑

i∈W ei ∈ Rd , where e1, . . . , ed are the unit coordinate vectors of
Rd . In particular ρ(∅) is the origin of Rd . A poset ideal of P is a subset I of
P such that, for all xi and xj with xi ∈ I and xj ≤ xi , one has xj ∈ I . An
antichain of P is a subsetA of P such that xi and xj belonging toAwith i �= j

are incomparable. We say that xj covers xi if xi < xj and xi < xk < xj for no
xk ∈ P . A chain xj1 < xj2 < · · · < xj� of P is called saturated if xjq covers
xjq−1 for 1 < q ≤ �. A maximal chain is a saturated chain such that xj1 is a
minimal element and xj� is a maximal element of the poset.

Recall that the order polytope of P is the convex polytope O (P ) ⊂ Rd

which consists of those (a1, . . . , ad) ∈ Rd such that 0 ≤ ai ≤ 1 for every
1 ≤ i ≤ d together with

ai ≥ aj

if xi ≤ xj in P . The chain polytope of P is the convex polytope C (P ) ⊂ Rd

which consists of those (a1, . . . , ad) ∈ Rd such that ai ≥ 0 for every 1 ≤ i ≤ d

together with
ai1 + ai2 + · · · + aik ≤ 1

for every maximal chain xi1 < xi2 < · · · < xik of P .
One has dim O (P ) = dim C (P ) = d. Each vertex of O (P ) is ρ(I) such

that I is a poset ideal of P ([4, Corollary 1.3]) and each vertex of C (P ) is ρ(A)
such that A is an antichain of P ([4, Theorem 2.2]). In particular the number
of vertices of O (P ) is equal to that of C (P ). Moreover, the volume of O (P )

and that of C (P ) are equal to e(P )/d!, where e(P ) is the number of linear
extensions of P ([4, Corollary 4.2]).

It follows from [4] that the facets of O (P ) are the following:

• xi ≥ 0, where xi ∈ P is minimal;

• xj ≤ 1, where xj ∈ P is maximal;



unimodular equivalence 7

• xi ≥ xj , where xj covers xi ,

and that the facets of C (P ) are the following:

• xi ≥ 0 for all xi ∈ P ;

• xi1 +xi2 +· · ·+xik ≤ 1, where xi1 < xi2 < · · · < xik is a maximal chain
of P .

Notice that in order to make the expression clear, we use xi instead of ai to
express the coordinates. Also for the facets even though they are hyperplanes,
we still use inequalities instead of equalities since this will also provide the
information on which side of the hyperplanes we are using.

Let m∗(P ) (resp. m∗(P )) denote the number of minimal (reps. maximal)
elements ofP and h(P ) the number of edges of the Hasse diagram ([5, p. 243])
of P . In other words, h(P ) is the number of pairs (xi, xj ) ∈ P ×P such that xj
covers xi . Let c(P ) denote the number of maximal chains of P . It then follows
immediately that

Lemma 1.1. The number of facets of O (P ) is m∗(P )+m∗(P )+ h(P ) and
that of C (P ) is d + c(P ).

Corollary 1.2. The number of facets of O (P ) is less than or equal to that
of C (P ).

Proof. We work with induction on d, the number of elements of P . If
P has one element then the statement is true, since both polytopes have 2
facets. Choose a minimal element α of P which is not maximal. By induction
hypothesis, we have

(1) m∗(P \ {α})+m∗(P \ {α})+ h(P \ {α}) ≤ (d − 1)+ c(P \ {α}).
Let β1, . . . , βs, γ1, . . . , γt be the elements of P which cover α such that each
βi covers at least two elements of P and each γj covers no element of P except
for α. Let Ni denote the number of saturated chains of the form βi < xj1 <

xj2 < · · ·. Then
m∗(P \ {α}) = m∗(P )− 1 + t;
m∗(P \ {α}) = m∗(P );
h(P \ {α}) = h(P )− (s + t);
c(P \ {α}) = c(P )−

s∑

i=1

Ni.

Hence

(2) c(P \ {α}) ≤ c(P )− s.
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One has

m∗(P \ {α})+m∗(P \ {α})+h(P \ {α}) = m∗(P )+m∗(P )+h(P )− (s+1)

and

d − 1 + c(P \ {α}) ≤ d − 1 + c(P )− s = d + c(P )− (s + 1).

Thus, by virtue of the inequality (1), it follows that

m∗(P )+m∗(P )+ h(P ) ≤ d + c(P ),

as desired.

We now come to a combinatorial characterization ofP for which the number
of facets of O (P ) is equal to that of C (P ).

Theorem 1.3. The number of facets of O (P ) is equal to that of C (P ) if and
only if the following poset

Figure 1

does not appear as a subposet ([5, p. 243]) of P .

Proof. The number of facets of O (P ) is equal to that of C (P ) if and only if,
in the proof of Corollary 1.2, each of the inequalities (1) and (2) is an equality.

(“If”) Suppose that the poset of Figure 1 does not appear as a subposet of
P . Then, in the proof of Corollary 1.2, one has Ni = 1 for 1 ≤ i ≤ s. This is
because we assume P avoids the 5-element “X” shape subposet, therefore, for
each β as defined in Corollary 1.2, there exists unique saturated chain above
β. Hence the inequality (2) is an equality. Moreover, the induction hypothesis
guarantees that the inequalities (1) is an equality. Thus the number of facets of
O (P ) is equal to that of C (P ), as required.

(“Only if”) Suppose that the poset of Figure 1 appears as a subposet of
P . It then follows from the 5-element “X” shape subposet that there exist
δ, ξ, μ, φ,ψ of P such that (i) δ covers ξ and μ, (ii) δ < φ, δ < ψ , and (iii)
φ and ψ are incomparable. Now we want to use induction to show that in this
case, the number of facets of O (P ) is strictly smaller than C (P ). First, if P is
the poset shown in Figure 1, then the statement is true since O (P ) has 8 facets
and C (P ) has 9. In the next step of our induction, notice that by the proof of
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Corollary 1.2, in order to have the same number of facets for O (P ) and C (P ),
we need both (1) and (2) to be equality. Therefore, to show O (P ) has fewer
facets than C (P ), we only need to show one of (1) and (2) is a strict inequality.

• If neither ξ nor μ is a minimal element of P , then the poset of Figure 1
appears as a subposet of P \ {α}, where α is any minimal element of P .
Hence the induction hypothesis guarantees that the inequality (1) cannot
be an equality.

• If either ξ or μ coincides with a minimal element α of P , then, in the
proof of Corollary 1.2, one has Ni > 1 for some 1 ≤ i ≤ s. Hence, the
inequality (2) cannot be an equality.

Hence, at least one of the inequalities (1) and (2) cannot be an equality. Thus
the number of facets of O (P ) is less than that of C (P ).

2. Unimodular equivalence

Let Zd×d denote the set of d×d integral matrices. Recall that a matrixA ∈ Zd×d
is unimodular if det(A) = ±1. Given integral polytopes P ⊂ Rd of dimension
d and Q ⊂ Rd of dimensiond, we say that P and Q are unimodularly equivalent
if there exist a unimodular matrix U ∈ Zd×d and an integral vector w ∈ Zd

such that Q = fU(P)+w, where fU is the linear transformation of Rd defined
by U , i.e., fU(v) = vU for all v ∈ Rd .

Now, we wish to solve our pending problem when O (P ) and C (P ) are
unimodularly equivalent.

Theorem 2.1. The order polytope O (P ) and the chain polytope C (P ) of a
finite poset P are unimodularly equivalent if and only if the poset of Figure 1
of Theorem 1.3 does not appear as a subposet of P .

Proof. (“Only if”) If O (P ) and C (P ) are unimodularly equivalent, then
in particular the number of facets of O (P ) and that of C (P ) coincides. Hence
by virtue of Theorem 1.3 the poset of Figure 1 does not appear as a subposet
of P .

(“If”) LetP = {x1, . . . , xd} and suppose that the poset of Figure 1 does not
appear as a subposet of P . Fix x ∈ P which is neither minimal nor maximal.
Then at least one of the following conditions are satisfied:

• there is a unique saturated chain of the form x = xi0 > xi1 > · · · > xik ,
where xik is a minimal element of P ;

• there is a unique saturated chain of the form x = xj0 < xj1 < · · · < xj� ,
where xi� is a maximal element of P .

Now, identifying x1, . . . , xd with the coordinates of Rd , we introduce the affine
map � : Rd → Rd defined as follows:
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• �(xi) = 1 − xi if xi ∈ P is minimal, but not maximal;

• �(xi) = xi if xi ∈ P is maximal;

• Let xi be neither minimal nor maximal. If there is a unique saturated
chain of the form x = xi0 > xi1 > · · · > xik , where xik is a minimal
element of P , then

�(xi) = 1 − xi0 − xi1 − · · · − xik ;
• Letxi be neither minimal nor maximal. If there exist at least two saturated

chains of the form xi = xi0 > xi1 > · · · > xik , where xik is a minimal
element of P . Since the poset avoids “X” shape subposet, there is a
unique saturated chain of the form xi = xj0 < xj1 < · · · < xj� , where
xj� is a maximal element of P , then

�(xi) = xi + xj1 + · · · + xj� .

It is routine work to show that if F is a facet of O (P ), then �(F ) is a facet
of C (P ). We will prove this claim with the help of Example 2.2.

In fact, there are three types of facets for O (P ):

(1) a minimal element x ≤ 1;

(2) a maximal element y ≥ 0;

(3) a cover relation x ≤ y if x covers y in P .

There are two types of facets for C (P ):

(1’) for each element in the poset x ≥ 0;

(2’) each maximal chain
∑

i∈C xi ≤ 1.

In Example 2.2, x1 ≤ 1 is mapped to 1 − x1 ≤ 1, which is x1 ≥ 0. For type
3) facets x ≤ y of O (P ), there are three cases. For any x ∈ P , if there is a
unique saturated chain starting at x going down to a minimal element, we call
x a down element, otherwise, if there exists at two such chains, we call x an
up element. Then there are two cases for facets of the form x ≤ y of O (P ).

(a) Both x and y are down elements, then this facet is sent to 1’) facet of
C (P ): x ≥ 0. In Example 2.2, x2 ≤ x1 is mapped to 1−x1−x2 ≤ 1−x1,
which is x2 ≥ 0.

(b) Both x and y are up elements, then this facet is sent to 1’) facet of C (P ):
y ≥ 0. In Example 2.2, x9 ≤ x7 is mapped to x9 + x11 ≤ x7 + x9 + x11,
which is x7 ≥ 0.
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(c) If x is up and y is down, then this facet is sent to a type 2’) facet of C (P ).
In Example 2.2, x7 ≤ x2 is mapped to x7 + x9 + x11 ≤ 1 − x1 − x2,
which is x1 + x2 + x7 + x9 + x11 ≤ 1.

Hence �(O (P )) = C (P ). Thus O (P ) and C (P ) are affinely equivalent.
Moreover, since �(Zn) = Zn and since the volume of O (P ) coincides with
that of C (P ), it follows that O (P ) and C (P ) are unimodularly equivalent.

Example 2.2. Consider the following poset.

x1

x2 x3 x4

x5 x6 x7

x8 x9

x10 x11

Figure 2

Both O (P ) and C (P ) have 17 facets. Facets of O (P ) are

x1 ≤ 1, x3 ≤ 1, x4 ≤ 1, x5 ≤ 1, x10 ≥ 0, x11 ≥ 0,
x1 ≥ x2, x2 ≥ x7, x3 ≥ x7, x4 ≥ x7, x2 ≥ x6, x5 ≥ x8,

x6 ≥ x8, x6 ≥ x9, x7 ≥ x9, x8 ≥ x10, x9 ≥ x11.

Facets of C (P ) are

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0,
x7 ≥ 0, x8 ≥ 0, x9 ≥ 0, x10 ≥ 0, x11 ≥ 0,

x1 + x2 + x7 + x9 + x11 ≤ 1, x3 + x7 + x9 + x11 ≤ 1,
x4 + x7 + x9 + x11 ≤ 1, x1 + x2 + x6 + x8 + x10 ≤ 1,

x5 + x8 + x10 ≤ 1, x1 + x2 + x6 + x9 + x11 ≤ 1.

Here is the map � defined in Theorem 2.1:

x1 
→ 1 − x1, x2 
→ 1 − x1 − x2, x3 
→ 1 − x3,

x4 
→ 1 − x4, x5 
→ 1 − x5, x6 
→ 1 − x6 − x2 − x1,

x7 
→ x7 + x9 + x11, x8 
→ x8 + x10, x9 
→ x9 + x11,

x10 
→ x10, x11 
→ x11.
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Corollary 2.3. Given a finite poset P , the following conditions are equi-
valent:

(i) O (P ) and C (P ) are unimodularly equivalent;

(ii) O (P ) and C (P ) are affinely equivalent;

(iii) O (P ) and C (P ) are combinatorially isomorphic;

(iv) O (P ) and C (P ) have the same f -vector ([2, p. 12]);

(v) The number of facets of O (P ) is equal to that of C (P );

(vi) The poset of Figure 1 of Theorem 1.3 does not appear as a subposet of
P .

Conjecture 2.4. LetP be a finite poset with |P | = d > 1. Let f (O (P )) =
(f0, f1, . . . , fd−1) denote the f -vector of O (P ) and f (C (P )) = (f ′

0, f
′
1, . . . ,

f ′
d−1) the f -vector of C (P ). Then

(a) fi ≤ f ′
i for all 1 ≤ i ≤ d − 1.

(b) If fi = f ′
i for some 1 ≤ i ≤ d − 1, then O (P ) and C (P ) are unimodu-

larly equivalent.
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