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ON VERTEX DECOMPOSABLE SIMPLICIAL
COMPLEXES AND THEIR

ALEXANDER DUALS

SOMAYEH MORADI∗ and FAHIMEH KHOSH-AHANG

Abstract
In this paper we study the Alexander dual of a vertex decomposable simplicial complex. We
define the concept of a vertex splittable ideal and show that a simplicial complex � is vertex
decomposable if and only if I�∨ is a vertex splittable ideal. Moreover, the properties of vertex
splittable ideals are studied. As the main result, it is proved that any vertex splittable ideal has a
Betti splitting and the graded Betti numbers of such ideals are explained with a recursive formula.
As a corollary, recursive formulas for the regularity and projective dimension of R/I�, when �

is a vertex decomposable simplicial complex, are given. Moreover, for a vertex decomposable
graph G, a recursive formula for the graded Betti numbers of its vertex cover ideal is presented.
In special cases, this formula is explained, when G is chordal or a sequentially Cohen-Macaulay
bipartite graph. Finally, among the other things, it is shown that an edge ideal of a graph is vertex
splittable if and only if it has linear resolution.

Introduction

There is a natural correspondence between square-free monomial ideals in
the polynomial ring R = k[x1, . . . , xn] (over the field k) and simplicial com-
plexes with vertex set {x1, . . . , xn} via the Stanley-Reisner correspondence. In
this regard Alexander duality plays an important role in the study of Stanley-
Reisner rings. Finding Alexander dual concepts and translating a property of
a simplicial complex � in the Alexander dual ideal I�∨ , are important top-
ics in combinatorial commutative algebra. Eagon and Reiner [8] introduced
Alexander dual complexes and proved the following interesting result.

Theorem 0.1 ([8, Theorem 3]). A simplicial complex � is Cohen-Macaulay
if and only if I�∨ has a linear resolution.

Later in [13] and [14] shellable and sequentially Cohen-Macaulay com-
plexes were characterized in terms of Alexander duals.

Theorem 0.2 ([13, Theorem 1.4]). � is a shellable simplicial complex if
and only if I�∨ has linear quotients.
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Theorem 0.3 ([14, Theorem 2.1]). � is sequentially Cohen-Macaulay if
and only if I�∨ is componentwise linear.

Vertex decomposability is another topological combinatorial notion such as
shellability, which is related to the algebraic properties of the Stanley-Reisner
ring of a simplicial complex. Provan and Billera [18] first introduced the no-
tion of k-decomposable for a pure simplicial complex. For k = 0, this notion
is known as a vertex decomposable simplicial complex. This definition was
extended to non-pure complexes by Björner and Wachs in [3], [4]. Defined in
a recursive manner, vertex decomposable simplicial complexes form a well-
behaved class of simplicial complexes and have been studied in many papers.
In [7], vertex decomposability was used in an interesting way to study the
algebraic properties of edge ideals and some nice results on edge ideals were
obtained by combinatorial topological techniques. It was proved that the in-
dependence complex of a whiskered graph is a pure vertex decomposable
simplicial complex, and hence, Cohen-Macaulay. See also [24], in this regard.
More nice results on vertex decomposable simplicial complexes may be found
in [1], [2], [5], [15], [17], [22], [24], [25]. The following implications for a
simplicial complex are known.

Vertex decomposable ⇒ Shellable ⇒ Sequentially Cohen-Macaulay.

So, inspired by the above results in conjunction with the characterizations
of shellable, sequentially Cohen-Macaulay and Cohen-Macaulay simplicial
complexes by means of Alexander dual ideals, it is natural to ask if something
similar can be said about vertex decomposable simplicial complexes. In this
paper, we seek a dual concept for this class of simplicial complexes. To this
end, we introduce the notion of a vertex splittable ideal, which is shown to be
an appropriate dual concept for vertex decomposability and then some nice
properties of such ideals are achieved. By exploiting this dual concept, we
refine our results for flag complexes and study the minimal free resolution of
vertex cover ideal of vertex decomposable graphs.

The paper is organized as follows. In the next section, we recall some
definitions and theorems that we use in the sequel. We begin Section 2 with
the definition of vertex splittable ideals. Then it is shown that � is a vertex
decomposable simplicial complex if and only if I�∨ is a vertex splittable ideal
(see Theorem 2.3). Theorem 2.4 illustrates that vertex splittable ideals have
linear quotients. So, one may deduce that a vertex splittable ideal generated
by monomials in the same degrees has a linear resolution. As another main
result, in Theorem 2.8, it is proved that a vertex splittable ideal has a Betti
splitting and so a recursive formula for its graded Betti numbers is presented
(see Remark 2.10). Hence, it is shown that for a vertex decomposable simplicial
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complex �, the regularity and projective dimension of I� can be computed by
inductive formulas. In Section 3, applications of Theorem 2.8 to vertex cover
ideal of a vertex decomposable graph are given. In Theorem 3.1 the graded
Betti numbers of vertex cover ideal of such graphs are explained by a recursive
formula. For two families of vertex decomposable graphs, sequentially Cohen-
Macaulay bipartite graphs and chordal graphs, this formula has been stated
more precisely. Another application is Theorem 3.6 which states that if G is a
chordal graph, then I (Gc) is a vertex splittable ideal. Using this fact and the
characterization of Fröberg for edge ideals of graphs with linear resolution, it
is shown that an edge ideal I (G) is vertex splittable if and only if I (G) has
a linear resolution. In Corollary 3.8, a simple argument is given to show that
for a flag complex �G, the Alexander dual simplicial complex �∨

G is vertex
decomposable if and only if it is Cohen-Macaulay and these conditions hold
if and only if I (G) is a vertex splittable ideal.

1. Preliminaries

Throughout this paper, we assume that X = {x1, . . . , xn}, � is a simplicial
complex on the vertex set X, k is a field, R = k[X] is the ring of polynomials
in the variables x1, . . . , xn and I is a monomial ideal of R. For a monomial
ideal I , the unique set of minimal generators of I is denoted by G(I ).

In this section, we recall some preliminaries which are needed in the sequel.
We begin with definition of a vertex decomposable simplicial complex. To this
aim, we need to recall the definition of the link and the deletion of a face in �.
For a simplicial complex � and F ∈ �, the link of F in � is defined as

lk�(F ) = {G ∈ � : G ∩ F = ∅, G ∪ F ∈ �},
and the deletion of F is the simplicial complex

del�(F ) = {G ∈ � : G ∩ F = ∅}.
Definition 1.1. A simplicial complex � is called vertex decomposable if

� is a simplex, or � contains a vertex x such that

(i) both del�(x) and lk�(x) are vertex decomposable, and

(ii) any facet of del�(x) is a facet of �.

A vertex x which satisfies condition (ii) is called a shedding vertex of �.

Remark 1.2. It is easily seen that x is a shedding vertex of � if and only
if no facet of lk�(x) is a facet of del�(x).

For a Z-graded R-module M , the Castelnuovo-Mumford regularity (or
simply regularity) of M is defined as

reg(M) := max{j − i : βi,j (M) 	= 0},
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and the projective dimension of M is defined as

pd(M) := max{i : βi,j (M) 	= 0 for some j},
where βi,j (M) is the (i, j)-th graded Betti number of M .

The notion of Betti splitting for monomial ideals was introduced in [10] as
follows.

Definition 1.3 ([10, Definition 1.1]). Let I , J and K be monomial ideals
in R such that G(I ) is the disjoint union of G(J ) and G(K). Then I = J + K

is a Betti splitting if

βi,j (I ) = βi,j (J ) + βi,j (K) + βi−1,j (J ∩ K),

for all i ∈ N and degrees j .

When I = J + K is a Betti splitting, important homological invariants of
I are related to those invariants of the smaller ideals.

Theorem 1.4 (See [10, Corollary 2.2]). Let I = J + K be a Betti splitting.
Then

(i) reg(I ) = max{reg(J ), reg(K), reg(J ∩ K) − 1}, and

(ii) pd(I ) = max{pd(J ), pd(K), pd(J ∩ K) + 1}.
For a square-free monomial ideal I = (x11 · · · x1n1, . . . , xt1 · · · xtnt

), the
Alexander dual ideal of I , denoted by I∨, is defined as

I∨ := (x11, . . . , x1n1) ∩ · · · ∩ (xt1, . . . , xtnt
).

For a simplicial complex � with vertex set X, the Alexander dual simplicial
complex associated to � is defined as

�∨ = {X \ F : F /∈ �}.
For a subset C ⊆ X, by xC we mean the monomial

∏
x∈C x. The set of all

facets of a simplicial complex � is denoted by F (�). One can see that

(I�)∨ = (xFc

: F ∈ F (�)),

where I� is the Stanley-Reisner ideal associated to � and Fc = X \ F .
Moreover, one can see that (I�)∨ = I�∨ .

Let G be a graph with vertex set V (G) and edge set E(G). The edge ideal
of G is defined as the ideal I (G) = (xixj : {xi, xj } ∈ E(G)). It is easy to see
that I (G) can be viewed as the Stanley-Reisner ideal of the simplicial complex

�G = {F ⊆ V (G) : e � F, for each e ∈ E(G)},
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i.e., I (G) = I�G
. The simplicial complex �G is called the independence

complex of G. Moreover, the Alexander dual of I (G) is called the vertex cover
ideal of G.

A graded R-module M is called sequentially Cohen-Macaulay (over k) if
there exists a finite filtration of graded R-modules

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

such that each Mi/Mi−1 is Cohen-Macaulay and

dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1).

A simplicial complex � is called sequentially Cohen-Macaulay if the
Stanley-Reisner ring R/I� is sequentially Cohen-Macaulay. Also, we call a
graph G sequentially Cohen-Macaulay (resp. vertex decomposable), if �G is
a sequentially Cohen-Macaulay (resp. vertex decomposable) simplicial com-
plex.

The following theorem, proved in [21], is one of our main tools in the study
of projective dimension and regularity of the ring R/I�.

Theorem 1.5 ([21, Theorem 2.1]). Let I be a square-free monomial ideal.
Then pd(I∨) = reg(R/I).

Definition 1.6. A monomial ideal I in the ring R = k[x1, . . . , xn] has lin-
ear quotients if there exists an ordering f1, . . . , fm on the minimal generators
of I such that the colon ideal (f1, . . . , fi−1) : (fi) is generated by a subset of
{x1, . . . , xn} for all 2 ≤ i ≤ m. We denote this ordering by f1 < . . . < fm and
we call it an order of linear quotients on G(I ).

A monomial ideal I generated by monomials of degree d has a linear
resolution if βi,j (I ) = 0 for all j 	= i + d. Linear quotients is a strong tool to
determine some classes of ideals with linear resolution. The main tool in this
way is the following lemma.

Lemma 1.7 (See [9, Lemma 5.2]). Let I = (f1, . . . , fm) be a monomial
ideal with linear quotients such that all fi’s are of the same degree. Then I

has a linear resolution.

2. Vertex decomposability and vertex splittable ideals

In this section we study the ideal I�∨ for a vertex decomposable simplicial
complex �. We introduce the concept of a vertex splittable ideal and show that
a simplicial complex � is vertex decomposable if and only if I�∨ is a vertex
splittable ideal. Also, we prove that vertex splittable ideals have a Betti splitting
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and have linear quotients. This gives us information about some homological
invariants of I�∨ such as Betti numbers.

Definition 2.1. A monomial ideal I in R = k[X] is called vertex splittable
if it can be obtained by the following recursive procedure.

(i) If u is a monomial and I = (u), I = (0) or I = R, then I is a vertex
splittable ideal.

(ii) If there is a variable x ∈ X and vertex splittable ideals I1 and I2 of
k[X \ {x}] so that I = xI1 + I2, I2 ⊆ I1 and G(I ) is the disjoint union
of G(xI1) and G(I2), then I is a vertex splittable ideal.

With the above notations if I = xI1 + I2 is a vertex splittable ideal, then
xI1 + I2 is called a vertex splitting for I and x is called a splitting vertex for I .

Recently, the notion of a k-decomposable ideal was introduced in [19] and it
was proved that it is the dual concept for k-decomposable simplicial complexes.
In the case k = 0, 0-decomposable simplicial complexes are precisely vertex
decomposable simplicial complexes. Considering k = 0 in [19, Definition 2.3],
one can see that a shedding monomialu in a 0-decomposable ideal I necessarily
should satisfy the property Iu 	= (0), where Iu = (v ∈ G(I ) : [u, v] = 1)

and [u, v] is the greatest common divisor of u and v, while in Definition 2.1,
it is not the case, i.e., the way that a monomial ideal splits in Definition 2.1 is
different from one in [19, Definition 2.3]. For example let I = (xx1, . . . , xxn).
Then I = x(x1, . . . , xn). Setting I1 = (x1, . . . , xn) and I2 = (0) with the same
notations of the above definition, it is easy to see that x is a splitting vertex
for I , while it is not a shedding monomial in the sense of [19, Definition 2.1],
since Ix = (0).

First we prove the following lemma.

Lemma 2.2. Let � be a simplicial complex on the set X, x ∈ X be a shedding
vertex of �, �1 = del�(x) and �2 = lk�(x). Then

I�∨ = xI�∨
1
+ I�∨

2
and I�∨

2
⊆ I�∨

1
.

Proof. Let F (�) = {F1, . . . , Fm} and X′ = X \ {x}. We then have I�∨ =
(xX\F1, . . . , xX\Fm).Without loss of generality assume thatF1, . . . , Fk (k ≤ m)

are all the facets of � containing x. Since x is a shedding vertex of �, one
can see that �1 = 〈Fk+1, . . . , Fm〉. Also �2 = 〈F1 \ {x}, . . . , Fk \ {x}〉.
Therefore I�∨

1
= (xX′\Fk+1, . . . , xX′\Fm) and any generator of I�∨

2
is of the

form xX′\(Fi\{x}) = xX\Fi for any 1 ≤ i ≤ k. So I�∨
2

= (xX\F1, . . . , xX\Fk ).
Thus I�∨ = xI�∨

1
+ I�∨

2
.

To prove the last assertion, let xX′\(Fi\{x}) be a generator of I�∨
2

for some
1 ≤ i ≤ k. Since Fi \{x} is not a facet of del�(x), there is a facet Fj of del�(x)
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such that Fi \ {x} ⊆ Fj . Hence xX′\(Fi\{x}) ∈ (xX′\Fj ) ⊆ I�∨
1

which ensures
that I�∨

2
⊆ I�∨

1
.

The following theorem characterizes when � is vertex decomposable in
terms of the Alexander dual of I�.

Theorem 2.3. A simplicial complex � is vertex decomposable if and only
if I�∨ is a vertex splittable ideal.

Proof. Assume that � is a vertex decomposable simplicial complex with
vertex set X. We use induction on n = |X|. If n = 1, then I�∨ is clearly vertex
splittable. Suppose inductively that the result has been proved for smaller
values of n. In view of Lemma 2.2, we have I�∨ = xI�∨

1
+ I�∨

2
and I�∨

2
⊆ I�∨

1
,

where x is a shedding vertex of �, �1 = del�(x) and �2 = lk�(x). Since �1

and �2 are vertex decomposable simplicial complexes on X \ {x}, inductive
hypothesis implies that I�∨

1
and I�∨

2
are vertex splittable ideals in k[X \ {x}].

This completes the only if part.
To prove the if part, let� = 〈F1, . . . , Fm〉. Then I�∨ = (xX\F1, . . . , xX\Fm).

If I�∨ = (u) for some monomial u, I�∨ = (0) or I�∨ = R, then � is
either a simplex or empty simplicial complex which is vertex decomposable.
Otherwise, there is a variable x ∈ X and vertex splittable ideals I1 and I2 of
k[X \ {x}] so that I�∨ = xI1 + I2, I2 ⊆ I1. Suppose inductively that the result
is true for any vertex splittable ideal in k[X′] with |X′| < |X|. We show that
x is a shedding vertex of �, I1 = Idel�(x)∨ and I2 = Ilk�(x)∨ . Without loss of
generality assume that F1, . . . , Fk (k ≤ m) are all the facets of � containing
x. Set X′ = X \ {x}. Then

I�∨ = (xX\F1, . . . , xX\Fk ) + (xX\Fk+1, . . . , xX\Fm)

= (xX′\(F1\{x}), . . . , xX′\(Fk\{x})) + x(xX′\Fk+1, . . . , xX′\Fm).

Hence I1 = (xX′\Fk+1, . . . , xX′\Fm) and I2 = (xX′\(F1\{x}), . . . , xX′\(Fk\{x})).
Since I2 ⊆ I1, one can see that for any 1 ≤ i ≤ k, there is an integer k + 1 ≤
j ≤ m such thatFi\{x} ⊆ Fj . This ensures that del�(x) = 〈Fk+1, . . . , Fm〉 and
I1 = Idel�(x)∨ . Also, clearly lk�(x) = 〈F1\{x}, . . . , Fk\{x}〉, I2 = Ilk�(x)∨ and
every facet of del�(x) is a facet of �. By the induction hypothesis, del�(x) and
lk�(x) are vertex decomposable. Hence, � is vertex decomposable as desired.

In the following, it is shown that vertex splittable ideals have linear quo-
tients. Note that when I is a square-free vertex splittable ideal, the following
theorem implies the known fact that any vertex decomposable simplicial com-
plex is shellable.

Theorem 2.4. Any vertex splittable ideal has linear quotients.
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Proof. Let I be a vertex splittable ideal. If I = (u) for some monomial
u, I = (0) or I = R, then clearly I has linear quotients. Otherwise, there is a
variable x ∈ X and there are vertex splittable ideals I1 and I2 of k[X\{x}] such
that I = xI1 +I2 and I2 ⊆ I1. By induction on n = |X| we prove the assertion.
For n = 1 the result is clear. By induction assume that for any set X′ with |X′| <

n, any splittable ideal of the ring k[X′] has linear quotients. Thus I1 and I2 have
linear quotients. Let f1 < · · · < fr and g1 < · · · < gs be the order of linear
quotients on the minimal generators of I1 and I2, respectively. We claim that
the ordering xf1 < · · · < xfr < g1 < · · · < gs is an order of linear quotients
on the minimal generators of I . For any 1 ≤ i ≤ r , the ideal (xf1, . . . , xfi−1) :
(xfi) = (f1, . . . , fi−1) : (fi) is generated by variables by assumption. For an
integer 1 ≤ i ≤ s, let (g1, . . . , gi−1) : (gi) = (xi1, . . . , xit ) and consider the
ideal (xf1, . . . , xfr, g1, . . . , gi−1) : (gi). We know that x divides any generator
of the colon ideal (xfj ) : (gi) for any 1 ≤ j ≤ r . Since I2 ⊆ I1, there is an
integer 1 ≤ � ≤ r such that gi ∈ (f�). Therefore (xf�) : (gi) = (x). It means
that (xf1, . . . , xfr, g1, . . . , gi−1) : (gi) = (x, xi1, . . . , xit ). Thus I has linear
quotients.

The following corollary is an immediate consequence of Lemma 1.7 and
Theorem 2.4.

Corollary 2.5. Let I be a vertex splittable ideal generated by monomials
in the same degrees. Then I has linear resolution.

The next theorem, which is a special case of [20, Corollaryhbox2.7], is our
main tool to prove Theorem 2.8. First we need to recall the following definition.

Definition 2.6. Let I be a monomial ideal with linear quotients and f1 <

· · · < fm be an order of linear quotients on the minimal generators of I . For
any 1 ≤ i ≤ m, setI (fi) is defined as

setI (fi) = {xk : xk ∈ (f1, . . . , fi−1) : (fi)}.

Theorem 2.7 ([20, Corollary 2.7]). Let I be a monomial ideal with linear
quotients with the ordering f1 < · · · < fm on the minimal generators of I .
Then

βi,j (I ) =
∑

deg(ft )=j−i

(| setI (ft )|
i

)
.

Now, we are ready to bring one of the main results of this paper.

Theorem 2.8. Let I = xI1 + I2 be a vertex splitting for the monomial ideal
I . Then I = xI1 + I2 is a Betti splitting.
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Proof. By Theorem 2.4, I , I1 and I2 have linear quotients. Let f1 < · · · <

fr and g1 < · · · < gs be the order of linear quotients on the minimal generators
of I1 and I2, respectively. As it was shown in the proof of Theorem 2.4 the
ordering xf1 < · · · < xfr < g1 < · · · < gs is an order of linear quotients
on the minimal generators of I , setI (xft ) = setI1(ft ) for any 1 ≤ t ≤ r and
setI (gk) = {x} ∪ setI2(gk) for any 1 ≤ k ≤ s. By Theorem 20,

βi,j (I ) =
∑

deg(ft )=j−i−1

(| setI (xft )|
i

)
+

∑
deg(gk)=j−i

(| setI (gk)|
i

)
.

Thus

βi,j (I ) =
∑

deg(ft )=j−i−1

(| setI1(ft )|
i

)
+

∑
deg(gk)=j−i

(| setI2(gk)| + 1

i

)
.

Applying the equality(| setI2(gk)| + 1

i

)
=

(| setI2(gk)|
i

)
+

(| setI2(gk)|
i − 1

)
,

we have
∑

deg(gk)=j−i

(| setI2(gk)| + 1

i

)
=

∑
deg(gk)=j−i

(| setI2(gk)|
i

)

+
∑

deg(gk)=j−i

(| setI2(gk)|
i − 1

)

= βi,j (I2) + βi−1,j−1(I2).

Also ∑
deg(ft )=j−i−1

(| setI1(ft )|
i

)
= βi,j−1(I1).

Therefore
βi,j (I ) = βi,j−1(I1) + βi,j (I2) + βi−1,j−1(I2).

Moreover I2 ⊆ I1 implies that xI1 ∩ I2 = xI2. Using this equality and the
equalities βi,j−1(I1) = βi,j (xI1) and βi−1,j−1(I2) = βi−1,j (xI2), yields to

βi,j (I ) = βi,j (xI1) + βi,j (I2) + βi−1,j (xI1 ∩ I2),

which completes the proof.

Remark 2.9. Francisco, Hà and Van Tuyl in [10] defined the concept of
x-partition for a monomial ideal, when x ∈ X. For a monomial ideal I , if
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J is the ideal generated by all elements of G(I ) divisible by x, and K is the
ideal generated by all other elements of G(I ), then I = J + K is called an
x-partition. If I = J + K is also a Betti splitting, they call I = J + K

an x-splitting. In this regard, every vertex splitting is an x-splitting for some
variable x ∈ X, considering Theorem 2.8.

Remark 2.10. From the proof of Theorem 2.8, one can see that for a vertex
splittable ideal I with vertex splitting I = xI1 + I2, the graded Betti numbers
of I can be computed by the following recursive formula

βi,j (I ) = βi,j−1(I1) + βi,j (I2) + βi−1,j−1(I2).

In the following corollary, the recursive formula is written for the graded
Betti numbers of I�∨ , when � is a vertex decomposable simplicial complex
and consequently some inductive formulas for the regularity and projective
dimension of the ring R/I� are presented. The inductive formula given below
for reg(R/I�) was also proved in [12] by a different approach.

Corollary 2.11. Let � be a vertex decomposable simplicial complex, x a
shedding vertex of �, �1 = del�(x) and �2 = lk�(x). Then

(i) βi,j (I�∨) = βi,j−1(I�∨
1
) + βi,j (I�∨

2
) + βi−1,j−1(I�∨

2
),

(ii) pd(R/I�) = max{pd(R/I�1) + 1, pd(R/I�2)},
(iii) (Compare [12, Theorem 4.2].) reg(R/I�) = max{reg(R/I�1),

reg(R/I�2) + 1}.
Proof. (i) follows from Theorems 2.3 and 2.8. (ii) and (iii) follow from (i),

the equalities pd(I�∨) = reg(R/I�) and reg(I�∨) = pd(R/I�) in conjunction
with Theorem 1.4.

3. Applications to vertex cover ideal of a vertex decomposable graph

This section is devoted to some applications of the recursive formulas presented
in previous section to some special classes of graphs. For a simple graph G by
V (G) and E(G) we mean the vertex set and the edge set of G, respectively.
For a vertex v ∈ V (G), set NG(v) = {u ∈ V (G) : {u, v} ∈ E(G)} and
NG[v] = NG(v)∪{v}. Moreover, the cardinality of NG(v) is called the degree
of v in G and is denoted by degG(v).

The following is one of our main results which is a consequence of Corol-
lary 2.11.

Theorem 3.1. Let G be a vertex decomposable graph, v ∈ V (G) be a
shedding vertex of G, G′ = G \ {v}, G′′ = G \ NG[v] and degG(v) = t . Then

βi,j (I (G)∨) = βi,j−1(I (G′)∨) + βi,j−t (I (G′′)∨) + βi−1,j−t−1(I (G′′)∨).
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Proof. Let � = �G, �1 = del�(v), �2 = lk�(v) and NG(v) = {x1, . . . ,

xt}. Then I�∨
G

= (I�G
)∨ = I (G)∨. Moreover, �G′ = {F ∈ � : F ⊆

V (G′)} = {F ∈ � : v /∈ F } = �1. Thus I�∨
1

= I�∨
G′ = (I�G′ )

∨ = I (G′)∨.
Also I�∨

2
= (x(V (G)\{v})\F : F ∈ F (�2)), since �2 is a simplicial com-

plex on the vertex set V (G) \ {v}. Moreover, F ∈ F (�2) if and only if
v, x1, . . . , xt /∈ F and F ∈ F (�G′′). This also implies that for any F ∈
F (�2), F ⊆ V (G′′). Thus (V (G) \ {v}) \ F = {x1, . . . , xt} ∪ (V (G′′) \ F).
Therefore

I�∨
2

= x1 · · · xt (xV (G′′)\F : F ∈ F (�G′′)).

Moreover, (xV (G′′)\F : F ∈ F (�G′′)) = (I�G′′ )
∨ = I (G′′)∨. Thus I�∨

2
=

x1 · · · xtI (G′′)∨. Using the equality βi,j (x1 · · · xtI (G′′)∨) = βi,j−t (I (G′′)∨),
the result is now clear from Corollary 2.11.

By exploiting the following lemma, we state the recursive formula for
the graded Betti numbers of the vertex cover ideal of a sequentially Cohen-
Macaulay bipartite graph, which generalizes [10, Theorem 3.8] (since any
Cohen-Macaulay bipartite graph is sequentially Cohen-Macaulay), and vertex
cover ideal of chordal graphs in Corollaries 3.4 and 3.5.

Lemma 3.2 ([24, Lemma 6]). LetGbe a graph andx, y ∈ V (G). IfNG[x] ⊆
NG[y], then y is a shedding vertex for G.

A graph G with vertex set V (G) is called bipartite if V (G) can be partitioned
into two sets X and Y such that any edge of G is of the form {x, y} for some
x ∈ X and y ∈ Y .

Van Tuyl and Villarreal in [23] gave a recursive characterization for a se-
quentially Cohen-Macaulay bipartite graph as follows.

Theorem 3.3 ([23, Corollary 3.11]). Let G be a bipartite graph. Then G

is sequentially Cohen-Macaulay if and only if there are adjacent vertices x

and y with degG(x) = 1 such that the bipartite graphs G′ = G \ NG[x] and
G′′ = G \ NG[y] are sequentially Cohen-Macaulay.

Using this fact we can explain the formula for Betti numbers as follows.

Corollary 3.4. Let G be a sequentially Cohen-Macaulay bipartite graph,
x, y ∈ V (G) be adjacent vertices with degG(x) = 1 such that G′ = G\NG[x]
and G′′ = G \ NG[y] are sequentially Cohen-Macaulay and degG(y) = t .
Then

βi,j (I (G)∨) = βi,j−1(I (G′)∨) + βi,j−t (I (G′′)∨) + βi−1,j−t−1(I (G′′)∨).

Proof. From [22, Theorem 2.10], we know that any sequentially Cohen-
Macaulay bipartite graph G is vertex decomposable. Since NG[x] ⊆ NG[y], by
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Lemma 3.2, y is a shedding vertex for G. Now the result is clear by Theorem 3.1
and the fact that I (G′)∨ = I (G \ {y})∨.

In a graph G, a vertex x is called a simplicial vertex if the induced subgraph
on the set NG[x] is a complete graph. A graph G is called chordal, if it contains
no induced cycle of length 4 or greater.

Dirac in [6] proved that any chordal graph has a simplicial vertex. We use
this fact in the following corollary.

Corollary 3.5. Let G be a chordal graph with simplicial vertex x and
y ∈ NG(x) with degG(y) = t . Let G′ = G \ {y} and G′′ = G \ NG[y]. Then

βi,j (I (G)∨) = βi,j−1(I (G′)∨) + βi,j−t (I (G′′)∨) + βi−1,j−t−1(I (G′′)∨).

Proof. By [24, Corollary 7] any chordal graph is vertex decomposable.
Since x is a simplicial vertex, for any y ∈ NG(x), we have NG[x] ⊆ NG[y].
Thus by Lemma 3.2, y is a shedding vertex for G. Now apply Theorem 3.1.

The following theorem investigates another property of chordal graphs.

Theorem 3.6. Let G be a chordal graph. Then I (Gc) is a vertex splittable
ideal.

Proof. We prove the result by induction on |V (G)|. Let x ∈ V (G) be a
simplicial vertex of G and V (G) = {x, x1, . . . , xn}. If G is a complete graph,
then the result is clear. Assume that G is not a complete graph and without loss
of generality let NG(x) = {x1, . . . , xk} for some 1 ≤ k < n and G0 = G\{x}.
Then I (Gc) = x(xk+1, . . . , xn) + I (Gc

0). Moreover, for any distinct integers
i and j with 1 ≤ i, j ≤ k, since {xi, xj } ∈ E(G), then xixj /∈ I (Gc

0). So
I (Gc

0) ⊆ (xk+1, . . . , xn). Since G0 is chordal, by induction hypothesis I (Gc
0)

is vertex splittable. Also it is easy to see that any ideal which is generated by
variables is a vertex splittable ideal. Thus (xk+1, . . . , xn) is vertex splittable.
So I (Gc) is a vertex splittable ideal as desired.

Edge ideals with linear resolution were characterized in [11] as follows.

Theorem 3.7 ([11, Theorem 1]). For a graph G, the edge ideal I (G) has
linear resolution if and only if Gc is a chordal graph.

Mohammadi in [16] proved that for a chordal graph G, �(G)∨ is vertex
decomposable, where �(G) is the clique complex of G. By means of The-
orem 3.6, we are able to give another proof of this result.

Corollary 3.8. For a graph G the following are equivalent.

(i) Gc is chordal,
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(ii) I (G) is vertex splittable,

(iii) �∨
G is vertex decomposable,

(iv) �∨
G is Cohen-Macaulay.

Proof. (i) ⇒ (ii) is the statement of Theorem 3.6.
(ii) ⇒ (iii) follows from Theorem 2.3, noting the fact that I�G

= I (G) and
(�∨

G)∨ = �G.
(iii) ⇒ (iv) Since �∨

G = 〈V (G)\{x, y} : {x, y} ∈ E(G)〉, it is a pure vertex
decomposable simplicial complex and so it is Cohen-Macaulay.

(iv) ⇒ (i) By Theorem 0.1, I�G
= I (G) has a linear resolution. So by

Theorem 3.7, Gc is a chordal graph.
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