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K-CONTINUITY IS EQUIVALENT
TO K-EXACTNESS

OTGONBAYAR UUYE∗

Abstract
Let A be a C∗-algebra. It is well known that the functor B �→ A ⊗ B of taking the minimal
tensor product with A preserves inductive limits if and only if it is exact. C∗-algebras with this
property play an important role in the structure and finite-dimensional approximation theory of
C∗-algebras.

We consider a K-theoretic analogue of this result and show that the functor B �→ K0(A ⊗ B)

preserves inductive limits if and only if it is half-exact.

1. Introduction

We denote the spatial or minimal tensor product of C∗-algebras by the symbol
⊗ (cf. [22, Section IV.4], [3, Section 3.3]).

Let A be a C∗-algebra. We say that A is ⊗-exact if for every extension (i.e.
short exact sequence)

0 I D B 0

of C∗-algebras, the natural sequence

0 A ⊗ I A ⊗ D A ⊗ B 0

is exact (in the middle). We note that ⊗-exactness is generally referred to as just
exactness in the literature. We chose our terminology for consistency within
the paper.

Let Mn denote the C∗-algebra of n × n complex matrices. Letting

∞∏
n=0

Mn := {
(an)

∞
n=0

∣∣ an ∈ Mn for all n and sup
n

‖an‖ < ∞}

and
∞⊕

n=0

Mn := {
(an)

∞
n=0

∣∣ an ∈ Mn for all n and lim
n→∞ ‖an‖ = 0

}
,
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we get an extension

0
∞⊕

n=0

Mn

∞∏
n=0

Mn

∞∏
n=0

Mn

/ ∞⊕
n=0

Mn 0.

E. Kirchberg proved the following fundamental result about ⊗-exactness. See
[3] for more details.

Theorem 1.1 (E. Kirchberg [12], [13]). Let A be a C∗-algebra. The fol-
lowing statements are equivalent.

(i) The algebra A is ⊗-exact.

(ii) The sequence

0 −→ A⊗
∞⊕

n=0

Mn −→ A⊗
∞∏

n=0

Mn −→ A⊗
( ∞∏

n=0

Mn

/ ∞⊕
n=0

Mn

)
−→ 0

is exact.

(iii) The algebra A is nuclearly embeddable in the sense of [23].

We remark that the implication (iii) ⇒ (i) was proved by S. Wassermann in
[24].

We say that A is ⊗-continuous if for every inductive sequence

B0 B1 B2 . . .

of C∗-algebras, the natural (surjective) map

lim−→(A ⊗ Bn) A ⊗ lim−→ Bn

is an isomorphism, where lim−→ denotes the inductive limit functor.
The following result is well-known and follows from the equivalence (i) ⇔

(ii) in the theorem above. N. Ozawa attributes it to E. Kirchberg.

Theorem 1.2. A C∗-algebra is ⊗-exact if and only if it is ⊗-continuous.

In this paper, we consider a K-theoretic analogue of this result. See [25],
[2], [16] for details about topological K-theory for C∗-algebras. We say that a
C∗-algebra A is K-exact if for every extension

0 I D B 0

of C∗-algebras, the sequence

K0(A ⊗ I ) K0(A ⊗ D) K0(A ⊗ B)
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is exact in the middle. We say that a C∗-algebra A is K-continuous if for every
inductive sequence

B0 B1 B2 . . .

of C∗-algebras, the natural map

lim−→ K0(A ⊗ Bi) K0(A ⊗ lim−→ Bi)

is an isomorphism.
The following is our main result.

Theorem 1.3. A C∗-algebra is K-exact if and only if it is K-continuous.

All ⊗-exact C∗-algebras are K-exact. Examples of non-K-exact C∗-alge-
bras were first constructed by G. Skandalis and play an important role in
K-theory and KK-theory (cf. [19], [20], [9], [11]).

In section 2, we give a proof of Theorem 1.2, as we couldn’t find a direct
reference and also the proof of the implication Theorem 1.2(⇒) is used in proof
of Theorem 1.3(⇒). In section 3, we study the notions of K-exactness and K-
continuity and prove Theorem 1.3. We note that our proof of the implication
Theorem 1.3(⇐) uses [7, Theorem 3.11] in a crucial way.

2. Proof of Theorem 1.2

Let N := {0, 1, . . .} denote the set of non-negative integers. The following is
obvious.

Lemma 2.1. Let A be a C∗-algebra and let

B0 B1 B2 . . .

be an inductive sequence of C∗-algebras. If the connecting maps are all in-
jective, then the map

lim−→(A ⊗ Bn) A ⊗ lim−→ Bn

is an isomorphism.

Lemma 2.2. Consider an inductive sequence of extensions of C∗-algebras

0 In Dn Bn 0

ın δn βn

0 In+1 Dn+1 Bn+1 0
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(i) The limit sequence

0 lim−→ In lim−→ Dn lim−→ Bn 0

is exact.

(ii) Suppose that for every n ∈ N, the extension

(2.1) 0 In Dn Bn 0

is split1 (i.e. the quotient map admits a ∗-homomorphic section) and the
connecting maps ın and δn are injective. Then for any C∗-algebra A, the
map

lim−→(A ⊗ Bn) A ⊗ lim−→ Bn

is an isomorphism if and only if the sequence

0 A ⊗ lim−→ In A ⊗ lim−→ Dn A ⊗ lim−→ Bn 0

is exact.

Proof. (i) is clear. For (ii), consider the diagram

(2.2)

0 lim−→(A ⊗ In) lim−→(A ⊗ Dn) lim−→(A ⊗ Bn) 0

ı δ β

0 A ⊗ lim−→ In A ⊗ lim−→ Dn A ⊗ lim−→ Bn 0

Since the connecting maps ın and δn are injective, the maps ı and δ are iso-
morphisms by Lemma 2.1. For any n ∈ N, since (2.1) is split exact, the
sequence

0 A ⊗ In A ⊗ Dn A ⊗ Bn 0

is exact. Thus the top row is exact by (i). It follows that β is an isomorphism
if and only if the bottom row is exact by five-lemma.

Proof of Theorem 1.2. (⇒): Let A be a ⊗-exact C∗-algebra and let

B0
β0

B1
β1

. . .

be an inductive sequence.
Let n ∈ N and let In := ⊕n−1

k=0 Bk and let Dn := ⊕n
k=0 Bk. Then the obvious

inclusion and projection maps give a split extension

0 In Dn Bn 0.

1 Locally split is enough for our purposes [3, Proposition 3.7.6]. See [8].



k-continuity is equivalent to k-exactness 99

Let ın: In → In+1 denote the natural inclusion and let δn: Dn → Dn+1 denote
the injective map given by

B0
id

B0

⊕ ⊕
...

id ...

⊕ ⊕
Bn

id
Bn

βn
⊕

Bn+1

Then we get a map of extensions

0 In Dn Bn 0

ın δn βn

0 In+1 Dn+1 Bn+1 0

Since A is ⊗-exact, the sequence

0 A ⊗ lim−→ In A ⊗ lim−→ Dn A ⊗ lim−→ Bn 0

is exact, hence the map

lim−→(A ⊗ Bn) A ⊗ lim−→ Bn

is an isomorphism by Lemma 2.2 (ii).
(⇐): Conversely, let A be a ⊗-continuous C∗-algebra. Let Mn, n ∈ N,

denote the C∗-algebra of n × n complex matrices. Consider the following
inductive system of split extensions

0
n⊕

k=0
Mk

∞∏
k=0

Mk

∞∏
k=n+1

Mk 0

0
n+1⊕
k=0

Mk

∞∏
k=0

Mk

∞∏
k=n+2

Mk 0

given by the obvious injection and projection maps. Since A is ⊗-continuous,
the map

lim−→
(

A ⊗
∞∏

k=n+1

Mk

)
A ⊗

(
lim−→

∞∏
k=n+1

Mk

)
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is an isomorphism, hence the sequence

0 A⊗
∞⊕

n=0

Mn A⊗
∞∏

n=0

Mn A⊗
( ∞∏

n=0

Mn

/ ∞⊕
n=0

Mn

)
0

is exact by Lemma 2.2(ii). It follows that A is ⊗-exact (cf. [12]).

3. K-exactness and K-continuity

3.1. K-exactness

Definition 3.1. We say that a C∗-algebra A is K-exact if for every extension

0 I D B 0

of C∗-algebras, the sequence

K0(A ⊗ I ) K0(A ⊗ D) K0(A ⊗ B)

is exact in the middle.

Remark 3.2. A C∗-algebra A is K-exact if and only if for every extension

0 I D B 0

of C∗-algebras, the natural six-term sequence

K0(A ⊗ I ) K0(A ⊗ D) K0(A ⊗ B)

K1(A ⊗ B) K1(A ⊗ D) K1(A ⊗ I )

is exact (cf. [2, Theorem 21.4.4]). The latter condition is taken as the definition
of K-exactness in [27].

Example 3.3. ⊗-exact C∗-algebras are K-exact, by the half-exactness of
K-theory (cf. [25, Theorem 6.3.2], [2, Theorem 5.6.1]).

Example 3.4. C∗-algebras satisfying the Künneth formula of Schochet (cf.
[18], [2, Theorem 23.1.3]) are K-exact by [4, Remark 4.3]. In particular, the
full group C∗-algebra C∗(F2) of the free group F2 on two generators is K-exact
(but not ⊗-exact).

Example 3.5. C∗-algebras that are K-nuclear in the sense of [19] are K-
exact (cf. [19, Proposition 3.5]). See also [6].

Needless to say, not all C∗-algebras are K-exact.
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Example 3.6.
(1) Let � be an infinite countable discrete group with Khazdan property

(T), Kirchberg property (F) and Akemann-Ostrand property (AO), such
as a lattice in Sp(n, 1) (cf. [1]). The full group C∗-algebra C∗(�) is not
K-exact (G. Skandalis [20]).

(2) The reduced group C∗-algebra of a Gromov non-exact group is not
K-exact (N. Ozawa, see [9, Remark 13]).

(3) The product
∏∞

n=0 Mn is not K-exact (N. Ozawa [15, Theorem A.1]).

(4) Let � be a finitely generated discrete group with property τ(L ) (cf.
[21, Definition 9] or [14]). If � has property τ(L ′), where Let L ′ :=
{N1 ∩ N2 | N1, N2 ∈ L }, then the uniform Roe algebra C∗

u(X) of the
expander X := �N∈L �/N is not K-exact (J. Špakula [21, Theorem 2]).

Definition 3.7. Let C0[0, 1) denote the commutative C∗-algebra of con-
tinuous functions on the interval [0, 1] vanishing at 1 ∈ [0, 1],

ev0:
C0[0, 1) C

f f (0)

denote the evaluation map at 0 ∈ [0, 1).

Definition 3.8. Let φ: D → B be a ∗-homomorphism of C∗-algebras.
The mapping cone Cφ of φ is given by the pullback

Cφ C0[0, 1) ⊗ B

ev0 ⊗ idB

D
φ−−−−−−→ B

Remark 3.9. Let φ: D → B be a ∗-homomorphism of C∗-algebras. Then
for any C∗-algebra A, there is a natural isomorphism CidA ⊗φ

∼= A ⊗ Cφ .
Indeed, since ev0: C0[0, 1) → C is admits a completely positive section, we
have a map of extensions

0 A ⊗ C0(0, 1) ⊗ B −−−−−−→ A ⊗ Cφ −−−−−−→ A ⊗ D 0

idA ⊗φ

0 A ⊗ C0(0, 1) ⊗ B A ⊗ C0[0, 1) ⊗ B A ⊗ B 0,

where C0(0, 1) denotes the kernel of ev0. Now it is easy to see that the square
on the right is a pullback square.



102 otgonbayar uuye

Lemma 3.10 (cf. [9]). A C∗-algebra A is K-exact if and only if for every
extension

0 I D
q

B 0

of separable C∗-algebras, the natural inclusion map ι: I −→ Cq induces an
isomorphism

(idA ⊗ι)∗: K0(A ⊗ I ) ∼= K0(A ⊗ Cq).

Proof. Let A be a C∗-algebra and let

(3.1) 0 I D
q

B 0

be an extension of (not necessarily separable) C∗-algebras.
(⇒): Suppose that A is K-exact. By the homotopy invariance of K-theory,

we have K∗(A ⊗ C0[0, 1) ⊗ B) = 0. Hence, applying Remark 3.2 to the
pullback extension

0 I
ı

Cq C0[0, 1) ⊗ B 0,

we see that idA ⊗ı induces an isomorphism K0(A ⊗ I ) ∼= K0(A ⊗ Cq).
(⇐): Conversely, suppose that A satisfies the necessary condition in the

lemma. We prove that the sequence

K0(A ⊗ I ) K0(A ⊗ D) K0(A ⊗ B)

is exact in the middle.
If I , D and B are separable, then the exactness follows from the Puppe

exact sequence (cf. [17] or [25, Lemma 6.4.8]) and the natural isomorphism
CidA ⊗q

∼= A ⊗ Cq of Remark 3.9.
The general case is reduced to the separable case as follows. Let � denote

the set of separable C∗-subalgebras of D, ordered by inclusion. Then � is a
directed set. For each E ∈ �, we associate a subextension

0 I ∩ E E E/(I ∩ E) 0

0 −−−−→ I −−−−→ D −−−−−−→ B −−−−−−→ 0

It is clear that the inductive limit of the subextensions is the extension (3.1).
Since all the connecting maps are injective, the proof is complete by the con-
tinuity of K-theory (cf. [25, Proposition 6.2.9]) and the exactness of the in-
ductive limit functor for abelian groups (cf. [26, Theorem 2.6.15]).

The following result is inspired by the proof of [11, Theorem 5.4].
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Proposition 3.11. A C∗-algebra A is K-exact if and only if the functor
B �→ K0(A ⊗ B), from the category of separable C∗-algebras to abelian
groups, factors through the category E of Higson (cf. [10], [5]).

Proof. Let A be a C∗ and let F(B) := K0(A ⊗ B).
(⇒): Suppose that A is K-exact. Then F is half-exact and since F is ho-

motopy invariant and stable (under tensoring with the compacts), it factors
through the category E by the universal property (cf. [5, Théorème 7]).

(⇐): Suppose that F factors through E. For any extension

0 I D
q

B 0

of separable C∗-algebras, the inclusion ι: I → Cq is an equivalence in E (cf.
[5, Lemma 12]). Now Lemma 3.10 completes the proof.

3.2. K-continuity

Definition 3.12. We say that a C∗-algebra A is K-continuous if for every
inductive sequence

B0 B1 B2 . . .

of C∗-algebras, the natural map

lim−→ K0(A ⊗ Bi) K0(A ⊗ lim−→ Bi)

is an isomorphism.

Remark 3.13. In Definition 3.12, we could use K1 instead of K0.

Example 3.14. ⊗-continuous C∗-algebras are K-continuous, by the con-
tinuity of K-theory (cf. [25, Proposition 6.2.9], [2, 5.2.4, 8.1.5]).

Example 3.15. C∗-algebras satisfying the Künneth formula of Schochet
(cf. [18], [2, Theorem 23.1.3]) are K-continuous. Indeed, let A be a C∗-algebra
satisfying the Künneth formula and let

B0 B1 B2 . . .

be an inductive sequence of C∗-algebras. Then the top row in the diagram

0 → lim−→ K∗(A) ⊗ K∗(Bi) → lim−→ K∗(A ⊗ Bi) → lim−→ Tor(K∗(A), K∗(Bi)) → 0

0 → K∗(A) ⊗ K∗(lim−→ Bi) → K∗(A ⊗ lim−→ Bi) → Tor(K∗(A), K∗(lim−→ Bi)) → 0

is an extension of abelian groups by [26, Theorem 2.6.15] and the second row
is an extension by the Künneth formula. The left and right vertical maps are
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isomorphisms by [26, Corollary 2.6.17] and thus the middle vertical map is
also an isomorphism by five-lemma. Hence A is K-continuous.

3.3. Proof of Main Theorem 1.3

Proof of Theorem 1.3. (⇒): Let A be a K-exact C∗-algebra and let

B0
β0

B1
β1

. . .

be an inductive sequence. We use the notations of the proof ofTheorem 1.2 (⇒).
Applying K-theory to the diagram (2.2), we get a map of exact sequences

K0(lim−→ A ⊗ In) K0(lim−→ A ⊗ Dn) K0(lim−→ A ⊗ Bn) K1(lim−→ A ⊗ In) K1(lim−→ A ⊗ Dn)

∼= ∼= β∗ ∼= ∼=

K0(A ⊗ lim−→ In) K0(A ⊗ lim−→ Dn) K0(A ⊗ lim−→ Bn) K1(A ⊗ lim−→ In) K1(A ⊗ lim−→ Dn)

By five-lemma, the map β∗ is an isomorphism.
(⇐): Conversely, let A be a K-continuous C∗-algebra. Then the functor

F(B) := K0(A ⊗ B), considered on the category of separable C∗-algebras,
factors through the asymptotic homotopy category of Connes-Higson by [7,
Theorem 3.11]. Since F is stable and satisfies Bott periodicity, it in fact factors
through the category E. Hence by Proposition 3.11, A is K-exact.
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