
MATH. SCAND. 118 (2016), 291–302

THE HOMOTOPY LIFTING THEOREM FOR
SEMIPROJECTIVE C∗-ALGEBRAS
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Abstract
We prove a complete analog of the Borsuk Homotopy Extension Theorem for arbitrary semipro-
jectiveC∗-algebras. We also obtain some other results about semiprojectiveC∗-algebras: a partial
lifting theorem with specified quotient, a lifting result for homomorphisms close to a liftable ho-
momorphism, and that sufficiently close homomorphisms from a semiprojective C∗-algebra are
homotopic.

1. Introduction

It seems obligatory in any exposition of the theory of Absolute Neighborhood
Retracts (ANR’s) in topology to refer to the Borsuk Homotopy Extension
Theorem as “one of the most important results in the theory of ANR’s” (as
well it is).

Theorem 1.1 (Borsuk Homotopy Extension Theorem [5], [6, 8.1]). Let X
be an ANR, Y a compact metrizable space, Z a closed subspace of Y , (φt )
(0 ≤ t ≤ 1) a uniformly continuous path of continuous functions from Z to
X (i.e. h(t, z) = φt(z) is a homotopy from φ0 to φ1). Suppose φ0 extends to
a continuous function φ̄0 from Y to X. Then there is a uniformly continuous
path φ̄t of extensions of the φt to functions from Y toX (i.e. h̄(t, y) = φ̄t (y) is
a homotopy from φ̄0 to φ̄1).

In particular, any function from Z to X homotopic to an extendible func-
tion is extendible. The theorem also works for metrizable spaces which are
not necessarily compact when phrased in the homotopy language; we have
stated it in the version which can potentially be extended to noncommutative
C∗-algebras. The theorem can be regarded as giving a “universal cofibration
property” for maps into ANR’s.

There is a direct analog of (compact) ANR’s in the category of (separable)
noncommutativeC∗-algebras: the semiprojectiveC∗-algebras [2], [1, II.8.3.7].
Many results about ANR’s carry through to semiprojective C∗-algebras with
essentially identical proofs (just “turning arrows around”). However, Borsuk’s
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proof of the Homotopy Extension Theorem is not one of these: the proof simply
does not work in the noncommutative case. The underlying reason is that in
a metrizable space, every closed set is a Gδ , but this is false in the primitive
ideal space of a separable noncommutative C∗-algebra in general.

We can, however, by a different argument obtain a complete analog of
the Borsuk Homotopy Extension Theorem for arbitrary semiprojective C∗-
algebras (Theorem 5.1). In the course of the proof we obtain some other results
about semiprojective C∗-algebras which are of interest: a partial lifting the-
orem with specified quotient (Theorem 3.1), a lifting result for homomorph-
isms close to a liftable homomorphism (Theorem 4.1), and that sufficiently
close homomorphisms from a semiprojective C∗-algebra are homotopic (Co-
rollary 4.3).

2. The general Chinese Remainder Theorem

We will make use of a general “folklore” result from ring theory, which can
be called the Generalized Chinese Remainder Theorem. Although this result
should probably be one of the standard isomorphism theorems for rings, it is
not covered in most algebra texts, so we give the simple proof. A variant can
be found in [10, Prop. 3.1], with the same proof.

Proposition 2.1. LetR be a ring, and I and J (two-sided) ideals inR. Then
the map φ: a �→ (a mod I, a mod J ) gives an isomorphism from R/(I ∩ J )
onto the fibered product

P = (R/I)⊕(π1,π2) (R/J ) = {(x, y) : x ∈ R/I, y ∈ R/J, π1(x) = π2(y)}
⊆ (R/I)⊕ (R/J )

where π1:R/I → R/(I + J ) and π2:R/J → R/(I + J ) are the quotient
maps. (P is the pullback of (π1, π2).)

Proof. It is obvious that φ (regarded as a map from R to P ) is a homo-
morphism with kernel I ∩ J . We need only show that φ is surjective. Let
(x, y) ∈ P . Write πI and πJ for the quotient maps from R to R/I and R/J
respectively. Then there is a b ∈ R with πJ (b) = y. We have

π1(x − πI (b)) = π1(x)− π1(πI (b)) = π1(x)− π2(y) = 0

and the kernel ofπ1 is exactlyπI (J ), so there is a c ∈ J withπI (c) = x−πI (b).
Set a = b + c. Then πI (a) = x and πJ (a) = πJ (b) + πJ (c) = y. Thus
φ(a) = (x, y).

In particular, to define a homomorphism from another ring into R/(I ∩ J ),
it suffices to give a compatible pair of homomorphisms into R/I and R/J .
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There is, of course, a version of this result for finitely many ideals, but it is
somewhat complicated to state. The usual Chinese Remainder Theorem is the
special case where I + J = R; the fibered product is then just the full direct
sum.

To apply this result to C∗-algebras, note that if I and J are closed ideals in
a C∗-algebra, then I + J is also closed (see e.g. [1, II.5.1.3]). One can replace
“homomorphism” with “∗-homomorphism” throughout. (When working with
C∗-algebras, we will take “homomorphism” to mean “∗-homomorphism.”)

3. Partial liftings with specified quotient

Recall the definition of semiprojectivity ([2], [1, II.8.3.7]): a separable C∗-
algebra A is semiprojective if, whenever B is a C∗-algebra, (Jn) an increas-
ing sequence of closed (two-sided) ideals of B, and J = [∪Jn]−, then any
homomorphism φ:A → B/J can be partially lifted to a homomorphism
ψ :A → B/Jn for some sufficiently large n. But suppose in the above situ-
ation, with A semiprojective, we also have another closed ideal I of B and a
homomorphism φ̃ from A to B/I such that φ and φ̃ agree mod I + J . Can
we partially lift φ to ψ so that ψ agrees with φ̃ mod I + Jn? The next result
shows that this is always possible. For any closed ideal K of B, write πK for
the quotient map toB/K (by slight abuse of notation, this same symbol will be
used for the quotient map from B/L to B/K for any closed ideal L contained
in K .)

Theorem 3.1 (Specified Quotient Partial Lifting Theorem). Let A be a
semiprojective C∗-algebra, B a C∗-algebra, (Jn) an increasing sequence of
closed ideals of B with J = [∪Jn]−, I another closed ideal of B, and φ:A →
B/J and φ̃:A → B/I ∗-homomorphisms with πI+J ◦ φ = πI+J ◦ φ̃. Then
for some sufficiently large n there is a ∗-homomorphism ψ :A → B/Jn such
that πJ ◦ ψ = φ and πI+Jn ◦ ψ = πI+Jn ◦ φ̃.

Pictorially, we have the diagram in Figure 1 which can be made to commute.

Proof. It is obvious that ∪n(I + Jn) is dense in I + J . It is not obvious
that ∪n(I ∩ Jn) is dense in I ∩ J , but this can be proved using [1, II.5.1.3]: if
x ∈ I ∩ J , then

0 = inf
n

[
inf
y∈Jn

‖x − y‖] = inf
n

[
inf

z∈I∩Jn
‖x − z‖].

By Proposition 2.1, φ and φ̃ define a homomorphism φ̄ from A to B/(I ∩ J ),
which partially lifts to a homomorphism ψ̄ from A to B/(I ∩ Jn) for some n
by semiprojectivity. The map ψ̄ defines compatible homomorphisms ψ :A →
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Figure 1.

B/Jn and ψ̃ :A → B/I . Then

ψ̃ = πI ◦ ψ :A → B/(I ∩ Jn) → B/I

= πI ◦ πI∩J ◦ ψ :A → B/(I ∩ Jn) → B/(I ∩ J ) → B/I

= πI ◦ φ :A → B/(I ∩ J ) → B/I

= φ̃.

Since
πI+Jn ◦ ψ :A → B/Jn → B/(I + Jn)
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equals
πI+Jn ◦ ψ̃ = πI+Jn ◦ φ̃:A → B/I → B/(I + Jn)

we have that ψ is the desired partial lift of φ.

4. Lifting close homomorphisms

IfA and B areC∗-algebras and I is a closed ideal of B, then a homomorphism
from A to B/I need not lift in general to a homomorphism from A to B,
even if A is semiprojective. But suppose φ:A → B/I does lift to φ̄:A → B,
and ψ is another homomorphism from A to B/I which is close to φ in the
point-norm topology. If A is semiprojective, does ψ also lift to B, and can the
lift be chosen close to φ̄ in the point-norm topology? The answer is yes in the
commutative category [6, 3.1], but the commutative proof does not generalize
to the noncommutative case. However, we can by a different argument obtain
the same result for general semiprojective C∗-algebras.

Theorem 4.1. Let A be a semiprojective C∗-algebra generated by a finite
or countable set G = {x1, x2, . . .} with limj→∞ ‖xj‖ = 0 if G is infinite. Then
for any ε > 0 there is a δ > 0 such that, whenever B is a C∗-algebra, I a
closed ideal of B, φ and ψ ∗-homomorphisms from A to B/I with ‖φ(xj ) −
ψ(xj )‖ < δ for all j and such that φ lifts to a ∗-homomorphism φ̄:A → B

(i.e. πI ◦ φ̄ = φ), then ψ also lifts to a ∗-homomorphism ψ̄ :A → B with
‖ψ̄(xj ) − φ̄(xj )‖ < ε for all j . (The δ depends on ε, A, and the set G of
generators, but not on the B, I , φ, ψ .)

Proof. Suppose the result is false. Then there is an ε > 0 and Bn, In, and
φn, ψn homomorphisms from A to Bn/In such that ‖φn(xj )−ψn(xj )‖ < 1/n
for all j , φn lifts to φ̄n:A → Bn, but ψn does not lift to any ψ̄n:A → Bn with
‖φ̄n(xj ) − ψ̄n(xj )‖ < ε for all j . Let B = ∏

n Bn, I = ∏
n In, Jn the ideal

of elements of B vanishing after the n’th term, J = [∪Jn]− = ⊕nBn. Let
φ̄:A → B be defined by

φ̄(x) = (φ̄1(x), φ̄2(x), . . .)

and let φ = πJ ◦ φ̄:A → B/J . There is also a homomorphism φ̃ from A to
B/I ∼= ∏

n(Bn/In) defined by

φ̃(x) = (ψ1(x), ψ2(x), . . .).

We have limn→∞ ‖φn(x) − ψn(x)‖ = 0 for all x in a dense ∗-subalgebra of
A (the ∗-subalgebra generated by G) and, since the φn and ψn are uniformly
bounded (all have norm 1), we have limn→∞ ‖φn(x) − ψn(x)‖ = 0 for all
x ∈ A. So we have that φ and φ̃ agree mod I + J . Thus by Theorem 3.1, for
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some n, there is a lift ψ of φ to B/Jn agreeing with φ̃ mod I + Jn. This lift
defines ψ̄k:A → Bk for each k > n lifting ψk . Fix m such that ‖xj‖ < ε/2
for all j > m. Since ψ = φ mod J , we have limk→∞ ‖φ̄k(xj )− ψ̄k(xj )‖ = 0
for all j . Thus there is a k such that

‖φ̄k(xj )− ψ̄k(xj )‖ < ε

for 1 ≤ j ≤ m. If j > m, we have

‖φ̄k(xj )− ψ̄k(xj )‖ ≤ ‖φ̄k(xj )‖ + ‖ψ̄k(xj )‖ ≤ 2‖xj‖ < ε.

Thus ‖φ̄k(xj )− ψ̄k(xj )‖ < ε for all j , a contradiction.
The diagram at the end of Theorem 3.1 summarizes the construction.

As in the commutative case (cf. [8, IV.1.1], [9, 4.1.1]), we obtain that suffi-
ciently close homomorphisms from a semiprojectiveC∗-algebra are homotopic
(see [2, 3.6] for a slightly weaker version of this result with a more elementary
proof):

Corollary 4.2. LetA be a semiprojectiveC∗-algebra generated by a finite
or countable set G = {x1, x2, . . .} with limj→∞ ‖xj‖ = 0 if G is infinite. Then
for any ε > 0 there is a δ > 0 such that, whenever B is a C∗-algebra, φ0 and
φ1 ∗-homomorphisms from A to B with ‖φ0(xj )− φ1(xj )‖ < δ for all j , then
there is a point-norm continuous path (φt ) (0 ≤ t ≤ 1) of ∗-homomorphisms
from A to B connecting φ0 and φ1 with ‖φt(xj ) − φ0(xj )‖ < ε for all j for
any t ∈ [0, 1]. (The δ depends on ε, A, and the set G of generators, but not on
the B, φ0, φ1.)

In fact, for any ε > 0, a δ that works for Theorem 4.1 also works for
Corollary 4.2.

Proof. Choose δ > 0 as in Theorem 4.1 for the given ε. Let B̃ = C([0, 1],
B), I = C0((0, 1), B) the ideal of elements of B̃ vanishing at 0 and 1. Then
B̃/I ∼= B⊕B. Define φ,ψ :A → B̃/I by φ(x) = (φ0(x), φ0(x)) andψ(x) =
(φ0(x), φ1(x)). Thenφ andψ satisfy the hypotheses of Theorem 4.1, andφ lifts
to B̃ as a constant function, so ψ also lifts, and the lift satisfies the conclusion
of Theorem 4.1.

Corollary 4.3. Let A be a semiprojective C∗-algebra generated by a
finite or countable set G = {x1, x2, . . .} with limj→∞ ‖xj‖ = 0 if G is infinite.
Then there is a δ > 0 such that, whenever B is a C∗-algebra, φ0 and φ1 ∗-
homomorphisms from A to B with ‖φ0(xj ) − φ1(xj )‖ < δ for all j , then φ0

and φ1 are homotopic. (The δ depends on A and the set G of generators, but
not on the B, φ0, φ1.)
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Proof. Fix any ε > 0, say ε = 1, and apply Corollary 4.2.

In the proofs of the commutative versions of these results, a metric is fixed
on the space and the δ depends on ε and the choice of metric. Fixing a set of
generators can be regarded as an analog of fixing a metric in our setting.

5. The Homotopy Lifting Theorem

We can now state and prove theC∗-analog of the Borsuk Homotopy Extension
Theorem. When arrows are turned around for theC∗-algebra setting, extension
problems become lifting problems.

Theorem 5.1 (Homotopy Lifting Theorem). LetA be a semiprojective C∗-
algebra, B aC∗-algebra, I a closed ideal of B, (φt ) (0 ≤ t ≤ 1) a point-norm
continuous path of ∗-homomorphisms from A to B/I . Suppose φ0 lifts to a
∗-homomorphism φ̄0:A → B, i.e. πI ◦ φ̄0 = φ0. Then there is a point-norm
continuous path (φ̄t ) (0 ≤ t ≤ 1) of ∗-homomorphisms fromA toB beginning
at φ̄0 such that φ̄t is a lifting of φt for each t , i.e. the entire homotopy lifts. In
particular, φ1 lifts to a ∗-homomorphism from A to B.

Proof. Let G = {x1, x2, . . .} be a countable set of generators for A, with
‖xj‖ → 0 (by definition, a semiprojective C∗-algebra is separable, hence
countably generated). Fix ε > 0, say ε = 1, and fix δ > 0 satisfying the
conclusion of Theorem 4.1 for ε,A, G . Choose a finite partition 0 = t0 < t1 <

t2 < · · · < tm = 1 such that ‖φs(xj ) − φt(xj )‖ < δ for all j whenever s, t ∈
[ti−1, ti] for any i. There is such a partition since one only needs to consider
finitely many xj , the condition being automatic for any xj with ‖xj‖ < δ/2;
cf. the last part of the proof of Theorem 4.1.

Begin with [0, t1]. Let B̃ = C([0, t1], B), and J the ideal of B̃ consisting
of functions f : [0, t1] → I with f (0) = 0. Then

B̃/J ∼= C([0, t1], B/I)⊕πI B

= {(f, b) ∈ C([0, t1], B/I)⊕ B : f (0) = πI (b)}.

Define homomorphisms φ,ψ :A → B̃/J by setting φ(x) = (fx, φ̄0(x)),
where fx(t) = φ0(x) for all t , and ψ(x) = (gx, φ̄0(x)), where gx(t) = φt(x)

for all t . We then have
‖φ(xj )− ψ(xj )‖ < δ

for all j . Since φ lifts to a ∗-homomorphism from A to B̃ (e.g. by the constant
function φ̄0), ψ also lifts, defining a continuous path of lifts (φ̄t ) of the φt for
0 ≤ t ≤ t1.
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Now repeat the process on [t1, t2], using the lift φ̄t1 as the starting point,
and continue through all the intervals. After a finite number of steps the entire
homotopy is lifted.

Corollary 5.2. Let A be a semiprojective C∗-algebra, B a C∗-algebra, I
a closed ideal of B, φ a ∗-homomorphism from A to B/I . If φ is homotopic
to a ∗-homomorphism from A to B/I which lifts to B, then φ lifts to B.

This corollary gives an arguably simpler proof than the one in [12] that
a contractible semiprojective C∗-algebra is projective, since the zero homo-
morphism always lifts from any quotient. (The result in [12] is slightly more
general).

6. �-open and �-closed C∗-algebras

In this section, all C∗-algebras will be assumed separable. We will use C to
denote a category of separable C∗-algebras and ∗-homomorphisms, e.g. the
category of all separable C∗-algebras and ∗-homomorphisms, the category of
separable unital C∗-algebras and unital ∗-homomorphisms, or the category of
separable unital commutative C∗-algebras and unital ∗-homomorphisms.

If A and B are C∗-algebras, denote by Hom(A,B) the set of ∗-homomor-
phisms from A to B, endowed with the point-norm topology. Hom(A,B) is
separable and metrizable. If A and B are unital, let Hom1(A,B) be the set of
unital ∗-homomorphisms from A to B. Then Hom1(A,B) is a clopen subset
of Hom(A,B) (since a projection close to the identity in a C∗-algebra is equal
to the identity).

IfA = C(X) andB = C(Y ), then Hom1(A,B) is naturally homeomorphic
toXY , the set of continuous functions from Y toX, endowed with the topology
of uniform convergence (with respect to any fixed metric onX, or with respect
to the unique uniform structure on X compatible with its topology).

More generally, if C is a category of C∗-algebras, denote by HomC (A,B)

the morphisms in C , with the point-norm topology (i.e. the subspace topology
from Hom(A,B)).

If C is a category of C∗-algebras, A,B ∈ C , and I is a closed ideal of B
compatible with C (i.e. B/I ∈ C and the quotient map πI is a morphism in
C ; this is automatic in the three categories above), denote by HomC (A,B, I)

the set of C -morphisms from A to B/I which lift to C -morphisms from A to
B. HomC (A,B, I) is a subset of HomC (A,B/I).

If C is the category of separable unital commutative C∗-algebras and A =
C(X), B = C(Y ), with X, Y compact metrizable spaces, I corresponds to
a closed subset Z of Y and B/I ∼= C(Z); then HomC (A,B, I) is the subset
XZ↑Y of XZ consisting of maps (continuous functions) from Z to X which
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extend to maps from Y to X. See the companion article [4] for a discussion of
this case.

Examples show that HomC (A,B, I) is neither open nor closed in HomC (A,

B/I) in general (see [4] for commutative examples). We seek conditions onA
insuring that HomC (A,B, I) is always open or closed in HomC (A,B/I) for
any B and I .

Definition 6.1. Let C be a category, and A ∈ C .

(i) A is �-open (in C ) if, for every pair (B, I ) in C , the set HomC (A,B, I)

is open in HomC (A,B/I).

(ii) A is �-closed (in C ) if, for every pair (B, I ) in C , the set HomC (A,B, I)

is closed in HomC (A,B/I).

If C is the category of all separable C∗-algebras, we just say A is �-open
[�-closed].

If C is the category of separable unital commutative C∗-algebras and A =
C(X), then A is �-open [�-closed] in C if and only if X is e-open [e-closed]
in the sense of [4]. (The � and e stand for liftable and extendible respectively,
the dual notions in the algebra and topology contexts.)

The next result is an immediate corollary of Theorem 4.1:

Corollary 6.2. Every semiprojective C∗-algebra is both �-open and �-
closed.

Proof. One only needs to observe that if G = {x1, x2, . . .} is a set of
generators for A with ‖xj‖ → 0, and φn, φ ∗-homomorphisms from A to a
C∗-algebra B, then φn → φ in the point-norm topology if and only if, for
every ε > 0, there is an n such that ‖φk(xj ) − φ(xj )‖ < ε for all j , for all
k > n. Apply Theorem 4.1.

If C is the category of separable unital commutative C∗-algebras and A =
C(X), then it is shown in [4] that A is �-open in C if and only ifX is an ANR,
at least if A is finitely generated (equivalently, if X is finite-dimensional).
Recall that A is semiprojective in C if and only if X is an ANR [2]. Thus
it is reasonable to conjecture that a C∗-algebra is �-open if and only if it is
semiprojective, at least if it is finitely generated.

Although there is no obvious direct proof that an �-open C∗-algebra is �-
closed, I do not know an example of a C∗-algebra which is �-open but not
�-closed, and I conjecture that none exist. There are �-closed C∗-algebras
which are not �-open, as Example 6.3 shows. I do not have a good idea how
to characterize �-closed C∗-algebras.

We conclude with some examples of C∗-algebras which are not �-open.
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Example 6.3. (A C∗-algebra which is �-closed but not �-open.) Let A be
the universal C∗-algebra generated by a sequence of projections {p1, p2, . . .},
i.e.A is the full free product of a countable number of copies of C. ThenA is not
�-open: letB = C([0, 1]), I = C0((0, 1)).B/I ∼= C⊕C. Defineφn:A → B/I

by φn(pk) = (0, 0) if k ≤ n, φn(pk) = (0, 1) if k > n. Then φn converges
point-norm to the zero homomorphism from A to B/I , which obviously lifts
to B, but no φn lifts to B. (This shows that A is not semiprojective, which can
also be shown by a direct argument.)
A is, however, �-closed. Let B be a C∗-algebra and I a closed ideal of B.

A sequence (φn) of homomorphisms from A to B/I converging point-norm
to φ defines a set q(n)k = φn(pk), qk = φ(pk) of projections in B/I such that
q
(n)
k → qk for all k. If each φn is liftable to B, i.e. each q(n)k is liftable to a

projection inB, it then follows from the semiprojectivity of C and Theorem 4.1
that each qk is also liftable to a projection in B, i.e. φ is liftable to B.

A similar argument shows that a full free product of a sequence of semipro-
jectiveC∗-algebras is always �-closed, although it is not semiprojective unless
all but finitely many of theC∗-algebras are projective; does the latter condition
also characterize when the free product is �-open? (This seems likely.)

Example 6.4. Let A = C∗(F∞), the full group C∗-algebra of the free
group on infinitely many generators, i.e. the universal C∗-algebra generated
by a sequence of unitaries {u1, u2, . . .}. It is known thatA is not semiprojective
([3], [1, II.8.3.16(vii)]). To directly showA is not �-open, let S be the unilateral
shift on H = �2, and B = T the C∗-subalgebra of L (H ) generated by S
(the Toeplitz algebra). Then B contains I = K (H ), and B/I ∼= C(T). Let s
be the image of S in B/I . It is well known that s has no normal preimage in
B, in fact no normal preimage in L (H ), cf. [7]; in particular, it has no unitary
preimage in B. Define φn:A → B/I by setting φn(uk) = 1 for k ≤ n and
φn(uk) = s for k > n. Then φn → φ point-norm, where φ(uk) = 1 for all k,
and φ lifts to B, but no φn lifts.

An argument similar to the one in Example 6.3, using semiprojectivity of
C(T), shows that A is �-closed in the category of separable unital C∗-algebras
and unital ∗-homomorphisms. (More generally, a full unital free product of
a sequence of unital semiprojective C∗-algebras is �-closed in the unital cat-
egory.) However, it seems like a difficult and delicate question whether A is
�-closed (in the general category). For a sequence of homomorphisms from A

to B/I defines a convergent sequence (qn) of projections in B/I (the images
of the identity of A) and a sequence of unitaries in qn(B/I)qn for each n. The
qn and the unitaries must be lifted in a compatible way to obtain a lifting of
the limit projection and unitaries.

So: Is A �-closed?
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Example 6.5. Let A be the universal C∗-algebra generated by a normal
element x of norm ≤ 1. Then A ∼= C0(D \ {(0, 0)}), the functions vanishing
at (0, 0) on the closed unit disk D in R2. To show that A is not �-open, let B,
I , S, s be as in Example 6.4. Define φn:A → B/I by sending x to 1

n
s. Then

(φn) converges in the point-norm topology to the zero homomorphism, which
obviously lifts to B. But no φn lifts.

Showing thatA is �-closed is the same as solving (positively) the following
problem: if (yn) is a convergent sequence of normal elements in a quotient
B/I with limit y, and each yn lifts to a normal element in B, does y also lift
to a normal element? This appears to be unknown.

If this argument works, it can be slightly modified to show that the unit-
ization C(D) is �-closed but not �-open. In fact, it seems reasonable that if
X is any ANR, then C(X) is �-closed, but it is �-open if and only if C(X) is
semiprojective, i.e. if and only if dim(X) ≤ 1 [11].

Example 6.6. Consider theC∗-algebras c of convergent sequences of com-
plex numbers and c0 of sequences of complex numbers converging to 0.

To show they are not �-open, let B = C([0, 1]) and I the ideal of functions
which vanish at 1/n for all n (and hence of course also at 0). Then B/I ∼= c.
Defineφn: c → B/I by setting [φn(x)](1/k) = αk if k > n, [φn(x)](1/k) = α

if k ≤ n, [φn(x)](0) = α, for x = (α1, α2, . . .) ∈ c with αn → α. Then
φn → φ in the point-norm topology, where φ(x) is the constant function with
value α. Then φ lifts to B, but no φn lifts to B since B has no non-trivial
projections. The restrictions of φn, φ to c0 work the same way.

The question whether c and c0 are �-closed is much more involved than
in the commutative case. It is relatively easy to show they are �-closed in the
commutative category (cf. [4]); the commutative case is simpler since

(i) Close projections in a commutative C∗-algebra are actually equal.

(ii) A product of two commuting projections is a projection. In particular, if
q is a projection in a quotient B/I , with B commutative, and p1, p2 are
two projection lifts toB, thenp = p1p2 is also a projection lift toB with
p ≤ p1, p ≤ p2. Nothing like this is true for general noncommutativeB.

A ∗-homomorphism from c0 to aC∗-algebraB is effectively the same thing
as a specification of a sequence of mutually orthogonal projections (pk) in B
(some of which may be 0): such a sequence defines a homomorphism φ by

φ((α1, α2, . . .)) =
∞∑

k=1

αkpk

(the sum converges inB since αk → 0). For a homomorphism from c toB, we
additionally need a projectionp such thatpk ≤ p for all n: the homomorphism
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corresponding to such a set of projections is defined by

φ((α1, α2, . . .)) = αp +
∞∑

k=1

(αk − α)pk

whereα = limk→∞ αk . If (φn) is a sequence of homomorphisms corresponding
to (p(n)k , p

(n)), and φ is another homomorphism corresponding to (pk, p), then
φn → φ in the point-norm topology if and only if limn→∞ p(n)k = pk for each
k and limn→∞ p(n) = p.

Now suppose B is a C∗-algebra and I a closed ideal of B, and φn, φ: c →
B/I with φn → φ. Let φn correspond to (q(n)k , q(n)) and φ to (qk, q). Suppose
each q(n)k lifts to a projection in B. We need to find projections (pk, p) in B
with the pk mutually orthogonal, pk ≤ p for all k, πI (pk) = qk for all k, and
πI (p) = q. It seems technically difficult, if not impossible, to show that this
can be done.

So: Are c and c0 �-closed?
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