HERMITIAN SYMMETRIC SPACES OF TUBE TYPE AND MULTIVARIATE MEIXNER-POLLACZEK POLYNOMIALS

JACQUES FARAUT and MASATO WAKAYAMA

Abstract

Harmonic analysis on Hermitian symmetric spaces of tube type is a natural framework for introducing multivariate Meixner-Pollaczek polynomials. Their main properties are established in this setting: orthogonality, generating and determinantal formulae, difference equations. For proving these properties we use the composition of the following transformations: Cayley transform, Laplace transform, and spherical Fourier transform associated to Hermitian symmetric spaces of tube type. In particular the difference equation for the multivariate Meixner-Pollaczek polynomials is obtained from an Euler type equation on a bounded symmetric domain.

1. Introduction

The one variable Meixner-Pollaczek polynomials $P_m^{\alpha}(\lambda; \phi)$ can be defined by the Gaussian hypergeometric representation as

$$P_m^{(\nu/2)}(\lambda;\phi) = \frac{(\nu)_m}{m!} e^{im\phi} \,_2 F_1 \bigg(-m, \frac{\nu}{2} + i\lambda; \, \nu; \, 1 - e^{-2i\phi} \bigg).$$

For $\phi = \pi/2$ the Meixner-Pollaczek polynomials $P_m^{(\nu/2)}(\lambda; \pi/2)$ are also obtained as Mellin transforms of Laguerre functions. Their main properties follow from this fact: hypergeometric representation above, orthogonality, generating formula, difference equation, and three terms relation (see [1, pp. 348–349]).

These polynomials $P_m^{(\nu/2)}(\lambda;\pi/2)$ have been generalized to the multivariate case. In fact, the multivariable Meixner-Pollaczek (symmetric) polynomials have been essentially considered in the setting of the Fourier analysis on Riemannian symmetric spaces in several papers: See Peetre-Zhang [12, Appendix 2: A class of hypergeometric orthogonal polynomials], Ørsted-Zhang [11, section 3.4], Zhang [15] and Davidson-Ólafsson-Zhang [5]. Also, see the papers by Davidson-Ólafsson [4] and Aristidou-Davidson-Ólafsson [2]. Further, for an arbitrary real value of the multiplicity d, the multivariate

Received 21 February 2014, in final form 28 February 2015. DOI: https://doi.org/10.7146/math.scand.a-25506

Meixner-Pollaczek polynomials are defined by Sahi-Zhang [13] in the setting of Heckman-Opdam and Cherednik-Opdam transforms, related to symmetric and non-symmetric Jack polynomials, and generating formulae for them are established. However the case where the parameter ϕ is involved has not been studied so far. Moreover, once we define the multivariate Meixner-Pollaczek polynomials with parameter ϕ , it is also important to clarify a geometric meaning of the parameter. Establishing a natural setting for the study of multivariate Meixner-Pollaczek polynomials with such parameter, one can expect to obtain wider applications such as a study of multi-dimensional Lévi-process, in particular, introducing multi-dimensional Meixner process (see [14] for the one-dimensional case).

The purpose of this article is to provide a geometric framework for introducing the multivariate Meixner-Pollaczek polynomials (with parameter ϕ) and study their fundamental properties. Our analysis may explain much simpler geometric understanding of several basic properties of the multivariate Meixner-Pollaczek polynomials than ever, even in the case $\phi = \pi/2$. For instance, the \mathfrak{S}_n -invariant difference operator of which the multivariate Meixner-Pollaczek polynomials are eigenfunctions can be understood by an image of the Euler operator under the composition of three intertwiners: the Cayley transform, the Laplace transform and the spherical Fourier transform. In particular, the multivariate Meixner-Pollaczek polynomials are spherical Fourier transforms of multivariate Laguerre functions.

In Section 2 we recall the basic facts about the spherical Fourier analysis on a symmetric cone. In Section 3 we define the multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu)}(\mathbf{s})$ (the case $\phi = \pi/2$), where \mathbf{m} is a partition, prove that they are orthogonal with respect to a measure M_{ν} on \mathbb{R}^n , and establish a generating formula.

In Section 4, adding a real parameter θ (instead of $\phi = \theta + \frac{\pi}{2}$), we introduce the symmetric polynomials $Q_{\mathbf{m}}^{(\nu,\theta)}(\mathbf{s})$ in the variables $\mathbf{s} = (s_1,\ldots,s_n),\ Q_{\mathbf{m}}^{(\nu)} = Q_{\mathbf{m}}^{(\nu,0)}$. In the one variable case

$$q_m^{(\nu,\theta)}(s) = (-i)^m P_m^{(\nu/2)} \left(-is; \theta + \frac{\pi}{2} \right).$$

The orthogonality property for the polynomials $Q_{\mathbf{m}}^{(\nu,\theta)}(\mathbf{s})$ is obtained by using a Gutzmer formula for the spherical Fourier transform. A generating formula is obtained for these polynomials. In case of the multiplicity d=2, we establish in Section 5 determinantal formulae for multivariate Laguerre and Meixner-Pollaczek polynomials. Sections 6, 7, and 8 are devoted to a difference equation satisfied by the polynomials $Q_{\mathbf{m}}^{(\nu,\theta)}(\mathbf{s})$. Starting from an Euler-type equation involving the parameter θ , this difference equation is obtained in three steps,

corresponding to a Cayley transform, an inverse Laplace transform, and a spherical Fourier transform for symmetric cones. The symmetry $\theta \mapsto -\theta$ in the parameter is related to geometric symmetries and to a generalized Tricomi theorem for the Hankel transform on a symmetric cone. In the last section we show that multivariate Meixner-Pollaczek polynomials satisfy a Pieri's formula. In the one variable case it reduces to the three terms relation satisfied by the classical Meixner-Pollacek polynomials.

2. Spherical Fourier analysis on a symmetric cone

A reference for this preliminary section is [8]. We consider an irreducible symmetric cone Ω in a Euclidean Jordan algebra V. We denote by G the identity component in the group $G(\Omega)$ of linear automorphisms of Ω , and $K \subset G$ is the isotropy subgroup of the unit element $e \in V$.

The Gindikin gamma function Γ_{Ω} of the cone Ω will be the cornerstone of the analysis we will develop. It is defined, for $\mathbf{s} \in \mathbb{C}^n$, with $\operatorname{Re} s_j > \frac{d}{2}(j-1)$, by

 $\Gamma_{\Omega}(\mathbf{s}) = \int_{\Omega} e^{-\operatorname{tr}(u)} \Delta_{\mathbf{s}}(u) \Delta(u)^{-N/n} \, m(du).$

The notation $\operatorname{tr}(u)$ and $\Delta(u)$ denote the trace and the determinant with respect to the Jordan algebra structure, Δ_s is the power function, N and n are the dimension and the rank of V, and m is the Euclidean measure associated to the Euclidean structure on V given by $(u \mid v) = \operatorname{tr}(uv)$. Its evaluation gives

$$\Gamma_{\Omega}(\mathbf{s}) = (2\pi)^{(N-n)/2} \prod_{j=1}^{n} \Gamma\left(s_j - \frac{d}{2}(j-1)\right),$$

where *d* is the multiplicity, related to *N* and *n* by the relation $N = n + \frac{d}{2}n(n-1)$. The spherical function φ_s , for $s \in \mathbb{C}^n$, is defined on Ω by

$$\varphi_{\mathbf{s}}(u) = \int_{K} \Delta_{\mathbf{s}+\rho}(k \cdot u) \, dk,$$

where $\rho = (\rho_1, \dots, \rho_n)$, $\rho_j = \frac{d}{4}(2j - n - 1)$, and dk is the normalized Haar measure on the compact group K. The algebra $\mathbb{D}(\Omega)$ of G-invariant differential operators on Ω is commutative, and the spherical function φ_s is an eigenfunction of every $D \in \mathbb{D}(\Omega)$:

$$D\varphi_{\mathbf{s}} = \gamma_D(\mathbf{s})\varphi_{\mathbf{s}}$$
.

The function γ_D is a symmetric polynomial function, and the map $D \mapsto \gamma_D$ is an algebra isomorphism from $\mathbb{D}(\Omega)$ onto the algebra $\mathscr{P}(\mathbb{C}^n)^{\mathfrak{S}_n}$ of symmetric

polynomial functions, a special case of the Harish-Chandra isomorphism. The spherical Fourier transform $\mathcal{F}\psi$ of a K-invariant function ψ on Ω is given by

$$\mathscr{F}\psi(\mathbf{s}) = \int_{\Omega} \psi(u)\varphi_{\mathbf{s}}(u)\Delta^{-N/n}(u)\,m(du).$$

Hence, for $\psi(u) = e^{-\operatorname{tr} u} \Delta^{v/2}(u)$, $v > \frac{d}{2}(n-1)$, we have

$$\mathscr{F}\psi(\mathbf{s}) = \Gamma_{\Omega}\left(\mathbf{s} + \frac{\nu}{2} + \rho\right) = (2\pi)^{(N-n)/2} \prod_{j=1}^{n} \Gamma\left(s_j + \frac{\nu}{2} - \frac{d}{4}(n-1)\right).$$

For $D \in \mathbb{D}(\Omega)$ an invariant differential operator, $\mathscr{F}(D\psi)(\mathbf{s}) = \gamma_D(-\mathbf{s})\mathscr{F}\psi(\mathbf{s})$ holds. The space $\mathscr{P}(V)$ of polynomials on V decomposes under G as the multiplicity-free representation

$$\mathscr{P}(V) = \bigoplus_{\mathbf{m}} \mathscr{P}_{\mathbf{m}},$$

where $\mathscr{P}_{\mathbf{m}}$ is a finite dimensional subspace, irreducible under G. The parameter \mathbf{m} is a partition: $\mathbf{m} = (m_1, \dots, m_n) \in \mathbb{N}^n$, $m_1 \geq \dots \geq m_n$. The polynomials in $\mathscr{P}_{\mathbf{m}}$ are homogeneous of degree $|\mathbf{m}| := m_1 + \dots + m_n$. The subspace $\mathscr{P}_{\mathbf{m}}^K$ of K-invariant polynomials in $\mathscr{P}_{\mathbf{m}}$ is one-dimensional, generated by the spherical polynomial $\Phi_{\mathbf{m}}$, normalized by the condition $\Phi_{\mathbf{m}}(e) = 1$, and so $\Phi_{\mathbf{m}} = \varphi_{\mathbf{m}-\rho}$. There is a unique invariant differential operator $D^{\mathbf{m}}$ such that

$$D^{\mathbf{m}}\psi(e) = \left(\Phi_{\mathbf{m}}\left(\frac{\partial}{\partial u}\right)\psi\right)(e).$$

We will write $\gamma_{\mathbf{m}} = \gamma_{D^{\mathbf{m}}}$. For n = 1, observe that $\Phi_m(u) = u^m$,

$$D^m = u^m \left(\frac{d}{du}\right)^m$$
 and $\gamma_m(s) = [s]_m := s(s-1)\dots(s-m+1).$

The classical Pochhammer symbol $(\alpha)_m := \alpha(\alpha + 1) \dots (\alpha + m - 1)$ generalizes as follows: for $\alpha \in \mathbb{C}$ and a partition \mathbf{m} ,

$$(\alpha)_{\mathbf{m}} = \frac{\Gamma_{\Omega}(\mathbf{m} + \alpha)}{\Gamma_{\Omega}(\alpha)} = \prod_{i=1}^{n} \left(\alpha - (i-1)\frac{d}{2}\right)_{m_i}.$$

If a K-invariant function ψ is analytic in a neighborhood of e, it admits a spherical Taylor expansion near e:

$$\psi(e+v) = \sum_{\mathbf{m}} d_{\mathbf{m}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{m}}} D^{\mathbf{m}} \psi(e) \Phi_{\mathbf{m}}(v),$$

where $d_{\mathbf{m}}$ is the dimension of $\mathcal{P}_{\mathbf{m}}$. In particular, for $\psi = \varphi_{\mathbf{s}}$, a spherical function,

$$\varphi_{\mathbf{s}}(e+v) = \sum_{\mathbf{m}} d_{\mathbf{m}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \gamma_{\mathbf{m}}(\mathbf{s}) \Phi_{\mathbf{m}}(v).$$

For $\psi = \Phi_{\mathbf{m}} = \varphi_{\mathbf{m}-\rho}$, we get the spherical binomial formula

$$\Phi_{\mathbf{m}}(e+v) = \sum_{\mathbf{k} \in \mathbf{m}} \binom{\mathbf{m}}{\mathbf{k}} \Phi_{\mathbf{k}}(v).$$

In fact the generalized binomial coefficient

$$\binom{\mathbf{m}}{\mathbf{k}} = d_{\mathbf{k}} \frac{1}{\binom{N}{n}_{\mathbf{k}}} \gamma_{\mathbf{k}} (\mathbf{m} - \rho)$$

vanishes if $\mathbf{k} \not\subset \mathbf{m}$.

3. Multivariate Meixner-Pollaczek polynomials $Q_{\mathrm{m}}^{(v)}$

For n = 1, we define the Meixner-Pollaczek polynomial $q_m^{(\nu)}$ as follows:

$$q_m^{(\nu)}(s) = \frac{(\nu)_m}{m!} {}_2F_1\left(-m, s + \frac{\nu}{2}; \nu; 2\right).$$

This definition differs slightly from the classical one $P_m^{\alpha}(\lambda; \phi)$, as

$$q_m^{(\nu)}(i\lambda) = (-i)^m P_m^{\nu/2}(\lambda; \pi/2)$$

(see for instance [1, p. 348].) Its expansion can be written

$$q_m^{(\nu)}(s) = \frac{(\nu)_m}{m!} \sum_{k=0}^m \frac{[m]_k \left[-s - \frac{\nu}{2} \right]_k}{(\nu)_k} \frac{1}{k!} 2^k.$$

The polynomials $q_m^{(\nu)}(i\lambda)$ are orthogonal with respect to the weight on $\mathbb R$

$$\left|\Gamma\left(i\lambda+\frac{\nu}{2}\right)\right|^2\qquad(\nu>0).$$

We define the multivariate Meixner-Pollaczek polynomial $Q_{\mathbf{m}}^{(\nu)}$ as the following symmetric polynomial in n variables:

$$Q_{\mathbf{m}}^{(\nu)}(\mathbf{s}) = \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \sum_{\mathbf{k} \subset \mathbf{m}} d_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}(\mathbf{m} - \rho)\gamma_{\mathbf{k}}\left(-\mathbf{s} - \frac{\nu}{2}\right)}{(\nu)_{\mathbf{k}}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} 2^{|\mathbf{k}|}.$$

For $\nu > \frac{d}{2}(n-1)$ let us denote by $M_{\nu}(d\lambda)$ the probability measure on \mathbb{R}^n given by

$$M_{\nu}(d\lambda) = \frac{1}{Z_{\nu}} \prod_{i=1}^{n} \left| \Gamma\left(i\lambda_{j} + \frac{\nu}{2} - \frac{d}{4}(n-1)\right) \right|^{2} \frac{1}{|c(i\lambda)|^{2}} m(d\lambda),$$

where

$$Z_{\nu} = \int_{\mathbb{R}^n} \prod_{i=1}^n \left| \Gamma\left(i\lambda_j + \frac{\nu}{2} - \frac{d}{4}(n-1)\right) \right|^2 \frac{1}{|c(i\lambda)|^2} m(d\lambda),$$

and c is the Harish-Chandra function for the symmetric cone Ω :

$$c(\mathbf{s}) = c_0 \prod_{j < k} B\left(s_j - s_k, \frac{d}{2}\right).$$

(Here *B* is the Euler beta function, the constant c_0 is such that $c(-\rho) = 1$, see Section XIV.5 in [8].) The constant Z_{ν} can be evaluated by using the spherical Plancherel formula, applied to the function $\psi(u) = e^{-\operatorname{tr} u} \Delta(u)^{\nu/2}$:

$$\int_{\Omega} e^{-2\operatorname{tr} u} \Delta(u)^{\nu - \frac{N}{n}} m(du)$$

$$= (2\pi)^{N-2n} \int_{\mathbb{R}^n} \prod_{j=1}^n \left| \Gamma(i\lambda_j + \frac{\nu}{2} - \frac{d}{4}(n-1) \right|^2 \frac{1}{|c(i\lambda)|^2} m(d\lambda).$$

Therefore

$$Z_{\nu} = (2\pi)^{2n-N} 2^{-n\nu} \Gamma_{\Omega}(\nu).$$

The next statement involves the geometry of the Hermitian symmetric space of tube type associated to the symmetric cone Ω . The map $z\mapsto (z-e)(z+e)^{-1}$ maps the tube domain $T_\Omega=\Omega+iV\subset V_\mathbb{C}$ onto the bounded Hermitian symmetric domain \mathscr{D} . Its inverse is the Cayley transform

$$c(w) = (e + w)(e - w)^{-1}.$$

THEOREM 3.1. *Assume* $v > \frac{d}{2}(n-1)$.

(i) The multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu)}(i\lambda)$ form an orthogonal basis of $L^2(\mathbb{R}^n, M_{\nu})^{\mathfrak{S}_n}$. The norm of $Q_{\mathbf{m}}^{(\nu)}$ is given by

$$\int_{\mathbb{R}^n} |Q_{\mathbf{m}}^{(\nu)}(i\lambda)|^2 M_{\nu}(d\lambda) = \frac{1}{d_{\mathbf{m}}} \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}}.$$

(ii) The polynomials $Q_{\mathbf{m}}^{(\nu)}$ admit the following generating formula: for $\mathbf{s} \in \mathbb{C}^n$, $w \in \mathcal{D}$,

$$\sum_{\mathbf{m}} d_{\mathbf{m}} Q_{\mathbf{m}}^{(\nu)}(\mathbf{s}) \Phi_{\mathbf{m}}(w) = \Delta (e - w^2)^{-\nu/2} \varphi_{\mathbf{s}} (c(w)^{-1}).$$

We divide the proof into several steps.

a) For $\nu > 2\frac{N}{n} - 1 = 1 + d(n-1)$, $\mathcal{H}_{\nu}^2(\mathcal{D})$ denotes the weighted Bergman space of holomorphic functions f on \mathcal{D} such that

$$||f||_{\nu}^{2} := a_{\nu}^{(1)} \int_{\mathbb{R}} |f(w)|^{2} h(w)^{\nu-2\frac{N}{n}} m(dw) < \infty.$$

The constant

$$a_{\nu}^{(1)} = \frac{1}{\pi^n} \frac{\Gamma_{\Omega}(\nu)}{\Gamma_{\Omega}(\nu - \frac{N}{n})}$$

is such that the function $\Phi_0 \equiv 1$ has norm 1. Recall that h(w) = h(w, w), where h(w, w') is a polynomial holomorphic in w, anti-holomorphic in w', such that, for w invertible, $h(w, w') = \Delta(w)\Delta(w^{-1} - \overline{w}')$, where \overline{w}' is the complex conjugate of w' with respect to the real form V of $V_{\mathbb{C}}$. The spherical polynomials $\Phi_{\mathbf{m}}$ form an orthogonal basis of the space $\mathscr{H}^2_{\nu}(\mathscr{D})^K$ of K-invariant functions in $\mathscr{H}^2_{\nu}(\mathscr{D})$, and

$$\|\Phi_{\mathbf{m}}\|_{\nu}^{2} = \frac{1}{d_{\mathbf{m}}} \frac{\left(\frac{N}{n}\right)_{\mathbf{m}}}{(\nu)_{\mathbf{m}}}.$$
(3.1)

The reproducing kernel of $\mathcal{H}^2_{\nu}(\mathcal{D})$ is given by $\mathcal{H}_{\nu}(w, w') = h(w, w')^{-\nu}$. By an integration over K one obtains

$$\mathscr{G}_{\nu}^{(1)}(\zeta, w) := \sum_{\mathbf{m}} d_{\mathbf{m}} \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \Phi_{\mathbf{m}}(\zeta) \Phi_{\mathbf{m}}(w) = \int_{K} h(w, k\overline{\zeta})^{-\nu} dk. \tag{3.2}$$

b) For a function f holomorphic in \mathcal{D} , one defines the function $F = C_{\nu} f$ on T_{Ω} by

$$F(z) = (C_{\nu} f)(z) = \Delta \left(\frac{z+e}{2}\right)^{-\nu} f((z-e)(z+e)^{-1}).$$

The map C_{ν} is a unitary isomorphism from $\mathcal{H}^{2}_{\nu}(\mathcal{D})$ onto the space $\mathcal{H}^{2}_{\nu}(T_{\Omega})$ of holomorphic functions on T_{Ω} such that

$$||F||_{\nu}^{2} := a_{\nu}^{(2)} \int_{T_{\Omega}} |F(z)|^{2} \Delta(x)^{\nu - 2\frac{N}{n}} m(dz) < \infty.$$

The constant

$$a_{\nu}^{(2)} = \frac{1}{(4\pi)^n} \frac{\Gamma_{\Omega}(\nu)}{\Gamma_{\Omega}(\nu - \frac{N}{n})},$$

is such that the function

$$F_0^{(\nu)} = C_{\nu} \Phi_0$$
, i.e. $F_0^{(\nu)}(z) = \Delta \left(\frac{z+e}{2}\right)^{-\nu}$,

has norm 1. The functions $F_{\mathbf{m}}^{(\nu)} = C_{\nu} \Phi_{\mathbf{m}}$ form an orthogonal basis of the space $\mathcal{H}_{\nu}^{2}(T_{\Omega})^{K}$ of K-invariant functions in $\mathcal{H}_{\nu}^{2}(T_{\Omega})$, and it follows from (3.1) that

$$||F_{\mathbf{m}}^{(\nu)}||_{\nu}^{2} = \frac{1}{d_{\mathbf{m}}} \frac{\left(\frac{N}{n}\right)_{\mathbf{m}}}{(\nu)_{\mathbf{m}}}.$$
(3.3)

Performing the transform C_{ν} with respect to ζ in (3.2) we get a generating formula for the functions $F_{\mathbf{m}}^{(\nu)}$: for $w \in \mathcal{D}$, $z \in T_{\Omega}$,

$$\mathcal{G}_{\nu}^{(2)}(z,w) := \sum_{\mathbf{m}} d_{\mathbf{m}} \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \Phi_{\mathbf{m}}(w) F_{\mathbf{m}}^{(\nu)}(z)$$

$$= \Delta \left(\frac{e-w}{2}\right)^{-\nu} \int_{K} \Delta \left(k \cdot z + c(w)\right)^{-\nu} dk. \tag{3.4}$$

c) The functions in $\mathcal{H}^2_{\nu}(T_{\Omega})$ admit a Laplace integral representation. The modified Laplace transform \mathcal{L}_{ν} , given, for a function ψ on Ω , by

$$(\mathscr{L}_{\nu})\psi(z) = a_{\nu}^{(3)} \int_{\Omega} e^{(z|u)} \psi(u) \Delta(u)^{\nu - \frac{N}{n}} m(du),$$

is an isometric isomorphism from the space $L^2_{\nu}(\Omega)$ of measurable functions ψ on Ω such that

$$\|\psi\|_{\nu}^{2} := a_{\nu}^{(3)} \int_{\Omega} |\psi(u)|^{2} \Delta(u)^{\nu - \frac{N}{n}} m(du) < \infty$$

onto $\mathscr{H}^2_{\nu}(T_{\Omega})$. The constant $a_{\nu}^{(3)}=2^{n\nu}/\Gamma_{\Omega}(\nu)$ is such that the function $\Psi_0(u)=e^{-\operatorname{tr} u}$ has norm 1, and then $\mathscr{L}_{\nu}\Psi_0=F_0$. By the binomial formula

$$\begin{split} F_{\mathbf{m}}^{(\nu)}(z) &= \Delta \bigg(\frac{z+e}{2}\bigg)^{-\nu} \Phi_{\mathbf{m}} \big((z-e)(z+e)^{-1} \big) \\ &= \Delta \bigg(\frac{z+e}{2}\bigg)^{-\nu} \Phi_{\mathbf{m}} \big(e-2(z+e)^{-1} \big) \\ &= \sum_{\mathbf{k} \subset \mathbf{m}} (-1)^{|\mathbf{k}|} \binom{\mathbf{m}}{\mathbf{k}} \Phi_{\mathbf{k}} \big(2(z+e)^{-1} \big) \Delta \big(2(e+z)^{-1} \big)^{\nu}. \end{split}$$

By Lemma XI.2.3 in [8] we have the following

LEMMA 3.2.
$$\mathcal{L}_{\nu}(e^{-\text{tru}}\Phi_{\mathbf{m}})(z) = (\nu)_{\mathbf{m}}\Phi_{\mathbf{m}}((z+e)^{-1})\Delta(2(e+z)^{-1})^{\nu}$$
.

By Lemma 3.2 the function

$$\Psi_{\mathbf{m}}^{(\nu)} = \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \mathcal{L}_{\nu}^{-1}(F_{\mathbf{m}}^{(\nu)})$$

is the Laguerre function given by

$$\Psi_{\mathbf{m}}^{(v)}(u) = e^{-\operatorname{tr} u} L_{\mathbf{m}}^{(v-1)}(2u),$$

where $L_{\mathbf{m}}^{(\nu-1)}$ is the multivariate Laguerre polynomial

$$\begin{split} L_{\mathbf{m}}^{(\nu-1)}(x) &= \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \sum_{\mathbf{k} \subset \mathbf{m}} \binom{\mathbf{m}}{\mathbf{k}} \frac{1}{(\nu)_{\mathbf{k}}} \Phi_{\mathbf{k}}(-x) \\ &= \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \sum_{\mathbf{k} \subset \mathbf{m}} d_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}(\mathbf{m} - \rho)}{(\nu)_{\mathbf{k}}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} \Phi_{\mathbf{k}}(-x). \end{split}$$

Proposition 3.3.

(i) The multivariate Laguerre functions $\Psi_{\mathbf{m}}^{(\nu)}$ form an orthogonal basis of $L^2_{\nu}(\Omega)^K$, and

(3.5)
$$\|\Psi_{\mathbf{m}}^{(\nu)}\|_{\nu}^{2} = \frac{1}{d_{\mathbf{m}}} \frac{(\nu)_{\mathbf{m}}}{(\frac{N}{n})_{\mathbf{m}}}.$$

(ii) The functions $\Psi_{\mathbf{m}}^{(v)}$ admit the following generating formula: for $u \in \Omega$, $w \in \mathcal{D}$.

(3.6)
$$\mathscr{G}_{\nu}^{(3)}(u,w) := \sum_{\mathbf{m}} d_{\mathbf{m}} \Psi_{\mathbf{m}}^{(\nu)}(u) \Phi_{\mathbf{m}}(w) = \Delta (e-w)^{-\nu} \int_{K} e^{-(k \cdot u \mid c(w))} dk.$$

The generating formula can also be written

(3.6')
$$\Delta(e-w)^{-\nu} \int_{K} e^{(k \cdot x | w(e-w)^{-1})} dk = \sum_{\mathbf{m}} d_{\mathbf{m}} L_{\mathbf{m}}^{(\nu-1)}(x) \Phi_{\mathbf{m}}(w).$$

Formula (3.6') is proposed as an exercise in [8] (Exercise 3, p. 347). It is a special case of formula (4.4) in [3].

PROOF. Part (i) follows from the fact that \mathcal{L}_{ν} is a unitary isomorphism from $L^2_{\nu}(\Omega)$ onto $\mathcal{H}^2_{\nu}(T_{\Omega})$, and from (3.3).

The modified Laplace transform of $\mathcal{G}_{\nu}^{(3)}(u, w)$ with respect to u is equal to $\mathcal{G}_{\nu}^{(2)}(z, w)$, and one gets (ii) from (3.4).

d) We will evaluate the spherical Fourier transform of the Laguerre functions $\Psi_{\mathbf{m}}^{(\nu)}$. We introduce now the modified spherical Fourier transform \mathscr{F}_{ν} as follows: for a function ψ on Ω ,

$$(\mathscr{F}_{\nu}\psi)(\mathbf{s}) = \frac{1}{\Gamma_{\Omega}(\mathbf{s} + \frac{\nu}{2} + \rho)} \int_{\Omega} \psi(u) \varphi_{\mathbf{s}}(u) \Delta(u)^{\frac{\nu}{2} - \frac{N}{n}} m(du).$$

Observe that $\mathscr{F}_{\nu}\Psi_0 \equiv 1$.

LEMMA 3.4. For Re $s_j > \frac{d}{4}(n-1) - \frac{v}{2}$,

$$\mathscr{F}_{\nu}(e^{-\operatorname{tr} u}\Phi_{\mathbf{m}})(\mathbf{s}) = (-1)^{|\mathbf{m}|}\gamma_{\mathbf{m}}\left(-\mathbf{s} - \frac{\nu}{2}\right).$$

PROOF. Let $\sigma_D(u, \xi)$ be the symbol of $D \in \mathbb{D}(\Omega)$ and $p(\xi) = \sigma_D(e, \xi)$ (see [8], p. 290). By the invariance property of σ_D , we have $\sigma_D(u, -e) = p(-u)$, and therefore $De^{-\operatorname{tr} u} = p(-\xi)e^{-\operatorname{tr} u}$. Hence, for $p(\xi) = \Phi_{\mathbf{m}}(\xi)$,

$$\begin{split} \mathscr{F}_{\nu}(e^{-\operatorname{tr} u}\Phi_{\mathbf{m}})(s) &= (-1)^{|\mathbf{m}|}\mathscr{F}_{\nu}(D^{\mathbf{m}}e^{-\operatorname{tr} u})(s) \\ &= (-1)^{|\mathbf{m}|}\gamma_{\mathbf{m}}\bigg(-\mathbf{s} - \frac{\nu}{2}\bigg)\mathscr{F}_{\nu}(e^{-\operatorname{tr} u}) \\ &= (-1)^{|\mathbf{m}|}\gamma_{\mathbf{m}}\bigg(-\mathbf{s} - \frac{\nu}{2}\bigg). \end{split}$$

From Lemma 3.4 we obtain the evaluation of the spherical Fourier transform of the Laguerre functions: for Re $s_i > \frac{d}{4}(n-1) - \frac{v}{2}$,

$$\mathscr{F}_{\nu}(\Psi_{\mathbf{m}}^{\nu})(\mathbf{s}) = Q_{\mathbf{m}}^{(\nu)}(\mathbf{s}).$$

By the spherical Plancherel formula and part (i) of Proposition 3.3, this proves part (i) of Theorem 3.1, for v > 1 + d(n-1):

$$\int_{\mathbb{R}^n} |Q_{\mathbf{m}}^{(\nu)}(i\lambda)|^2 M_{\nu}(d\lambda) = \frac{1}{d_{\mathbf{m}}} \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}}.$$
(3.7)

By analytic continuation it holds for $\nu > \frac{d}{2}(n-1)$. For proving part (ii) of Theorem 2.1 one performs the spherical Fourier transform to both sides of part (ii) in Proposition 3.3:

$$\mathscr{G}_{\nu}^{(4)}(\mathbf{s}, w) := \sum_{\mathbf{m}} d_{\mathbf{m}} Q_{\mathbf{m}}^{(\nu)}(\mathbf{s}) \Phi_{\mathbf{m}}(w) = \Delta (e - w^2)^{-\nu/2} \varphi_{\mathbf{s}} (c(w)^{-1}).$$

This finishes the proof of Theorem 3.1.

We remark that, in [5], a different notation is used for the Meixner-Pollaczek polynomials: their polynomials $p_{\nu,\mathbf{m}}$ (p. 179), are defined through the generating formula above and $p_{\nu,\mathbf{m}}(i\mathbf{s}) = d_{\mathbf{m}} Q_{\mathbf{m}}^{(\nu)}(\mathbf{s})$.

4. Multivariate Meixner-Pollaczek polynomials $Q_{\mathrm{m}}^{(\nu,\theta)}$

The Meixner-Pollaczek polynomials $q_m^{(\nu)}$ we have considered at the beginning of Section 3 correspond to the special value $\phi = \frac{\pi}{2}$ with the classical notation. Using instead $\theta = \phi - \frac{\pi}{2}$, the more general one variable Meixner-Pollaczek polynomials can be written

$$q_m^{(\nu,\theta)}(s) = e^{im\theta} \frac{(\nu)_m}{m!} {}_2F_1\left(-m, s + \frac{\nu}{2}; \nu; 2e^{-i\theta}\cos\theta\right)$$
$$= e^{im\theta} \frac{(\nu)_m}{m!} \sum_{k=0}^m \frac{[m]_k \left[-s - \frac{\nu}{2}\right]_k}{(\nu)_k} \frac{1}{k!} (2e^{-i\theta}\cos\theta)^k.$$

In terms of the classical notation $P_m^{\alpha}(\lambda; \phi)$

$$q_m^{(\nu,\theta)}(i\lambda) = (-i)^m P_m^{\nu/2} \left(\lambda; \theta + \frac{\pi}{2}\right).$$

For $\nu > 0$, $|\theta| < \frac{\pi}{2}$, the polynomials $q_m^{(\nu,\theta)}(i\lambda)$ are orthogonal with respect to the weight

$$e^{2\theta\lambda}\bigg|\Gamma\bigg(i\lambda+\frac{\nu}{2}\bigg)\bigg|^2.$$

In this section we consider the multivariate Meixner-Pollaczek polynomials $Q_{\mathfrak{m}}^{(\nu,\theta)}$ defined by

$$Q_{\mathbf{m}}^{(\nu,\theta)}(\mathbf{s}) = e^{i|\mathbf{m}|\theta} \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \sum_{\mathbf{k} \subset \mathbf{m}} d_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}(\mathbf{m} - \rho)\gamma_{\mathbf{k}}\left(-\mathbf{s} - \frac{\nu}{2}\right)}{(\nu)_{\mathbf{k}}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} (2e^{-i\theta}\cos\theta)^{|\mathbf{k}|}.$$

Theorem 4.1. *Assume* $\nu > \frac{d}{2}(n-1), |\theta| < \frac{\pi}{2}$.

(i) The multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(v,\theta)}(i\lambda)$ form an orthogonal basis of $L^2(\mathbb{R}^n, e^{2\theta(\lambda_1+\cdots+\lambda_n)}M_v)^{\mathfrak{S}_n}$. The norm of $Q_{\mathbf{m}}^{(v,\theta)}$ is given by:

$$\int_{\mathbb{R}^n} |Q_{\mathbf{m}}^{(\nu,\theta)}(i\lambda)|^2 e^{2\theta(\lambda_1+\cdots+\lambda_n)} M_{\nu}(d\lambda) = (\cos\theta)^{-n\nu} \frac{1}{d_{\mathbf{m}}} \frac{(\nu)_{\mathbf{m}}}{(\frac{N}{n})_{\mathbf{m}}}.$$

(ii) The polynomials $Q_{\mathbf{m}}^{(v,\theta)}$ admit the following generating formula: for $\mathbf{s} \in \mathbb{C}^n$, $w \in \mathcal{D}$,

$$\sum_{\mathbf{m}} d_{\mathbf{m}} Q_{\mathbf{m}}^{(\nu,\theta)}(\mathbf{s}) \Phi_{\mathbf{m}}(w) = \Delta \left((e - e^{i\theta} w)(e + e^{-i\theta} w) \right)^{-\nu/2} \varphi_{\mathbf{s}} \left(c_{\theta}(w)^{-1} \right),$$

where c_{θ} is the modified Cayley transform:

$$c_{\theta}(w) = (e + e^{-i\theta}w)(e - e^{i\theta}w)^{-1}.$$

We will prove Theorem 4.1 in several steps.

a) Let us define the Laguerre functions $\Psi_{\mathbf{m}}^{(\nu,\theta)}$:

$$\Psi_{\mathbf{m}}^{(\nu,\theta)}(u) = e^{i|\mathbf{m}|\theta} e^{-\operatorname{tr} u} L_{\mathbf{m}}^{(\nu-1)}(2e^{-i\theta}\cos\theta u).$$

For functions ψ on V of the form $\psi(u) = e^{-\operatorname{tr} u} p(u)$, where p is a polynomial, define the inner product

$$(\psi_1 \mid \psi_2)_{(\nu,\theta)} = \frac{2^{n\nu}}{\Gamma_{\Omega}(\nu)} \int_{\Omega} \psi_1(e^{i\theta}u) \, \overline{\psi_2(e^{i\theta}u)} \, \Delta(u)^{\nu - \frac{N}{n}} \, m(du).$$

Proposition 4.2.

(i) The Laguerre functions $\Psi_{\mathbf{m}}^{(\nu,\theta)}$ are orthogonal with respect to the inner product $(\cdot \mid \cdot)_{(\nu,\theta)}$. Furthermore

$$\left\|\Psi_{\mathbf{m}}^{(\nu,\theta)}\right\|_{(\nu,\theta)}^{2} = (\cos\theta)^{-n\nu} \frac{1}{d_{\mathbf{m}}} \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}}.$$

(ii) The Laguerre functions $\Psi_{\mathbf{m}}^{(\nu,\theta)}$ satisfy the following generating formula: for $u \in \Omega$, $w \in \mathcal{D}$,

$$\begin{split} \mathscr{G}_{\nu,\theta}^{(3)}(u,w) &:= \sum_{\mathbf{m}} d_{\mathbf{m}} \Psi_{\mathbf{m}}^{(\nu,\theta)}(u) \Phi_{\mathbf{m}}(w) \\ &= \Delta (e - e^{i\theta}w)^{-\nu} \int_{K} e^{(k \cdot u \mid c_{\theta}(w))} dk. \end{split}$$

PROOF. (i) Put $\alpha=e^{i\theta}$, $\beta=2e^{-i\theta}\cos\theta$. For two polynomials p_1 and p_2 consider the functions

$$\psi_1^{(\theta)}(u) = e^{-\operatorname{tr} u} p_1(\beta u), \quad \psi_2^{(\theta)}(u) = e^{-\operatorname{tr} u} p_2(\beta u),$$

and their inner product

$$(\psi_1^{(\theta)} \mid \psi_2^{(\theta)})_{\nu,\theta} = \frac{2^{n\nu}}{\Gamma_{\Omega}(\nu)} \int_{\Omega} e^{-\alpha \operatorname{tr} u} p_1(\beta \alpha u) \overline{e^{-\alpha \operatorname{tr} u} p_2(\beta \alpha u)} \Delta(u)^{\nu - \frac{N}{n}} m(du).$$

Observe that $\beta \alpha = 2 \cos \theta$, $\alpha + \overline{\alpha} = 2 \cos \theta$. Hence

$$\begin{split} (\psi_{1}^{(\theta)} \mid \psi_{2}^{(\theta)})_{\nu,\theta} \\ &= \frac{2^{n\nu}}{\Gamma_{\Omega}(\nu)} \int_{\Omega} e^{-2\cos\theta \operatorname{tr} u} p_{1}(2\cos\theta u) \, \overline{p_{2}(2\cos\theta u)} \, \Delta(u)^{\nu - \frac{n}{N}} \, m(du) \\ &= \frac{2^{n\nu}}{\Gamma_{\Omega}(\nu)} (\cos\theta)^{-n\nu} \int_{\Omega} e^{-2\operatorname{tr} v} p_{1}(2v) \, \overline{p_{2}(2v)} \, \Delta(v)^{\nu - \frac{N}{n}} \, m(dv) \\ &= (\cos\theta)^{-n\nu} (\psi_{1}^{(0)} \mid \psi_{2}^{(0)}). \end{split}$$

Take

$$p_1(u) = L_{\mathbf{p}}^{(v-1)}(u), \quad p_2(u) = L_{\mathbf{q}}^{(v-1)}(u).$$

Then, by part (i) of Proposition 3.3, the statement (i) is proved.

(ii) The sum in the generating formula can be written

$$\sum_{\mathbf{m}} d_{\mathbf{m}} e^{-\operatorname{tr} u} L_{\mathbf{m}}^{(\nu-1)} (2e^{-i\theta} \cos \theta u) \Phi_{\mathbf{m}}(e^{i\theta} w).$$

Hence the generating formula follows from part (ii) in Proposition 3.3.

b) By Lemma 3.4 we obtain the following evaluation of the spherical Fourier transform of the Laguerre functions $\Psi_{\mathbf{m}}^{(\nu,\theta)}$:

$$\mathscr{F}_{\nu}(\Psi_{\mathbf{m}}^{(\nu,\theta)})(\mathbf{s}) = Q_{\mathbf{m}}^{(\nu,\theta)}(\mathbf{s}).$$

We will need a Gutzmer formula for the spherical Fourier transform on a symmetric cone. Let us first state the following Gutzmer formula for the Mellin transform.

Proposition 4.3. Let ψ be holomorphic in the following open set in \mathbb{C} :

$$\{\zeta = re^{i\theta} \mid r > 0, |\theta| < \theta_0\} \quad (0 < \theta_0 < \pi/2).$$

The Mellin transform of ψ is defined by

$$\mathcal{M}\psi(s) = \int_0^\infty \psi(r) r^{s-1} dr.$$

Assume that there is a constant M > 0 such that, for $|\theta| < \theta_0$,

$$\int_0^\infty |\psi(re^{i\theta})|^2 r^{-1} dr \le M.$$

Then

$$\int_0^\infty |\psi(re^{i\theta})|^2 r^{-1}\,dr = \frac{1}{2\pi} \int_{\mathbb{R}} |\mathcal{M}\psi(i\lambda)|^2 e^{2\theta\lambda}\,d\lambda.$$

Using the decomposition of the symmetric cone Ω as $\Omega =]0, \infty[\times \Omega_1,$ where $\Omega_1 = \{ u \in \Omega \mid \Delta(u) = 1 \}$, one gets the following Gutzmer formula for Ω :

PROPOSITION 4.4. Let ψ be a holomorphic function in the tube $T_{\Omega} = \Omega + iV$. Assume that there are constants M > 0 and $0 < \theta_0 < \pi/2$ such that, for $|\theta| < \theta_0$,

 $\int_{\Omega} |\psi(e^{i\theta}u)|^2 \Delta(u)^{-N/n} \, m(du) \le M.$

Then, for $|\theta| < \theta_0$,

$$\int_{\Omega} |\psi(e^{i\theta}u)|^2 \Delta(u)^{-N/n} du$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} |\mathscr{F}\psi(i\lambda)|^2 e^{2\theta(\lambda_1 + \dots + \lambda_n)} \frac{1}{|c(i\lambda)|^2} m(d\lambda).$$

From Proposition 4.2 and Proposition 4.4 we obtain parts (i) and (ii) of Theorem 4.1. A more general Gutzmer formula has been established for the spherical Fourier transform on Riemannian symmetric spaces of non-compact type [7].

5. Determinantal formulae

In the case d=2, i.e. $V=\operatorname{Herm}(n,\mathbb{C}), K=U(n)$, there are determinantal formulae for the multivariate Laguerre functions $\Psi_{\mathbf{m}}^{(\nu)}$ and for the multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu,\theta)}$. Consider a Jordan frame $\{c_1,\ldots,c_n\}$ in V, and let $\delta=(n-1,n-2,\ldots,1,0)$.

THEOREM 5.1. Assume d=2. The multivariate Laguerre function $\Psi_{\mathbf{m}}^{(v)}$ admits the following determinantal formula involving the one variable Laguerre functions $\psi_m^{(v)}$: for $u=\sum_{j=1}^n u_i c_i$,

$$\Psi_{\mathbf{m}}^{(v)}(u) = \delta! 2^{-\frac{1}{2}n(n-1)} \frac{\det(\psi_{m_j+\delta_j}^{(v-n+1)}(u_i))_{1 \le i,j \le n}}{V(u_1,\dots,u_n)},$$

where V denotes the Vandermonde polynomial:

$$V(u_1, ..., u_n) = \prod_{i < j} (u_j - u_i)$$
 and $\delta! = \prod_{i=1}^n (n-i)!$.

As a result one obtains the following determinantal formula for the multivariate Laguerre polynomials:

$$\mathbf{L}_{\mathbf{m}}^{\nu}(u) = \delta! \frac{\det\left(L_{m_j+\delta_j}^{(\nu-n+1)}(u_i)\right)}{V(u_1,\ldots,u_n)}.$$

PROOF. We start from the generating formula for the multivariate Laguerre functions (Proposition 3.3):

$$\mathcal{G}_{\nu}^{(3)}(u,w) = \sum_{\mathbf{m}} d_{\mathbf{m}} \Phi_{\mathbf{m}}(w) \Psi_{\mathbf{m}}^{(\nu)}(u)$$

$$= \Delta (e - w)^{-\nu} \int_{K} e^{-(ku|(e+w)(e-w)^{-1})} dk.$$

In the case d=2, the evaluation of this integral is classical: for $x=\sum_{i=1}^n x_i c_i$, $y=\sum_{j=1}^n y_j c_j$, then

$$\mathscr{I}(x,y) = \int_K e^{(kx|y)} dk = \delta! \frac{\det(e^{x_i y_j})}{V(x_1,\ldots,x_n)V(y_1,\ldots,y_n)}.$$

Therefore, for $u = \sum_{i=1}^{n} u_i c_i$, $w = \sum_{j=1}^{n} w_j c_j$,

$$\mathscr{G}_{\nu}^{(3)}(u,w) = \delta! \prod_{j=1}^{n} (1-w_j)^{-\nu} \frac{\det(e^{-u_i \frac{1+w_j}{1-w_j}})}{V(u_1,\ldots,u_n)V(\frac{1+w_1}{1-w_1},\ldots,\frac{1+w_n}{1-w_n})}.$$

Noticing that

$$\frac{1+w_j}{1-w_i} - \frac{1+w_k}{1-w_k} = 2\frac{w_j - w_k}{(1+w_i)(1+w_k)},$$

we obtain

$$\mathscr{G}_{\nu}^{(3)}(u,w) = \delta! 2^{-\frac{1}{2}n(n-1)} \frac{\det\left((1-w_j)^{-(\nu-n+1)} e^{-u_i \frac{1+w_j}{1-w_j}}\right)}{V(u_1,\ldots,u_n)V(w_1,\ldots,w_n)}.$$

We will expand the above expression in Schur function series by using a formula due to Hua (see [9], Theorem 1.2.1, p. 22).

Lemma 5.2. Consider n power series

$$f_i(w) = \sum_{m=0}^{\infty} c_m^{(i)} w^m$$
 $(i = 1, ..., n).$

Then

$$\frac{\det(f_i(w_j))}{V(w_1,\ldots,w_n)} = \sum_{\mathbf{m}} a_{\mathbf{m}} s_{\mathbf{m}}(w_1,\ldots,w_n),$$

where $s_{\mathbf{m}}$ is the Schur function associated to the partition \mathbf{m} , and

$$a_{\mathbf{m}} = \det(c_{m_i+\delta_i}^{(i)}).$$

Let $\nu' = \nu - n + 1$, and consider the *n* power series

$$f_i(w) := (1-w)^{-\nu'} e^{-u_i \frac{1+w}{1-w}} = \sum_{m=0}^{\infty} \psi_m^{(\nu')}(u_i) w^m.$$

Since

$$d_{\mathbf{m}}\Phi_{\mathbf{m}}\left(\sum_{j=1}^n w_j c_j\right) = s_{\mathbf{m}}(w_1,\ldots,w_n),$$

we obtain

$$\Psi_{\mathbf{m}}^{(\nu)}(u) = \delta! 2^{-\frac{1}{2}n(n-1)} \frac{\det(\psi_{m_j+\delta_j}^{(\nu-n+1)}(u_i))}{V(u_1,\ldots,u_n)}.$$

By using the same method we will obtain a determinantal formula for the multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu,\theta)}$.

THEOREM 5.3. Assume d = 2. Then

$$Q_{\mathbf{m}}^{(\nu,\theta)}(\mathbf{s}) = (-2\cos\theta)^{-\frac{1}{2}n(n-1)}\delta! \frac{\det(q_{m_j+\delta_j}^{(\nu-n+1,\theta)}(s_i))_{1\leq i,j\leq n}}{V(s_1,\ldots,s_n)},$$

where $q_m^{(\nu,\theta)}$ denotes the one variable Meixner-Pollaczek polynomial.

PROOF. We start from the generating formula for the multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu,\theta)}$ (Theorem 4.1(ii)):

$$\sum_{\mathbf{m}} d_{\mathbf{m}} Q_{\mathbf{m}}^{(\nu,\theta)}(\mathbf{s}) \Phi_{\mathbf{m}}(w) = \Delta \left((e - e^{i\theta} w)(e + e^{-i\theta} w) \right)^{-\nu/2} \varphi_{\mathbf{s}} \left(c_{\theta}(w)^{-1} \right).$$

For $x = \sum_{i=1}^{n} x_i c_i$, the spherical function $\varphi_s(x)$ is essentially a Schur function in the variables x_1, \ldots, x_n :

$$\varphi_{\mathbf{s}}(x) = \delta! (x_1 x_2 \dots x_r)^{\frac{1}{2}(n-1)} \frac{\det(x_j^{s_i})}{V(s_1, \dots, s_n) V(x_1, \dots, x_n)}.$$

Let us compute now, for $w = \sum_{j=1}^{n} w_j c_j$,

$$\begin{split} \Delta \Big((e - e^{i\theta} w)(e + e^{-i\theta} w) \Big)^{-\nu/2} \varphi_{\mathbf{s}} \Big(c_{\theta}(w)^{-1} \Big) \\ &= \delta! \prod_{j=1}^{n} (1 - 2i \sin \theta w_{j} - w_{j}^{2})^{-\nu/2} \\ &\times \prod_{j=1}^{n} \Big(c_{\theta}(w_{j}) \Big)^{\frac{1}{2}(n-1)} \frac{\det \Big(\big(c_{\theta}(w_{j}) \big)^{-s_{i}} \big)}{V(s_{1}, \dots, s_{n}) V \Big(c_{\theta}(w_{1}), \dots, c_{\theta}(w_{n}) \Big)}. \end{split}$$

In the same way, as for the proof of Theorem 5.1, we obtain

$$\begin{split} \Delta & \big((e - e^{i\theta} w)(e + e^{-i\theta}) \big)^{-\nu/2} \varphi_{\mathbf{s}} \big(c_{\theta}(w)^{-1} \big) \\ &= (-2\cos\theta)^{-\frac{1}{2}n(n-1)} \delta! \\ &\times \frac{\det \big((1 - e^{i\theta} w_j)^{s_i - \frac{\nu}{2} + \frac{1}{2}(n-1)} (1 + e^{-i\theta} w_j)^{-s_i - \frac{\nu}{2} + \frac{1}{2}(n-1)} \big)}{V(s_1, \dots, s_n) V(w_1, \dots, w_n)} \end{split}$$

We apply once more Lemma 5.2 to the *n* power series

$$f_i(w) := (1 - e^{i\theta}w)^{s_i - \frac{v'}{2}} (1 + e^{-i\theta}w)^{-s_i - \frac{v'}{2}} = \sum_{m}^{\infty} q_m^{(v',\theta)}(s_i)w^m$$

with $\nu' = \nu - n + 1$, and obtain finally:

$$Q_{\mathbf{m}}^{(\nu,\theta)}(\mathbf{s}) = (-2\cos\theta)^{-\frac{1}{2}n(n-1)} \delta! \frac{\det(q_{m_j+\delta_j}^{(\nu-n+1,\theta)}(s_i))}{V(s_1,\ldots,s_n)}.$$

6. Difference equation for the Meixner-Pollaczek polynomials $Q_{\rm m}^{(\nu,\theta)}$

The one variable Meixner-Pollaczek polynomials $q_m = q_m^{(\nu,\theta)}$ satisfy the following difference equation

$$e^{-i\theta}\left(s+\frac{\nu}{2}\right)\left(q_m(s+1)-q_m(s)\right) + e^{i\theta}\left(-s+\frac{\nu}{2}\right)\left(q_m(s-1)-q_m(s)\right) = 2m\cos\theta q_m.$$

(See [1], p. 348, 37.(d)). We will establish an analogue of this formula for the multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu,\theta)}$.

Recall Pieri's formula for spherical functions:

$$\operatorname{tr} u\varphi_{\mathbf{s}}(u) = \sum_{j=1}^{n} \alpha_{j}(\mathbf{s})\varphi_{\mathbf{s}+\varepsilon_{j}}(u), \quad \text{with } \alpha_{j}(\mathbf{s}) = \prod_{k \neq i} \frac{s_{j} - s_{k} + \frac{d}{2}}{s_{j} - s_{k}},$$

where $\{\varepsilon_i\}$ denotes the canonical basis of \mathbb{C}^n . See [6, Proposition 6.1] or [16, Theorem 1] and also [10, p. 320]. We introduce the difference operator $D_{\nu,\theta}$:

$$D_{\nu,\theta} f(\mathbf{s}) = e^{-i\theta} \sum_{j=1}^{n} \left(s_j + \frac{\nu}{2} - \frac{d}{4}(n-1) \right) \alpha_j(\mathbf{s}) \left(f(\mathbf{s} + \varepsilon_j) - f(\mathbf{s}) \right)$$
$$+ e^{i\theta} \sum_{j=1}^{n} \left(-s_j + \frac{\nu}{2} - \frac{d}{4}(n-1) \right) \alpha_j(-\mathbf{s}) \left(f(\mathbf{s} - \varepsilon_j) - f(\mathbf{s}) \right).$$

Theorem 6.1. The Meixner-Pollaczek polynomial $Q_{\mathbf{m}}^{(v,\theta)}$ is an eigenfunction of the difference operator $D_{v,\theta}$:

$$D_{\nu,\theta} Q_{\mathbf{m}}^{(\nu,\theta)} = 2|\mathbf{m}|\cos\theta \ Q_{\mathbf{m}}^{(\nu,\theta)}.$$

For the proof we will use the scheme we have used in the proof of Theorem 3.1. For i=1,2,3,4, we define the operators $D_{\nu,\theta}^{(i)}$. The operator $D_{\nu,\theta}^{(1)}=D_{\theta}^{(1)}$ is a first order differential operator on the domain \mathcal{D} :

$$D_{\theta}^{(1)} f = e^{i\theta} \langle w + e, \nabla f \rangle + e^{-i\theta} \langle w - e, \nabla f \rangle.$$

(For $w_1, w_2 \in V_{\mathbb{C}}$, we put $\langle w_1, w_2 \rangle = \operatorname{tr}(w_1 w_2)$.) The operators $D_{\nu,\theta}^{(i)}$, for i=2,3,4, are defined by the relations:

$$D_{\nu,\theta}^{(2)} C_{\nu} = C_{\nu} D_{\nu,\theta}^{(1)}, \quad \mathscr{L}_{\nu} D_{\nu,\theta}^{(3)} = D_{\nu,\theta}^{(2)} \mathscr{L}_{\nu}, \quad \mathscr{F}_{\nu} D_{\nu,\theta}^{(3)} = D_{\nu,\theta}^{(4)} \mathscr{F}_{\nu}.$$

The operator $D_{\nu,\theta}^{(2)}$ is a first order differential operator on the tube T_{Ω} . In Section 8 we will see that $D_{\nu,\theta}^{(3)}$ is a second order differential operator on the cone Ω , and prove that $D_{\nu,\theta}^{(4)}$ is the difference operator $D_{\nu,\theta}$ we have introduced above.

The function $\Phi_{\mathbf{m}}^{(\theta)}(w) = \Phi_{\mathbf{m}}(w\cos\theta + ie\sin\theta)$ is an eigenfunction of the operator $D_{\theta}^{(1)} \colon D_{\theta}^{(1)}\Phi_{\mathbf{m}}^{(\theta)} = 2|\mathbf{m}|\cos\theta \ \Phi_{\mathbf{m}}^{(\theta)}$. Hence $F_{\mathbf{m}}^{(\nu,\theta)} = C_{\nu}\Phi_{\mathbf{m}}^{(\theta)}$ is an eigenfunction of $D_{\nu,\theta}^{(2)} \colon D_{\nu,\theta}^{(2)} F_{\mathbf{m}}^{(\nu,\theta)} = 2|\mathbf{m}|\cos\theta \ F_{\mathbf{m}}^{(\nu,\theta)}$. Further, since

$$\mathscr{L}_{\nu}\Psi_{\mathbf{m}}^{(\nu,\theta)} = \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} F_{\mathbf{m}}^{(\nu,\theta)},$$

we get $D_{\nu,\theta}^{(3)}\Psi_{\mathbf{m}}^{(\nu,\theta)}=2|\mathbf{m}|\cos\theta~\Psi_{\mathbf{m}}^{(\nu,\theta)}$. Finally, since $Q_{\mathbf{m}}^{(\nu,\theta)}=\mathscr{F}_{\nu}\Psi_{\mathbf{m}}^{(\nu,\theta)}$, then $D_{\nu,\theta}^{(4)}Q_{\mathbf{m}}^{(\nu,\theta)}=2|\mathbf{m}|\cos\theta~Q_{\mathbf{m}}^{(\nu,\theta)}$. Hence the proof of Theorem 6.1 amounts to showing that $D_{\nu,\theta}^{(4)}=D_{\nu,\theta}$.

7. The symmetries $S_{\nu}^{(i)}$ (i = 1, 2, 3, 4) and the Hankel transform

The symmetries $S_{\nu}^{(i)}$ we introduce now will be useful for the computation of the operators $D_{\nu,\theta}^{(i)}$. We start from the symmetry $w\mapsto -w$ of the domain \mathscr{D} . Its action on functions is given by $S^{(1)}f(w)=f(-w)$. We carry this symmetry over the tube T_{Ω} through the Cayley transform and obtain the inversion $z\mapsto z^{-1}$. We define $S_{\nu}^{(2)}$ such that $S_{\nu}^{(2)}C_{\nu}=C_{\nu}S^{(1)}$. Hence, for a function F on T_{Ω} , we have $S_{\nu}^{(2)}F(z)=\Delta(z)^{-\nu}F(z^{-1})$. Further $S_{\nu}^{(3)}$ is defined by the relation

 $\mathcal{L}_{\nu}S_{\nu}^{(3)} = S_{\nu}^{(2)}\mathcal{L}_{\nu}$. By a generalized Tricomi theorem (Theorem XV.4.1 in [8]), the unitary isomorphism $S_{\nu}^{(3)}$ of $L_{\nu}^{2}(\Omega)$ is the Hankel transform: $S_{\nu}^{(3)} = U_{\nu}$,

$$U_{\nu}\psi(u) = \int_{\Omega} H_{\nu}(u,v)\psi(v)\Delta(v)^{\nu-\frac{N}{n}} m(dv).$$

The kernel $H_{\nu}(u, v)$ has the following invariance property: for $g \in G$,

$$H_{\nu}(g \cdot u, v) = H_{\nu}(u, g^* \cdot v), \quad \text{and} \quad H_{\nu}(u, e) = \frac{1}{\Gamma_{\Omega}(\nu)} \mathscr{J}_{\nu}(u),$$

where \mathcal{I}_{v} is a multivariate Bessel function.

Finally we define $S_{\nu}^{(4)}$ acting on symmetric polynomials in n variables such that

$$S_{\nu}^{(4)}\mathscr{F}_{\nu}=\mathscr{F}_{\nu}S_{\nu}^{(3)}.$$

PROPOSITION 7.1. For a function ψ on Ω of the form $\psi(u) = e^{-\operatorname{tr} u} q(u)$, where q is a K-invariant polynomial, $\mathscr{F}_{\nu}(U_{\nu}\psi)(\mathbf{s}) = \mathscr{F}_{\nu}\psi(-\mathbf{s})$. It follows that, for a symmetric polynomial p on \mathbb{C}^n ,

$$S_{\nu}^{(4)}p(\mathbf{s})=p(-\mathbf{s}).$$

PROOF. We will evaluate the spherical Fourier transform $\mathscr{F}_{\nu}(U_{\nu}\psi)$. By the invariance property, the kernel $H_{\nu}(u, v)$ can be written

$$H_{\nu}(u, v) = h_{\nu}(P(v^{1/2})u)\Delta(u)^{-\nu/2}\Delta(v)^{-\nu/2},$$

with $h_{\nu}(u) = H_{\nu}(u, e)\Delta(u)^{\nu/2}$, and P the so-called quadratic representation of the Jordan algebra V. Let us compute first

$$\int_{\Omega} H_{\nu}(u,v)\varphi_{\mathbf{s}}(u)\Delta(u)^{\frac{\nu}{2}-\frac{N}{n}} m(du)$$

$$= \Delta(v)^{-\nu/2} \int_{\Omega} h_{\nu}(P(v^{1/2})u)\varphi_{\mathbf{s}}(u)\Delta(u)^{-N/n} m(du).$$

By letting $P(v^{1/2})u = u'$, we get

$$\begin{split} \int_{\Omega} H_{\nu}(u,v) \varphi_{\mathbf{s}}(u) \Delta(u)^{\frac{\nu}{2} - \frac{N}{n}} \, m(du) \\ &= \Delta(v)^{-\nu/2} \int_{\Omega} h_{\nu}(u') \varphi_{\mathbf{s}}(P(v^{-1/2})u') \Delta(u')^{-N/n} \, m(du'). \end{split}$$

By using K-invariance and the functional equation of the spherical function φ_s ,

$$\int_{K} \varphi_{\mathbf{s}}(P(v^{-1/2})ku') \, dk = \varphi_{\mathbf{s}}(v^{-1})\varphi_{\mathbf{s}}(u'),$$

we get

$$\int_{\Omega} H_{\nu}(u,v)\varphi_{\mathbf{s}}(u)\Delta(u)^{\frac{\nu}{2}-\frac{N}{n}} m(du) = \varphi_{\mathbf{s}}(v^{-1})\Delta(v)^{-\nu/2} \mathscr{F}(h_{\nu})(\mathbf{s}).$$

Recall that $\varphi_s(v^{-1}) = \varphi_{-s}(v)$. We multiply both sides by $\psi(v)$ and get by integrating with respect to v that

$$\Gamma_{\Omega}\left(\mathbf{s} + \frac{\nu}{2} + \rho\right) \mathcal{F}_{\nu}(U_{\nu}\psi)(\mathbf{s}) = \mathcal{F}h_{\nu}(\mathbf{s})\Gamma_{\Omega}\left(-\mathbf{s} + \frac{\nu}{2} + \rho\right) \mathcal{F}_{\nu}\psi(-\mathbf{s}).$$

Consider the special case $\psi(u) = \Psi_0(u) = e^{-\operatorname{tr} u}$. Since $U_{\nu}\Psi_0 = \Psi_0$ and $\mathscr{F}_{\nu}\Psi_0 \equiv 1$, we get

$$\mathscr{F}(h_{\nu})(\mathbf{s}) = \frac{\Gamma_{\Omega}(\mathbf{s} + \frac{\nu}{2} + \rho)}{\Gamma_{\Omega}(-\mathbf{s} + \frac{\nu}{2} + \rho)}.$$

Finally $\mathscr{F}_{\nu}(U_{\nu}\psi)(\mathbf{s}) = \mathscr{F}_{\nu}\psi(-\mathbf{s})$, and $S_{\nu}^{(4)}p(\mathbf{s}) = p(-\mathbf{s})$.

Corollary 7.2.
$$Q_{\mathbf{m}}^{(\nu,\theta)}(-\mathbf{s}) = (-1)^{|\mathbf{m}|} Q_{\mathbf{m}}^{(\nu,-\theta)}(\mathbf{s}).$$

PROOF. This relation follows from

$$(S^{(1)}\Phi_{\mathbf{m}}^{(\theta)})(w) = \Phi_{\mathbf{m}}^{(\theta)}(-w) = (-1)^{|\mathbf{m}|}\Phi_{\mathbf{m}}^{(-\theta)}(w),$$

which is easy to check, and Proposition 7.1.

The operators $D_{\nu,\theta}^{(i)}$ (i = 1, 2, 3, 4) can be written

$$D_{\nu,\theta}^{(i)} = e^{i\theta} D_{\nu}^{(i,+)} + e^{-i\theta} D_{\nu}^{(i,-)}.$$

For i = 1, $D_{\nu}^{(1,\pm)}$ does not depend on ν , $D_{\nu}^{(1,\pm)} = D^{(1,\pm)}$,

$$D^{(1,+)}f(w) = \langle w + e, \nabla f(w) \rangle, \quad D^{(1,-)}f(w) = \langle w - e, \nabla f(w) \rangle.$$

Observe that $D^{(1,-)} = S^{(1)}D^{(1,+)}S^{(1)}$. Hence, for i=2,3,4, we have $D^{(i,-)}_{\nu} = S^{(i)}_{\nu}D^{(i,+)}_{\nu}S^{(i)}_{\nu}$.

In the next Section we will first compute $D_{\nu}^{(i,-)}$. The operator $D_{\nu}^{(i,+)}$ is then obtained by using the above relation. For i=3, we will use the following property of the Hankel transform:

Proposition 7.3.
$$U_{\nu}(\operatorname{tr} v \psi) = -\left(\left\langle u, \left(\frac{\partial}{\partial u}\right)^{2}\right\rangle + \nu \operatorname{tr}\left(\frac{\partial}{\partial u}\right)\right) U_{\nu}\psi.$$

This is a consequence of Proposition XV.2.3 in [8].

8. Proof of Theorem 6.1

a) Recall that $D^{(1,-)}$ is the first order differential operator on the domain \mathcal{D} given by

 $D^{(1,-)} f(w) = \langle w - e, \nabla f(w) \rangle,$

and $D_{\nu}^{(2,-)}$ is the first order differential operator on the tube T_{Ω} such that

$$D_{\nu}^{(2,-)}C_{\nu}=C_{\nu}D^{(1,-)}.$$

Lemma 8.1.
$$D_{\nu}^{(2,-)}F(z) = -\langle z + e, \nabla F(z) \rangle - n\nu F(z).$$

PROOF. Recall that, for a function F on the tube T_{Ω} ,

$$f(w) = (C_{v}^{-1}F)(w) = \Delta(e-w)^{-v}F(c(w)),$$

where c is the Cayley transform

$$c(w) = (e + w)(e - w)^{-1} = 2(e - w)^{-1} - e.$$

Its differential is given by

$$(Dc)_w = 2P((e-w)^{-1}).$$

We get

$$\nabla f(w) = \nabla \left(\Delta (e - w)^{-\nu} \right) F(c(w)) + \Delta (e - w)^{-\nu} 2P(e - w)^{-1} \right) \left(\nabla F(c(w)) \right).$$

By using $\nabla(\Delta(x)^{\alpha}) = \alpha \Delta(x)^{\alpha} x^{-1}$,

$$\langle e - w, (e - w)^{-1} \rangle = n$$
 and $P((e - w)^{-1})(e - w) = (e - w)^{-1}$,

we obtain

$$D^{(1,-)}f(w) = \langle w - e, \nabla f(w) \rangle$$

= $\Delta(e - w)^{-\nu} \left(-n\nu F(c(w)) + 2 \langle (w - e)^{-1}, \nabla F(c(w)) \rangle \right)$
= $(C_{\nu}^{-1}G)(z)$,

with

$$G(z) = -\langle z + e, \nabla F(z) \rangle - n \nu F(z).$$

b) Consider now the differential operator $D^{(3,-)}_{\nu}$ on the cone Ω such that

$$\mathscr{L}_{\nu}D_{\nu}^{(3,-)}=D_{\nu}^{(2,-)}\mathscr{L}_{\nu}.$$

Recall that the modified Laplace transform $\mathcal{L}_{\nu}\psi$ of a function ψ , defined on Ω , is given by

$$F(z) = \mathcal{L}_{\nu}\psi(z) = \frac{2^{n\nu}}{\Gamma_{\Omega}(\nu)} \int_{\Omega} e^{-(z|u)} \psi(u) \Delta(u)^{\nu - \frac{N}{n}} m(du).$$

LEMMA 8.2. $D_{\nu}^{(3,-)}\psi(u) = \langle u, \nabla \psi(u) \rangle + \operatorname{tr} u \psi(u)$.

PROOF. For $a \in V_{\mathbb{C}}$,

$$\langle a, \nabla F(z) \rangle = \frac{2^{n\nu}}{\Gamma_{\Omega}(\nu)} \int_{\Omega} e^{-(z|u)} (-\langle a, u \rangle) \psi(u) \Delta(u)^{\nu - \frac{N}{n}} m(du).$$

Observe that $(z \mid u)e^{-(z|u)} = \langle u, \nabla_u \rangle e^{-(z|u)}$. Therefore

$$\langle z, \nabla F(z) \rangle = \frac{2^{n\nu}}{\Gamma_{\Omega}(\nu)} \int_{\Omega} (-\langle u, \nabla_u \rangle e^{-(z|u)}) \psi(u) \Delta(u)^{\nu - \frac{N}{n}} m(du).$$

An integration by parts gives this is equal to

$$\frac{2^{n\nu}}{\Gamma_{\Omega}(\nu)} \int_{\Omega} e^{-(z|u)} (\langle u, \nabla \rangle + n\nu) \psi(u) \Delta^{\nu - \frac{N}{n}} m(du).$$

Finally

$$(D_{\nu}^{(2,-)}F)(z) = \mathcal{L}_{\nu}(\langle u, \nabla \psi \rangle + \operatorname{tr} u \psi).$$

c) The operator $D_{\nu}^{(4,-)}$ acting on symmetric functions on \mathbb{C}^n is such that

$$D_{\nu}^{(4,-)}\mathscr{F}_{\nu}=\mathscr{F}_{\nu}D_{\nu}^{(3,-)}.$$

Recall that the spherical Fourier transform $f = \mathscr{F}_{\nu} \psi$ of a function ψ defined on Ω , is given by

$$f(\mathbf{s}) = (\mathscr{F}_{\nu}\psi)(\mathbf{s}) = \frac{1}{\Gamma_{\Omega}(\mathbf{s} + \frac{\nu}{2} + \rho)} \int_{\Omega} \varphi_{\mathbf{s}}(u)\psi(u)\Delta(u)^{\frac{\nu}{2} - \frac{N}{n}} m(du).$$

PROPOSITION 8.3. The operator $D_{\nu}^{(4,-)}$ is the following difference operator: for a function f on \mathbb{C}^n ,

$$D_{\nu}^{(4,-)}f(\mathbf{s}) = \sum_{j=1}^{n} \left(s_j + \frac{\nu}{2} - \frac{d}{4}(n-1)\alpha_j(\mathbf{s}) \right) \left(f(\mathbf{s} + \varepsilon_j) - f(\mathbf{s}) \right).$$

PROOF. We will compute $\mathscr{F}_{\nu}(D_{\nu}^{(3,-)}\psi)=\mathscr{F}_{\nu}(\langle u,\nabla\psi\rangle+\operatorname{tr} u\,\psi).$ Consider first

$$\mathscr{F}_{\nu}(\langle u, \nabla \psi \rangle)(\mathbf{s}) = \frac{1}{\Gamma_{\Omega}(\mathbf{s} + \frac{\nu}{2} + \rho)} \int_{\Omega} \langle u, \nabla \psi(u) \rangle \varphi_{\mathbf{s} + \frac{\nu}{2}}(u) \Delta(u)^{-N/n} \, m(du).$$

An integration by parts gives, using that the function φ_s is homogeneous of degree $\sum_{j=1}^{n} s_j$ and that $\sum_{j=1}^{n} \rho_j = 0$, that

$$\begin{split} \mathscr{F}_{\nu}(\langle u, \nabla \psi \rangle)(\mathbf{s}) \\ &= \frac{1}{\Gamma_{\Omega}(\mathbf{s} + \frac{\nu}{2} + \rho)} \int_{\Omega} \psi(u) \left(-\langle u, \nabla_{u} \rangle \varphi_{\mathbf{s} + \frac{\nu}{2}}(u) \right) \Delta(u)^{-N/n} m(du) \\ &= \frac{1}{\Gamma_{\Omega}(\mathbf{s} + \frac{\nu}{2} + \rho)} \int_{\Omega} \psi(u) \left(-\sum_{j=1}^{n} \left(s_{j} + \frac{\nu}{2} \right) \right) \varphi_{\mathbf{s}}(u) \Delta(u)^{\frac{\nu}{2} - \frac{N}{n}} m(du) \\ &= -\sum_{j=1}^{n} \left(s_{j} + \frac{\nu}{2} \right) \mathscr{F}_{\nu} \psi(\mathbf{s}). \end{split}$$

Recall Pieri's formula for spherical functions:

$$\operatorname{tr} u \, \varphi_{\mathbf{s}}(u) = \sum_{j=1}^{n} \alpha_{j}(\mathbf{s}) \varphi_{\mathbf{s}+\varepsilon_{j}}(u), \quad \text{with } \alpha_{j}(\mathbf{s}) = \prod_{k \neq j} \frac{s_{j} - s_{k} + \frac{d}{2}}{s_{j} - s_{k}}.$$

Hence

$$\mathcal{F}_{\nu}(\operatorname{tr} u \, \psi)(\mathbf{s}) = \frac{1}{\Gamma_{\Omega}(\mathbf{s} + \frac{\nu}{2} + \rho)} \int_{\Omega} \psi(u) \left(\sum_{j=1}^{n} \alpha(\mathbf{s}) \varphi_{\mathbf{s} + \varepsilon_{j}}(u) \right) \Delta(u)^{\frac{\nu}{2} - \frac{N}{n}} m(du)
= \sum_{j=1}^{n} \frac{\Gamma_{\Omega}(\mathbf{s} + \varepsilon_{j} + \frac{\nu}{2} + \rho)}{\Gamma_{\Omega}(\mathbf{s} + \frac{\nu}{2} + \rho)} \alpha_{j}(\mathbf{s})
\times \frac{1}{\Gamma_{\Omega}(\mathbf{s} + \varepsilon_{j} + \frac{\nu}{2} + \rho)} \int_{\Omega} \psi(u) \varphi_{\mathbf{s} + \varepsilon_{j}}(u) \Delta^{\frac{\nu}{2} - \frac{N}{n}} m(du)
= \sum_{j=1}^{n} \left(s_{j} + \frac{\nu}{2} - \frac{d}{4}(n-1) \right) \alpha_{j}(\mathbf{s}) \mathcal{F}_{\nu} \psi(\mathbf{s} + \varepsilon_{j}).$$

Finally

$$\mathscr{F}_{\nu}(D_{\nu}^{(3,-)}\psi)(\mathbf{s}) = \sum_{j=1}^{n} \left(s_j + \frac{\nu}{2} - \frac{d}{4}(n-1) \right) \alpha_j(\mathbf{s}) f(\mathbf{s} + \varepsilon_j) - \sum_{j=1}^{n} \left(s_j + \frac{\nu}{2} \right) f(\mathbf{s})$$

with $f = \mathscr{F}_{\nu}(\psi)$. From $D_{\nu}^{(3,-)}\Psi_0 = 0$ and $\mathscr{F}_{\nu}(\Psi_0) = 1$, we get

$$\sum_{j=1}^{n} \left(s_j + \frac{\nu}{2} - \frac{d}{4}(n-1) \right) \alpha_j(\mathbf{s}) = \sum_{j=1}^{n} \left(s_j + \frac{\nu}{2} \right).$$

Therefore

$$\mathscr{F}_{\nu}(D_{\nu}^{(3,-)}\psi)(\mathbf{s}) = \sum_{j=1}^{n} \left(s_j + \frac{\nu}{2} - \frac{d}{4}(n-1) \right) \alpha_j(\mathbf{s}) \left(f(\mathbf{s} + \varepsilon_j) - f(\mathbf{s}) \right).$$

We now finish the proof of Theorem 6.1. Recall that

$$D_{\nu}^{(4,+)} = S_{\nu}^{(4)} D_{\nu}^{(4,-)} S_{\nu}^{(4)}$$
 and $S_{\nu}^{(4)} f(\mathbf{s}) = f(-\mathbf{s})$.

Therefore, by Proposition 8.3,

$$D_{\nu}^{(4,+)}f(\mathbf{s}) = \sum_{j=1}^{n} \left(-s_j + \frac{\nu}{2} - \frac{d}{4}(n-1)\right) \alpha_j(-\mathbf{s}) \left(f(\mathbf{s} - \varepsilon_j) - f(\mathbf{s})\right).$$

We have established the formula of Theorem 6.1 since

$$D_{\nu,\theta} = D_{\nu,\theta}^{(4)} = e^{i\theta} D_{\nu}^{(4,+)} + e^{-i\theta} D_{\nu}^{(4,-)}.$$

9. Pieri's formula for the Meixner-Pollaczek polynomials $\mathit{Q}_{\mathrm{m}}^{\scriptscriptstyle(\nu,\theta)}$

Theorem 9.1. The Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(v,\theta)}$ satisfy the following Pieri formula:

$$(2|\mathbf{s}|\cos\theta - 2i|2\mathbf{m} + \nu|\sin\theta)Q_{\mathbf{m}}^{(\nu,\theta)}(\mathbf{s})$$

$$= \sum_{j=1}^{n} \left(m_{j} + \nu - 1 - \frac{d}{4}(j-1) \right) \alpha_{j}(\mathbf{m} - \varepsilon_{j} - \rho) d_{\mathbf{m} - \varepsilon_{j}} Q_{\mathbf{m} - \varepsilon_{j}}^{(\nu,\theta)}(\mathbf{s})$$

$$- \sum_{j=1}^{n} \left(m_{j} + 1 + \frac{d}{4}(n-j) \right) \alpha_{j}(-\mathbf{m} - \varepsilon_{j} - \rho) d_{\mathbf{m} + \varepsilon_{j}} Q_{\mathbf{m} + \varepsilon_{j}}^{(\nu,\theta)}(\mathbf{s}).$$

PROOF. The generating formula (Theorem 3.1(ii)), with $\mathbf{s} = \mathbf{m} + \frac{v}{2} - \rho$ can be written as

$$\sum_{\mathbf{k}} d_{\mathbf{k}} Q_{\mathbf{k}}^{(\nu,\theta)} \left(\mathbf{m} + \frac{\nu}{2} - \rho \right) \Phi_{\mathbf{k}}(w)$$

$$= \Delta (e + e^{-i\theta} w)^{-\nu} \Phi_{\mathbf{m}} \left((e - e^{i\theta} w)(e + e^{-i\theta} w)^{-1} \right).$$

Since

$$F_{\mathbf{m}}^{(\nu,\theta)}(e^{-i\theta}w) = 2^{n\nu}\Delta(e + e^{-i\theta}w)^{-\nu}(-1)^{|\mathbf{m}|}e^{-i|\mathbf{m}|\theta}\Phi_{\mathbf{m}}((e - e^{i\theta}w)(e + e^{-i\theta}w)^{-1}),$$

we obtain

$$\sum_{\mathbf{k}} Q_{\mathbf{k}}^{(\nu,\theta)} \left(\mathbf{m} + \frac{\nu}{2} - \rho \right) e^{i|\mathbf{k}|\theta} \Phi_{\mathbf{k}}(w) = 2^{-n\nu} (-1)^{|\mathbf{m}|} e^{i|\mathbf{m}|\theta} F_{\mathbf{m}}^{(\nu,\theta)}(w).$$

Recall that the function $F_{\mathbf{m}}^{(\nu,\theta)}$ is an eigenfunction of the differential operator $D_{\nu,\theta}^{(2)}$:

$$D_{\nu\theta}^{(2)}F_{\mathbf{m}}^{(\nu,\theta)}(w) = 2|\mathbf{m}|\cos\theta F_{\mathbf{m}}^{(\nu,\theta)}(w).$$

It follows that

(9.1)
$$\sum_{\mathbf{k}} d_{\mathbf{k}} Q_{\mathbf{k}}^{(\nu,\theta)} \left(\mathbf{m} + \frac{\nu}{2} - \rho \right) e^{i|\mathbf{k}|\theta} D_{\nu,\theta}^{(2)} \Phi_{\mathbf{k}}(w)$$
$$= 2|\mathbf{m}| \cos \theta \sum_{\mathbf{k}} d_{\mathbf{k}} Q_{\mathbf{k}}^{(\nu,\theta)} \left(\mathbf{m} + \frac{\nu}{2} - \rho \right) \Phi_{\mathbf{k}}(w).$$

To prove Theorem 9.1 we will compute $D_{v,\theta}^{(2)} \Phi_{\mathbf{k}}(w)$.

LEMMA 9.2. The following formulas hold.

(i)
$$\operatorname{tr}(\nabla \varphi_{\mathbf{s}}(z)) = \sum_{j=1}^{n} \left(s_{j} + \frac{d}{4}(n-1) \right) \alpha_{j}(-\mathbf{s}) \varphi_{\mathbf{s}-\varepsilon_{j}}(z).$$

(ii)

$$\begin{split} &D_{\nu,\theta}^{(2)}\varphi_{\mathbf{s}}(z)\\ &=e^{i\theta}\bigg(\sum_{j=1}^n\bigg(s_j-\frac{d}{4}(n-1)+\nu\bigg)\alpha_j(\mathbf{s})\varphi_{\mathbf{s}+\varepsilon_j}(z)+\bigg(\sum_{j=1}^ns_j\bigg)\varphi_{\mathbf{s}}(z)\bigg)\\ &-e^{-i\theta}\bigg(\sum_{j=1}^n\bigg(s_j+\frac{d}{4}(n-1)\bigg)\alpha_j(-\mathbf{s})\varphi_{\mathbf{s}-\varepsilon_j}(z)+\bigg(\sum_{j=1}^ns_j\bigg)\varphi_{\mathbf{s}}(z)+n\nu\varphi_{\mathbf{s}}(z)\bigg). \end{split}$$

PROOF. (i) For t > 0 we consider the following Laplace integral:

$$\int_{\Omega} e^{-(x|y)} e^{-t \operatorname{tr} y} \varphi_{\mathbf{s}}(y) \Delta(y)^{-N/n} m(dy) = \Gamma_{\Omega}(\mathbf{s} + \rho) \varphi_{-\mathbf{s}}(te + x).$$

Taking the derivative with respect to t for t = 0, one gets

$$-\int_{\Omega} e^{-(x|y)} \operatorname{tr} y \, \varphi_{\mathbf{s}}(y) \Delta(y)^{-N/n} \, m(dy) = \Gamma_{\Omega}(\mathbf{s} + \rho) \operatorname{tr}(\nabla \varphi_{-\mathbf{s}}(x)).$$

By using Pieri's formula for spherical functions,

tr
$$y \varphi_{\mathbf{s}}(y) = \sum_{j=1}^{n} \alpha_{j}(\mathbf{s}) \varphi_{\mathbf{s}+\varepsilon_{j}}(y),$$

and since

$$\sum_{j=1}^{n} \alpha_{j}(\mathbf{s}) \int_{\Omega} e^{-(x|y)} \varphi_{\mathbf{s}+\varepsilon_{j}}(y) \Delta(y)^{-N/n} m(dy)$$

$$= \sum_{j=1}^{n} \alpha_{j}(\mathbf{s}) \Gamma_{\Omega}(\mathbf{s}+\varepsilon_{j}+\rho) \varphi_{-\mathbf{s}-\varepsilon_{j}}(x),$$

one obtains

$$\operatorname{tr}(\nabla \varphi_{-\mathbf{s}}(x)) = -\sum_{j=1}^{n} \alpha_{j}(\mathbf{s}) \frac{\Gamma_{\Omega}(\mathbf{s} + \varepsilon_{j} + \rho)}{\Gamma_{\Omega}(\mathbf{s} + \rho)} \varphi_{-\mathbf{s} - \varepsilon_{j}}(x)$$
$$= -\sum_{j=1}^{n} \alpha_{j}(\mathbf{s}) \left(s_{j} - \frac{d}{4}(n-1)\right) \varphi_{-\mathbf{s} - \varepsilon_{j}}(x),$$

or

$$\operatorname{tr}(\nabla \varphi_{\mathbf{s}}(x)) = \sum_{j=1}^{n} \alpha_{j}(-\mathbf{s}) \left(s_{j} + \frac{d}{4}(n-1) \right) \varphi_{\mathbf{s}-\varepsilon_{j}}(x).$$

In fact the explicit formula for Γ_{Ω} ,

$$\Gamma_{\Omega}(\mathbf{s}+\rho) = (2\pi)^{N-n} \prod_{j=1}^{n} \Gamma\left(s_{j} - \frac{d}{4}(n-1)\right),$$

gives

$$\frac{\Gamma_{\Omega}(\mathbf{s}+\varepsilon_j+\rho)}{\Gamma_{\Omega}(\mathbf{s}+\rho)} = \frac{\Gamma(s_j+1-\frac{d}{4}(n-1))}{\Gamma(s_j-\frac{d}{4}(n-1))} = s_j - \frac{d}{4}(n-1).$$

(ii) Recall that

$$D_{\nu}^{(2,-)}F(z) = -\langle z + e, \nabla F(z) \rangle - n\nu F(z).$$

From (i) we obtain

$$D_{\nu}^{(2,-)}\varphi_{\mathbf{s}}(z) = \sum_{j=1}^{n} \left(s_j + \frac{d}{4}(n-1) \right) \alpha_j(-\mathbf{s}) \varphi_{\mathbf{s}-\varepsilon_j}(z) - \left(\sum_{j=1}^{n} s_j + n\nu \right) \varphi_{\mathbf{s}}(z).$$

By using
$$D_{\nu}^{(2,+)}=S_{\nu}^{(2)}D_{\nu}^{(2,-)}S_{\nu}^{(2)}$$
 and $S_{\nu}^{(2)}\varphi_{\mathbf{s}}(z)=\varphi_{-\mathbf{s}-\nu}(z)$, we get (ii).

We continue the proof of Theorem 9.1. Let us write out (ii) of Lemma 9.2 with $\mathbf{s} = \mathbf{k} - \rho$:

$$\begin{split} &D_{\nu,k}^{(2)}\Phi_{\mathbf{k}}(w)\\ &=e^{i\theta}\bigg(\sum_{j=1}^n \bigg(k_j+\nu-\frac{d}{2}(j-1)\bigg)\alpha_j(\mathbf{k}-\rho)\Phi_{\mathbf{k}+\varepsilon_j}(w)+|\mathbf{k}|\Phi_{\mathbf{k}}(w)\bigg)\\ &-e^{-i\theta}\bigg(\sum_{j=1}^n \bigg(k_j+\frac{d}{2}(n-j)\bigg)\alpha_j(-\mathbf{k}+\rho)\Phi_{\mathbf{k}-\varepsilon_j}(w)+(|\mathbf{k}|+n\nu)\Phi_{\mathbf{k}}(w)\bigg). \end{split}$$

(Observe that $\sum_{j=1}^{n} \rho_j = 0$.) Now, equating the coefficients of $\Phi_{\mathbf{k}}(z)$ in both sides of (9.1), we obtain the formula of Theorem 9.1 for all $\mathbf{s} = \mathbf{m} + \frac{v}{2} - \rho$. Since both sides are polynomial functions in \mathbf{s} , the equality holds for every \mathbf{s} .

ACKNOWLEDGEMENT. The work of M.W. was partially supported by Grant-in-Aid for Challenging Exploratory Research No. 25610006 and by CREST, JST.

REFERENCES

- Andrews, G. E., Askey, R., and Roy, R., Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999.
- Aristidou, M., Davidson, M., and Ólafsson, G., Laguerre functions on symmetric cones and recursion relations in the real case, J. Comput. Appl. Math. 199 (2007), no. 1, 95–112.
- 3. Baker, T. H., and Forrester, P. J., *The Calogero-Sutherland model and generalized classical polynomials*, Comm. Math. Phys. 188 (1997), no. 1, 175–216.
- 4. Davidson, M. and Ólafsson, G., Differential recursion relations for Laguerre functions on Hermitian matrices, Integral Transforms Spec. Funct. 14 (2003), no. 6, 469–484.
- Davidson, M., Ólafsson, G., and Zhang, G., Laplace and Segal-Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials, J. Funct. Anal. 204 (2003), no. 1, 157–195.
- Dib, H., Fonctions de Bessel sur une algèbre de Jordan, J. Math. Pures Appl. (9) 69 (1990), no. 4, 403–448.
- Faraut, J., Analysis on the crown of a Riemannian symmetric space, Lie groups and symmetric spaces, Amer. Math. Soc. Transl. Ser. 2, vol. 210, Amer. Math. Soc., Providence, RI, 2003, pp. 99–110.
- 8. Faraut, J. and Korányi, A., *Analysis on symmetric cones*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, 1994.
- 9. Hua, L. K., Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963.
- Lassalle, M., Coefficients binomiaux généralisés et polynômes de Macdonald, J. Funct. Anal. 158 (1998), no. 2, 289–324.
- Ørsted, B., and Zhang, G. K., Weyl quantization and tensor products of Fock and Bergman spaces, Indiana Univ. Math. J. 43 (1994), no. 2, 551–583.

- 12. Peetre, J., and Zhang, G. K., A weighted Plancherel formula. III. The case of the hyperbolic matrix ball, Collect. Math. 43 (1992), no. 3, 273–301 (1993).
- 13. Sahi, S., and Zhang, G., *Biorthogonal expansion of non-symmetric Jack functions*, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 106, 9.
- 14. Schoutens, W., *Stochastic processes and orthogonal polynomials*, Lecture Notes in Statistics, vol. 146, Springer-Verlag, New York, 2000.
- 15. Zhang, G., Invariant differential operators on symmetric cones and Hermitian symmetric spaces, Acta Appl. Math. 73 (2002), no. 1-2, 79–94.
- 16. Zhang, G. K., Some recurrence formulas for spherical polynomials on tube domains, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1725–1734.

INSTITUT DE MATHÉMATIQUES DE JUSSIEU UNIVERSITÉ PIERRE ET MARIE CURIE 4 PLACE JUSSIEU, CASE 247 75 252 PARIS CEDEX 05 FRANCE

E-mail: jacques.faraut@imj-prg.fr

INSTITUTE OF MATHEMATICS FOR INDUSTRY KYUSHU UNIVERSITY MOTOOKA, NISHI-KU FUKUOKA 819-0395 JAPAN E-mail: wakayama@imi.kyushu-u.ac.jp