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HERMITIAN SYMMETRIC SPACES OF TUBE TYPE
AND MULTIVARIATE MEIXNER-POLLACZEK
POLYNOMIALS

JACQUES FARAUT and MASATO WAKAYAMA

Abstract

Harmonic analysis on Hermitian symmetric spaces of tube type is a natural framework for in-
troducing multivariate Meixner-Pollaczek polynomials. Their main properties are established in
this setting: orthogonality, generating and determinantal formulae, difference equations. For prov-
ing these properties we use the composition of the following transformations: Cayley transform,
Laplace transform, and spherical Fourier transform associated to Hermitian symmetric spaces of
tube type. In particular the difference equation for the multivariate Meixner-Pollaczek polynomials
is obtained from an Euler type equation on a bounded symmetric domain.

1. Introduction

The one variable Meixner-Pollaczek polynomials Py, (A; ¢) can be defined by
the Gaussian hypergeometric representation as

PP (0 ¢) = %ei’”‘f’zFl(—m, Y oidvil— e‘2i¢>.
m! 2
For ¢ = 7 /2 the Meixner-Pollaczek polynomials PYP /2) are also ob-
tained as Mellin transforms of Laguerre functions. Their main properties follow
from this fact: hypergeometric representation above, orthogonality, generating
formula, difference equation, and three terms relation (see [1, pp. 348-349]).

These polynomials pY? (A; /2) have been generalized to the multivari-
ate case. In fact, the multivariable Meixner-Pollaczek (symmetric) polyno-
mials have been essentially considered in the setting of the Fourier analysis
on Riemannian symmetric spaces in several papers: See Peetre-Zhang [12,
Appendix 2: A class of hypergeometric orthogonal polynomials] , @rsted-
Zhang [11, section 3.4], Zhang [15] and Davidson—()lafsson—Zhang [5]. Also,
see the papers by Davidson-Olafsson [4] and Aristidou-Davidson-Olafsson
[2]. Further, for an arbitrary real value of the multiplicity d, the multivariate
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Meixner-Pollaczek polynomials are defined by Sahi-Zhang [13] in the setting
of Heckman-Opdam and Cherednik-Opdam transforms, related to symmetric
and non-symmetric Jack polynomials, and generating formulae for them are
established. However the case where the parameter ¢ is involved has not been
studied so far. Moreover, once we define the multivariate Meixner-Pollaczek
polynomials with parameter ¢, it is also important to clarify a geometric mean-
ing of the parameter. Establishing a natural setting for the study of multivariate
Meixner-Pollaczek polynomials with such parameter, one can expect to ob-
tain wider applications such as a study of multi-dimensional Lévi-process, in
particular, introducing multi-dimensional Meixner process (see [14] for the
one-dimensional case).

The purpose of this article is to provide a geometric framework for intro-
ducing the multivariate Meixner-Pollaczek polynomials (with parameter ¢)
and study their fundamental properties. Our analysis may explain much sim-
pler geometric understanding of several basic properties of the multivariate
Meixner-Pollaczek polynomials than ever, even in the case ¢ = 7 /2. For in-
stance, the ©,,-invariant difference operator of which the multivariate Meixner-
Pollaczek polynomials are eigenfunctions can be understood by an image of
the Euler operator under the composition of three intertwiners: the Cayley
transform, the Laplace transform and the spherical Fourier transform. In par-
ticular, the multivariate Meixner-Pollaczek polynomials are spherical Fourier
transforms of multivariate Laguerre functions.

In Section 2 we recall the basic facts about the spherical Fourier analysis on
a symmetric cone. In Section 3 we define the multivariate Meixner-Pollaczek
polynomials Q) (s) (the case ¢ = 7/2), where m is a partition, prove that they
are orthogonal with respect to a measure M, on R", and establish a generating
formula.

In Section 4, adding a real parameter 6 (instead of ¢ = 6+ %), we introduce
the symmetric polynomials Q') (s) in the variables s = (s, ..., s,), Q%) =
Q-9 Tn the one variable case

gy (s) = ()" Py (—is; 0+ %)

The orthogonality property for the polynomials Q%) (s) is obtained by using a
Gutzmer formula for the spherical Fourier transform. A generating formula is
obtained for these polynomials. In case of the multiplicity d = 2, we establish
in Section 5 determinantal formulae for multivariate Laguerre and Meixner-
Pollaczek polynomials. Sections 6, 7, and 8 are devoted to a difference equation
satisfied by the polynomials Q") (s). Starting from an Euler-type equation
involving the parameter 0, this difference equation is obtained in three steps,
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corresponding to a Cayley transform, an inverse Laplace transform, and a
spherical Fourier transform for symmetric cones. The symmetry 8 +— —6 in
the parameter is related to geometric symmetries and to a generalized Tricomi
theorem for the Hankel transform on a symmetric cone. In the last section
we show that multivariate Meixner-Pollaczek polynomials satisfy a Pieri’s
formula. In the one variable case it reduces to the three terms relation satisfied
by the classical Meixner-Pollacek polynomials.

2. Spherical Fourier analysis on a symmetric cone

A reference for this preliminary section is [8]. We consider an irreducible
symmetric cone 2 in a Euclidean Jordan algebra V. We denote by G the
identity component in the group G(£2) of linear automorphisms of €2, and
K C G is the isotropy subgroup of the unit elemente € V.

The Gindikin gamma function I'q of the cone €2 will be the cornerstone of
the analysis we will develop. It is defined, for s € C", with Re s; > %( j—=D,
by

Fg(S):/e_tr(”)As(u)A(u)_N/”m(du).
Q

The notation tr(x) and A(u) denote the trace and the determinant with respect
to the Jordan algebra structure, Ag is the power function, N and n are the
dimension and the rank of V, and m is the Euclidean measure associated to
the Euclidean structure on V given by (1 | v) = tr(uv). Its evaluation gives

1 d
Cqa(s) = (2n)<N")/2E F(sj -50 - 1)),

where d is the multiplicity, related to N and n by the relation N = n+ %n (n—1).
The spherical function ¢s, for s € C", is defined on 2 by

os(u) = / Agyp(k - u)dk,
K

where p = (p1,...,00), pj = %(Zj —n — 1), and dk is the normalized
Haar measure on the compact group K. The algebra D(£2) of G-invariant
differential operators on €2 is commutative, and the spherical function ¢; is an
eigenfunction of every D € D(Q2):

Dos = yp(S)gs.

The function yp is a symmetric polynomial function, and the map D +> yp is
an algebra isomorphism from D(£2) onto the algebra 2 (C")=" of symmetric
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polynomial functions, a special case of the Harish-Chandra isomorphism. The
spherical Fourier transform & i of a K -invariant function v on 2 is given by

FY(s) = / ¥ W) s () AN (u) m(du).
Q

Hence, for ¥ (u) = e~ "“A"?(u), v > %(n — 1), we have

. d
FY(s) = FQ(S+ g +p> = (2n)<N-">/2j11 F(sj + g - 0= 1)).

For D € D(L2) an invariant differential operator, # (D) (s) = yp(—S)F ¥ (s)
holds. The space #(V) of polynomials on V decomposes under G as the
multiplicity-free representation

P(V) =P P,
m
where &, is a finite dimensional subspace, irreducible under G. The para-
meter m is a partition: m = (my,...,m,) € N*, m; > --- > m,. The
polynomials in &y, are homogeneous of degree |m| := m; + --- + m,,. The

subspace 2K of K -invariant polynomials in %y, is one-dimensional, generated
by the spherical polynomial ®,, normalized by the condition ®,(e) = 1, and
$0 @ = ¢@m—,. There is a unique invariant differential operator D™ such that

d
D™y (e) = (CDm(a—)t/f) (e).
u

We will write Yy, = ypm. For n = 1, observe that ®,, (u) = u™,

D" =u" <i> and Y, (s) =[slp:=sG—1)...(s —m+1).
du

The classical Pochhammer symbol («),, := a(¢ + 1) ... (¢ +m — 1) gener-
alizes as follows: for o € C and a partition m,

Co(m +a) . d
@m =~ H( —(1—1)5)%.

If a K-invariant function ¥ is analytic in a neighborhood of e, it admits a
spherical Taylor expansion near e:

Yle+v) = Zd D'“w(e)obm(v)

m
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where dp, is the dimension of %y,. In particular, for ¥ = ¢, a spherical
function,

¢s(e+v) = Zd V() P ().

m

For ¢y = ®p, = ¢m—,, we get the spherical binomial formula

Omle+v) =Y (I;l)cbk(v).

kCm

In fact the generalized binomial coefficient

(m) d : Yk(m — p)
=dk v —_
k (e

vanishes if kK ¢ m.
3. Multivariate Meixner-Pollaczek polynomials w

For n = 1, we define the Meixner-Pollaczek polynomial ¢ " as follows:
g (s) = % 2 Fy (—m, s+ g; v; 2)-
This definition differs slightly from the classical one P (1; ¢), as

gV (ir) = (=)"PY*(A; 7 /2)

(see for instance [1, p. 348].) Its expansion can be written

ay(s) = (V)’" Z ki L

!
= (V)k k!
The polynomials g("’ (i A) are orthogonal with respect to the weight on R

rir+ 2
l —
2

We define the multivariate Meixner-Pollaczek polynomial Q( as the following
symmetric polynomial in n variables:

2
(v > 0).

2K,

(V)m 3 dkyk(m —n(-s—13%)

1
oW (s) =
(%)m kCm (U)k (%)k
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Forv > %(n — 1) let us denote by M, (dA) the probability measure on R”
given by
v d
rfirx, +-——-(n-1
(’ i+ 571 (n ))

2

n

M, (dh) = Zi I1

v j:]

z—/nr')\+” 4o
' e Ty Ty

and c is the Harish-Chandra function for the symmetric cone :

c(s)—col_[ ( — Sk, )

Jj<k

2

m(d)),

1
le@n)]?

where

1
eGP ™R

(Here B is the Euler beta function, the constant ¢ is such that c(—p) = 1, see
Section XIV.5 in [8].) The constant Z, can be evaluated by using the spherical
Plancherel formula, applied to the function ¥ (1) = e~ " A(u)"/?:

/ e 2T A ()" m(du)
Q

n

— (27_[)1\7—211 /” l_[

j=1

2

r(i,\,+g—f(n— 1) m(dx).

4 le@M)?

Therefore
Z, = Q)" N2 (v).

The next statement involves the geometry of the Hermitian symmetric space
of tube type associated to the symmetric cone 2. The map z — (z—e)(z+e)~!
maps the tube domain T = Q + iV C V¢ onto the bounded Hermitian
symmetric domain . Its inverse is the Cayley transform

c(w) = (e +w)(e —w) .

THEOREM 3.1. Assume v > %(n —1).

(1) The multivariate Meixner—Pol{aczek polynomials Qg)(i A) form an or-
thogonal basis of L*(R", M,))*". The norm of Q) is given by

I (Wm
(v)
R”|Q (M M, (d)r) = dn ()

n
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(i) The polynomials Q.ﬂ? admit the following generating formula: for s €
", weg,

Y dw QR () Pm(w) = Ale — w?) ™ oy(c(w)™").

We divide the proof into several steps.
a)Forv > 2% —1=1+dn-1), %Vz(@) denotes the weighted Bergman
space of holomorphic functions f on & such that

1f12 = f )R )2 m(dw) < oo.
9

The constant " 1 To(v)
a = —
b Te(v =)
is such that the function &, = 1 has norm 1. Recall that 2z(w) = h(w, w),
where h(w, w') is a polynomial holomorphic in w, anti-holomorphic in w’,
such that, for w invertible, h(w, w’) = A(w)A(w~' —w’), where W’ is the
complex conjugate of w’ with respect to the real form V of V. The spherical
polynomials ®,, form an orthogonal basis of the space #2(%)¥ of K -invariant
functions in %#2(2), and

2 __ i (%)m
[Pmll; = d 3.1

The reproducing kernel of %%(2) is given by %, (w, w') = h(w, w’)~". By

an integration over K one obtains

Vm - .

T Pm(Q)Pm(w) = [ h(w, k) "dk. (3.2)
K

()

b) For a function f holomorphic in &, one defines the function F = C,, f
on Tq by

GO w) =) dm

Z+e
2

F(z)=<cuf><z)=A( ) fle—eaG@+e™).

The map C, is a unitary isomorphism from 72 (2) onto the space %>(Tg) of
holomorphic functions on T, such that

IFI?:=a® | |FQPPAX)" " m(dz) < oo.
Tq
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The constant e 1 ()

Y @n) Tg(v - Yy

is such that the function

-V
F" =C,®, ie F"(z)= A(Z er e) :

has norm 1. The functions F") = C, ®y, form an orthogonal basis of the space
H?*(Tq)X of K -invariant functions in #72(Tg), and it follows from (3.1) that

L (D

|FV|2 = —~rom, (3.3)
m dm (V)m

Performing the transform C, with respect to ¢ in (3.2) we get a generating
formula for the functions FI;"): forw e 9,z € Tq,

W g, ) FO )

(% )m

— A(e — w>_ / Ak z+ c(w)) ™" dk.
2 K

c) The functions in 92(Tg) admit a Laplace integral representation. The
modified Laplace transform .%,, given, for a function v on €2, by

,@52)(1, w) = de
" (3.4)

(L)Y () =a® / e () A(u)'™ " m(du),
Q

is an isometric isomorphism from the space L% (€2) of measurable functions ¥
on €2 such that

N

)2 :=al /Q [¥ @) A@)™ " m(du) < oo

onto 9%(Tg). The constant al® =2""/ T'q(v) is such that the function W (u) =
e~ """ has norm 1, and then £, ¥, = Fj. By the binomial formula

Z+e

F(2) = A( )_ Pu((z—e)z+e)")

- A(Z—;e>_ D=2z +¢)7")

=Y (=™ ('l':) P2z +e) AR+
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By Lemma XI.2.3 in [8] we have the following
LEMMA 3.2. Z,(e ™ @) (2) = (Mm®Pm((z + )" )A(2(e +2)7!)".
By Lemma 3.2 the function

m
(D

Y = LN (FY)Y

is the Laguerre function given by
W () = e " LYV Qu),

where L'~V is the multivariate Laguerre polynomial

L0 = L Z( ) o

m kCm

m 1
(v) 34 kyk(m ) oy

m kCm (v)k (7)k

ProPoOSITION 3.3.
(1) The multivariate Laguerre functions ‘I’I(r‘:) form an orthogonal basis of
L2()X, and

L W
115 = —— -3y
" dm (%)m

(i) The functions \Dl(,;’) admit the following generating formula: for u € <,
w e Y,

(3.5)

3.6) GO w) =) dn Wy @) Pm(w) = Ale — )™’ / e~ kulew) g,
m K

The generating formula can also be written

36)  Ale—w)™ / Fx e gl =3 A L™ () O (w).
K m

Formula (3.6°) is proposed as an exercise in [8] (Exercise 3, p. 347). Itis a
special case of formula (4.4) in [3].

PrOOF. Part (i) follows from the fact that %), is a unitary isomorphism from
L%(Q) onto *(Tg), and from (3.3).
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The modified Laplace transform of ¢¥ (u, w) with respect to u is equal to
%2) (z, w), and one gets (ii) from (3.4).

d) We will evaluate the spherical Fourier transform of the Laguerre func-
tions W{". We introduce now the modified spherical Fourier transform &%, as
follows: for a function ¥ on 2,

(FP)(s) = /tﬁ(u)ws(u)A(u)2 " m(du).

(s +5+0p
Observe that #,¥, = 1.

LEMMA 3.4. ForRes; > $(n — 1) — £,

Fo(e™ " Dp)(s) = (= DMy, (—s - g)

PrOOF. Letop(u, &) bethe symbolof D € D(2) and p(§) = opl(e, &) (see
[8], p- 290). By the invariance property of op, we have op(u, —e) = p(—u),
and therefore De™ """ = p(—&)e™ "". Hence, for p(§) = ®n(§),

Fole” D) (s) = (=DM F,(D™e™ ) (s5)

2

— (_1\m Y
= (-1 J/m(s 2).

From Lemma 3.4 we obtain the evaluation of the spherical Fourier transform
of the Laguerre functions: for Re s; > %(n -1 -3,

Fu(W)(s) = QW (s).

By the spherical Plancherel formula and part (i) of Proposition 3.3, this proves
part (i) of Theorem 3.1, forv > 1 +d(n — 1):

= (=)™ (—S - E)%(e_‘”‘)

I (V)m
) 2
N 1O (M) M, (dA) = i (ﬂ)m'

n

3.7

By analytic continuation it holds for v > %(n — 1). For proving part (ii) of
Theorem 2.1 one performs the spherical Fourier transform to both sides of
part (ii) in Proposition 3.3:

GO (s, w) =Y dm QW (5)Pm(w) = Ale — w) ™ pg(c(w)™").
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This finishes the proof of Theorem 3.1.

We remark that, in [5], a different notation is used for the Meixner-Pollaczek
polynomials: their polynomials p, ;m (p. 179), are defined through the gener-
ating formula above and p, i (is) = dm QY (s).

4. Multivariate Meixner-Pollaczek polynomials Q(m"’o)

The Meixner-Pollaczek polynomials ") we have considered at the beginning
of Section 3 correspond to the special value ¢ = 7 with the classical notation.
Using instead 8 = ¢ — 7, the more general one Varlable Meixner-Pollaczek
polynomials can be Written

imf (W
m!

gl 9)( ) = 2 F (—m, s+ g; p; e cos@)

im M - [m]k[_s_H] 1 —i
= ™0 Z o7 2 kﬁ(2e 9 cos ).

m!
k=0

In terms of the classical notation P (; ¢)
W0 iy — (_mpv2f . T
q,," GA) = (=i)" P,/ A; 0 + 5 )
Forv > 0, |§] < Z, the polynomials " (i) are orthogonal with respect to

the weight
v
r{ix+ <
(l +2>

In this section we consider the multivariate Meixner-Pollaczek polynomi-
als Q" defined by

2
eZGk

Vv

oilm (V)m Ye(m — p)(—s — 3
jmjg \~/m Z A (U)k( 2) (%)k

[u—

000 (s) = (2e™" cos 0Kl

m kCm

THEOREM 4.1. Assume v > $(n — 1), 0] < Z.

(1) The multivariate Meixner-Pollaczek polynomials Qﬁl‘l”e) (iA) form an or-
thogonal basis of L*(R", e *17-+2) M Ve The norm of QW9 is given
by:

1
Qi) PO ) M, (d) = (cos )™ -
),

n
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(i1) The polynomials ngf” admit the following generating formula: for s €
", w e,

Y dw QL () Pm(w) = A((e — Pw)(e + e Pw)) " pg(cow) ),

where cqy is the modified Cayley transform:
co(w) = (e + e Pw)(e — w)".
We will prove Theorem 4.1 in several steps.
a) Let us define the Laguerre functions W{-9:
W () = /M0 tru [ 0=1 (20710 cos 6 u).

For functions v on V of the form ¥ (1) = ¢~ "* p(u), where p is a polyno-
mial, define the inner product
2"\)
Fa(v)

W1 | ¥ we) = f Y1 (€ u) Yo (e®u) Au)’™ " m(du).
Q

PROPOSITION 4.2.

. . ‘9 . .

(i) The Laguerre functions V""" are orthogonal with respect to the inner
product (- | -),9). Furthermore

1
R ||?v,9) = (cos )" — Wm

i ()

(ii) The Laguerre functions \Illg’ 9 satisfy the following generating formula:
forue Q we9,

GO w) ==Y dp W () O (w)

= A(e —ew)™ f i@ g
K

PrOOF. (i) Put a = €%, B = 2¢7% cos 6. For two polynomials p; and p,
consider the functions

Duy =e " p(Bu), ¥ (u) = e " pa(Bu),

and their inner product

@, 60 _ 2" —atru AT (BaA (1)L
W7 1Y Dve = -0 Qe pi1(Bau)e pa(Bau)A(u) m(du).

r
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Observe that fa = 2cos, o + @ = 2cos 6. Hence

W 1o

nv - n
_ e—ZCOSQIrupl(Z cos Ou) p2(2 cos Ou) A(u)"_ﬁ m(du)
Fa() Jo

= Ta() (cos9)™" / 672trvp1 (ZU)MA(U)Vf% m(dv)
Q
= (cos) ™" Wy [¥"):

Take

pr) = LE V@), pa(w) = LYV w).

Then, by part (i) of Proposition 3.3, the statement (i) is proved.
(i1) The sum in the generating formula can be written

> dme "Ly (267 cos Ou) D (e w).
m

Hence the generating formula follows from part (ii) in Proposition 3.3.

b) By Lemma 3.4 we obtain the following evaluation of the spherical Fourier
transform of the Laguerre functions W{):

Fo (P ) (s) = 0" (s).

We will need a Gutzmer formula for the spherical Fourier transform on a
symmetric cone. Let us first state the following Gutzmer formula for the Mellin
transform.

PROPOSITION 4.3. Let 1 be holomorphic in the following open set in C:
{(c=ré?|r>0, 100 <6} 0<6 <mr/2).
The Mellin transform of r is defined by
MY (s) = / Y (r)rdr.
0
Assume that there is a constant M > 0 such that, for |6| < 6y,
00 .
/ [y (re'”)Pr="dr < M.
0

Then 0 4 1
/ W (re®)r~"dr = —/ |y (i0) P> d .
0 27 Jg
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Using the decomposition of the symmetric cone €2 as 2 = ]0, co[ x i,
where Q| = {u € Q| A(u) = 1}, one gets the following Gutzmer formula
for Q:

PROPOSITION 4.4. Let  be a holomorphic function in the tube Tq = Q+iV.
Assume that there are constants M > 0 and 0 < 6y < m/2 such that, for

16| < 6o,
f [ () Aw) ™" m(du) < M.
Q

Then, for |6| < 0y,
/ [y (e Aw)™N'" du
Q

1
R

|F i (in) |7 it thn d»r).

—Qu) S

From Proposition 4.2 and Proposition 4.4 we obtain parts (i) and (ii) of

Theorem 4.1. A more general Gutzmer formula has been established for the

spherical Fourier transform on Riemannian symmetric spaces of non-compact
type [7].

5. Determinantal formulae

Inthe case d = 2,i.e. V = Herm(n, C), K = U(n), there are determinantal
formulae for the multivariate Laguerre functions W{"” and for the multivariate
Meixner-Pollaczek polynomials Q{*). Consider a Jordan frame {ci, ..., c,}
inV,andleté=mn—-1,n—-2,...,1,0).

THEOREM 5.1. Assume d = 2. The multivariate Laguerre function \III(,;’) ad-
mits the following determinantal formula involving the one variable Laguerre
functions ¥ for u = > o HiCi,

(v—n+1)
det(l//m,'-i-tsj (ui))lfi,jfn
V... up)

W () = §127 2=

bl

where V denotes the Vandermonde polynomial:

VG, ..oun) = [ [ —up) and 8'=T]m -
i=1

i<j

As a result one obtains the following determinantal formula for the multivariate
Laguerre polynomials:

(v—n+1)
det (Lm_,-+8, (ui ))

L’ = 4!
m(u) V(ul,...,un)
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PrROOF. We start from the generating formula for the multivariate Laguerre
functions (Proposition 3.3):

GO, w) = du P (W)WY ()
m
= A(e - w)”f ¢~ ulletru(e=w)™) gy
K

In the case d = 2, the evaluation of this integral is classical: for x =
Z?zl XiCi, Y = 2;21 yjcj, then

K V(x17'~~’xn)v(y17"'vyn)

n n
Therefore, foru = /_  u;ci, w = Y 1 wjc,

I+w;

- det(e™" ™)
g}g?’)(u, w) = 4! (1 _ w')—v .
Jl] j Vur, . u)V (7, )
Noticing that
I+ w; 1+ wy w; — wy

T—w; 1—we A +w)d+w)’

we obtain

I+w;

det((1 — wj)_(“‘"“)e*”"ﬁ)
Vg, ...,u)V(wy, ... wy,)

GO (u, w) = §127 27D

We will expand the above expression in Schur function series by using a for-
mula due to Hua (see [9], Theorem 1.2.1, p. 22).

LEMMA 5.2. Consider n power series

fi(w):Zc,(,’;)w”‘ (i=1,...,n).

m=0
Then
det( f; (w;
_det(fiwp)) D dmSm(wy, ... wy),
V(wy, ..., wy,) m

where sy is the Schur function associated to the partition m, and

am = det(c,(,’;])_wj).
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Letv' = v — n + 1, and consider the n power series

fiw) = (1~ w)iv/eiu"% = Z w,flv’)(ui)wm.
m=0
Since )
AdmPm (Z ijj> =sm(Wi, ..., w,),
j=1
we obtain R
\Ij(‘))(u) = 8!2_%’1(”_1) N (wmj-i-tsj (ul)) .
m V(uy,...,u,)

By using the same method we will obtain a determinantal formula for the
multivariate Meixner-Pollaczek polynomials Qg,a)'

THEOREM 5.3. Assume d = 2. Then

(v—n+1,6)
det(qmj+3j (Si))lgi,jfn

Vst ...\ 8)

’

QL9 (s) = (~2cos0) 2" D)

where q,(n“’g) denotes the one variable Meixner-Pollaczek polynomial.
PrOOF. We start from the generating formula for the multivariate Meixner-

Pollaczek polynomials Q{?) (Theorem 4.1(ii)):

> dm QU () Pm(w) = A((e — P w)(e + e w)) " pg(co(w) ).

For x = Zfl: | Xici, the spherical function ¢ (x) is essentially a Schur function
in the variables xq, ..., x,:

det(x})
Vst s) VX, X))

(n—1)

(DS(,X) = 8!(.761]62 .. ,xr)%

Let us compute now, for w = Y

j=1 w;jcj,

A((e — e w)(e + e w)) " gy(cow) ™)

= §! l_[(l — 2isinfw; — wjz)_"/2
j=1
n L d . =S
8 n(Ce(wj))E(" D et((co(w)) ™)
j=1

Vs, ..o sV (co(wr), ..., colwy))
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In the same way, as for the proof of Theorem 5.1, we obtain
A((e — e®w)(e + 7)) g (co(w) ™)
= (=2cos6) "D

y det((l — eiewj)“"%%(n*l)(] _}_efi@wj)fxif§+%(n71))
V(sla'--,sn)v(w],...,wn) ’

We apply once more Lemma 5.2 to the n power series
oo
ﬁ(w) — (1 _eIQw)S, 2 (1 +e—19 ) Si— Z o', 0)(51)10

with v/ = v — n 4 1, and obtain finally:

et(gy s (51)

V(Sl, ---’sn)

d
QW (s) = (—2cos0) 2" V5]

6. Difference equation for the Meixner-Pollaczek polynomials ,(,',”0)

The one variable Meixner-Pollaczek polynomials ¢,, = g% satisfy the fol-
lowing difference equation

. v
et (s + 5) (gn(s +1) = gu(s))
i0 v
+e —s + > (qm(s —-1) - qm(s)) = 2mcosfq,,.
(See [1], p. 348, 37.(d)). We will establish an analogue of this formula for the

multivariate Meixner-Pollaczek polynomials Q9.
Recall Pieri’s formula for spherical functions:

“ . si—sk+4
rupsu) =Y o (S)¢se, (), witha;(s) = [ [ T—2,

) . §i — 8§
j=1 ktj Tk

where {g;} denotes the canonical basis of C". See [6, Proposition 6.1] or [16,
Theorem 1] and also [10, p. 320]. We introduce the difference operator D, 4:

vef(s) =e " Z(Sj 5 —(l’l - 1))“](5)(f(s + 8]) - f(S))

. v d
+ ef ;(—S/‘ + 57 Z(n - 1)>0‘j(_s)(f(s — &) - f(s)).
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THEOREM 6.1. The Meixner-Pollaczek polynomial Qf;f’) is an eigenfunction
of the difference operator D, y:

D, Q0% =2|m|cosf Q0.

For the proof we will use the scheme we have used in the proof of The-
orem 3.1. For i = 1,2,3,4, we define the operators Dl%. The operator

DS; = D(l) is a first order differential operator on the domain &:

Dy f =€’ w+e V) +ew—e V).

(For wy, wy € V¢, we put (w, wp) = tr(wjw,).) The operators Dl(f;)e’ for

i =2, 3,4, are defined by the relations:
(2) (D 3) (2) 3) 4)
7Cv=C,D, 4, XVDM = A 97UDV’9 = Dvﬁgﬂ,.

The operator D( 1 18 a first order differential operator on the tube Tg. In Sec-
tion 8 we will see that Dfé is a second order differential operator on the cone €2,
and prove that Dﬁ% is the difference operator D, ¢ we have introduced above.
The function @@ (w) = ®p(wcosh + iesinf) is an eigenfunction of
the operator D{": D" ®® = 2|m|cosf ®©. Hence F? = C, @@ is an
eigenfunction of D(z) D(z) F9 = 2|m|cos§ F{"9. Further, since

qujl(;,g) _ (Vm F0.0)

e T

we get DO, W(? = 2|m| cos § (). Finally, since Q' = %, W?, then
D](:% QW9 = 2lm|cos§ Q'?. Hence the proof of Theorem 6.1 amounts to
showing that Dl(:% =D,y.

7. The symmetries S,Ei) (i =1,2,3,4) and the Hankel transform

The symmetries S\ we introduce now will be useful for the computation of
the operators Dl(;l)e We start from the symmetry w — —w of the domain &. Its
action on functions is given by S! f(w) = f(—w). We carry this symmetry
over the tube Ty, through the Cayley transform and obtain the inversion z +—>
71, We define S® such that S’ C, = C,S". Hence, for a function F on T,
we have SEZ)F (z) = A(R)"VF(z™Y). Further S§3) is defined by the relation
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Z, 553) = Sﬁz)fu. By a generalized Tricomi theorem (Theorem XV.4.1 in [8]),
the unitary isomorphism S of L2() is the Hankel transform: S = U,

_N
U (u) = / H, (u, V)Y (v)A@)"™ " m(dv).
Q

The kernel H, (1, v) has the following invariance property: for g € G,

1
Hv(g'u7v) :HU(M, g*'v)a and HU(M,e) = —jv(u)s

Fa(v)
where _#, is a multivariate Bessel function.

Finally we define S'* acting on symmetric polynomials in n variables such

that
SWF, = F,8Y
v v o

PROPOSITION 7.1. For a function ¥ on Q of the form ¥ (u) = e~ ""q(u),
where q is a K-invariant polynomial, &,(U,{)(s) = F, ¥ (—s). It follows
that, for a symmetric polynomial p on C",

SYDp(s) = p(—s).

Proor. We will evaluate the spherical Fourier transform &, (U, ). By the
invariance property, the kernel H,(u, v) can be written

H,(u, v) = h,(Pw"u) Aw)™"?A@w) ™"/,

with i, (u) = H,(u, e)A(u)"/?, and P the so-called quadratic representation
of the Jordan algebra V. Let us compute first

fQ H, (0, v)gs () Aw) s~ m(du)
=A()"""? fﬂ hy (P ")) @s () Aw) ™" m(du).
By letting P(v'/?)u = u’, we get
/Q H, (. 0)ga@) A= m(du)
=A()™""? /Q hy (s (P A u) AW) ™" m(du).
By using K -invariance and the functional equation of the spherical function ¢,

/ os(P(v" ")k’ dk = ps(v™ s (),
K
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we get
/ H,y(u, 0)gs ) AW 7 m(du) = s HA@) "2 F (h,)(S).
Q

Recall that ¢s(v™") = ¢_(v). We multiply both sides by ¥ (v) and get by
integrating with respect to v that

o (s + % + p)%(Uudf)(S) = Fhy(s)lg (—s + % + p)%‘/f(—s)‘

Consider the special case ¥ (1) = Wo(u) = e~ "*. Since U, ¥y = ¥, and
F,Wy = 1, we get

FQ(_S+§+,O)

F(hy)(s) =

Finally #, (U, ¥)(s) = #,¥ (=s), and S p(s) = p(~s).

COROLLARY 7.2. QU9 (—s) = (—1)m Q.= (q),

ProoOF. This relation follows from

(sPoR)(w) = o (—w) = (=H™M DL (w),

which is easy to check, and Proposition 7.1.

The operators fo:é (i =1,2,3,4) can be written

D% _ eieDsi,+) + e—iéD]()i,—)‘
Fori = 1, D{''® does not depend on v, D{'® = DB
DY f(w) = (w+e, Vi), D7 f(w)=(w—e Vf(w).

Observe that D7) = SO DD D Hence, fori = 2, 3, 4, wehave D) =
SO DI SO,
v
In the next Section we will first compute D). The operator D is then
obtained by using the above relation. For i = 3, we will use the following
property of the Hankel transform:

2
ProrosiTiON 7.3. U, (trv ) = —(<u, (ﬂ) > + vtr(i))va.
ou ou

This is a consequence of Proposition XV.2.3 in [8].
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8. Proof of Theorem 6.1

a) Recall that D7) is the first order differential operator on the domain &
given by

DT f(w) = (w—e. Vf(w),
and D7) is the first order differential operator on the tube Tg such that

p*~c,=c,p"7,

LEMMA 8.1. D*7F(2) = —(z+ ¢, VF(2)) — nvF(2).

PRrOOF. Recall that, for a function F on the tube 7,
fw) = (C F)(w) = Ale — w) ™" F(c(w),
where c is the Cayley transform
cw)=(e+w)e—w) ' =2(—w) —e.
Its differential is given by
(Dc)y =2P((e —w) ™).
We get
Vf(w) = V(Ale—w) ") Fle(w)) +Ale—w) 2P (e—w) ") (VF(c(w))),
By using V(A(x)%) = aA(x)*x !,
fe—w,e—w)')=n and P(e—w) e—w)=(—w ",
we obtain

D7 f(w) = (w—e, Vf(w))
= Ale —w) " (—nvF(c(w)) + 2((w — &) ™!, VF(c(w))))

= (C,'G)(2),
with
G(i)=—(z+e, VF(z)) —nvF(2).

b) Consider now the differential operator D) on the cone €2 such that

4,007 = DCO Z,.
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Recall that the modified Laplace transform %, of a function , defined on
2, is given by

2

F(2) = %Y (2) = - f ey () AQu)" ™ m(du).
o) Ja

r

LEMMA 8.2. D3y (u) = (u, Vi () + trur (u).

ProoOF. Fora € V¢,

2}1\)
(a, VF(2)) = / e~ (—(a, u) Y () AG) ™ m(du).
Fa(v) Jo
Observe that (z | u)e~ " = (u, V,)e~@" Therefore
2}’[1)
(z, VF(2)) = / (= (. Vi)e™ S () A@w)* ™" m(du).
Fa() Ja
An integration by parts gives this is equal to
2" —(z|u) v—%
e (u, V) + nv)yr(u)A m(du).
Fa() Jo

Finall
ey (DCIFY(2) = Lo ((u, V) + tru ),

c) The operator D~ acting on symmetric functions on C" is such that
DY F, = F,DF .
Recall that the spherical Fourier transform f = &%, of a function v defined
on €2, is given by

f(s) = (FY)(s) = s ()Y (W) A)> ™7 m(du).

PROPOSITION 8.3. The operator D7) is the following difference operator:
for a function f on C",

n d
DO =Y 5+ 5 - G = D)) (Fs+ 8 = 19
=1

Proor. We will compute &, (D®v) = %, ((u, Vi) +tru yr). Consider
first

Fv((u, V))(s) = (u, VI ()) sy s () A@) ™" m(du).
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An integration by parts gives, using that the function ¢s is homogeneous of
degree Y_7_, s; and that ) _, p; = 0, that

Fv((u, Vir))(s)

= ;/ Y (u)(—(u, Vi) +E(M))A(M)_N/”m(du)
FQ(S+H+:0 Q B

=F9s+ +p /w(u)<

= Z( s E)mp(sy

j=1

n

(s]+ ))(ps(u)A(u)z " m(du)
1

]:

Recall Pieri’s formula for spherical functions:

- . Si— Sk + 5
rups) = ) i ®)sre, ). with ¢;(5) = [ [ F———2
J

j=1 oy Si — Sk
Hence
Fo(truy)(s)
= m-/ W(u)(za(s)(ﬂsﬂ](u))A(u)z " m(du)
- Z ale + e, _u'_ 2 p)Olj(S)
o Tals+3+0)
1 v N
ste (UWA2" 0w m(d
FQ(S+€j+§+ﬂ)/szw(u)¢+f(”) m(du)
n v d
- Z(sf Ty 1>>aj<s>%x/f<s t8)).
Finally
n d n
.?'TU(DL(P,—)Q//)(S) = Z(sj"‘%_Z(n—1)>Otj(S)f(S+8j)—Z(sj_i_%)f(s)
j=1 =

with f = %,(y). From D& W, = 0 and %, (V) = 1, we get

n n

d
Z<s,- + g - Son- 1)>aj(s) _ Z(s,» + g)

j=1 Jj=1
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Therefore

v d

S - - 1))a,,-<s)(f<s +e)) = f(9).

Fo(D Y (s) = Z(sj +

j=1

We now finish the proof of Theorem 6.1. Recall that
DU = §WpUIgD and  SP f(s) = f(—s).

Therefore, by Proposition 8.3,

n

d
DD f(s) = Z(—sj + g i 1)>aj(—s)(f(s — &) — f(9)).

j=1
‘We have established the formula of Theorem 6.1 since
Dyy = D‘(:% _ eieD‘()4,+) + e_i9D54’_).

9. Pieri’s formula for the Meixner-Pollaczek polynomials f,',”o)

THEOREM 9.1. The Meixner-Pollaczek polynomials Q') satisfy the following
Pieri formula:

(2|s| cos & — 2i|2m + v| sin ) Qfﬁ"”(S)

- d
= Z(mj v =120~ 1))a,-<m — & — P)dm—c; O (5)

j=1

n d ;
— Z(m/ +1+ Z(n - j))aj(_m — & = p)dm+sj Q:n—fgj(s)

j=1

ProoF. The generating formula (Theorem 3.1(ii)), withs = m+ % — pcan
be written as

>0 (m +5- p) Pi(w)
K
= A(e+ e_iew)_”d>m((e —ew)(e + e_igw)_l).

Since

FIE]V,Q) (efiew)
=2"A(e + e_iew)_”(—1)|m‘e_i|mlgfbm((e —ew)(e + e_mw)_l),
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we obtain
Z Q(v 9)( p)ei|k|9 Dy (w) = 2—11V(_1)|m|ei|m|0FI£1v,6)(w)'

Recall that the function F*?) is an eigenfunction of the differential operator
2.
Proi @ .6 6
D FY? (w) = 2im| cos O FY" (w).

It follows that
©.1) Zd oy 9)< — p)e"k"?ngq>k(w)

= 2|/m| cos @ X:de(U 9 (m + g - p)CDk(w).

To prove Theorem 9.1 we will compute ng Dy (w).

LEMMA 9.2. The following formulas hold.

® n
tr(Ves(2) = ;(Sj + izl(n - U)%‘(—S)‘/’s—sf ).
(ii)
9(,05(2)
' n d n
—— <Z(sj - Z(n — 1)+ V)Otj (S)(ps+sj (z) + (Z SJ')QDS(Z))
j=1 =t
(o~ d -
—e1? (Z (s,-+z (n— 1))04,- (—=8)¢s—¢; (2)+ (Z S.;)ws(z)Jrnvfps(z))-
j=1 j=l

Proor. (i) For ¢t > 0 we consider the following Laplace integral:

f e~ (WAL N m(dy) = Ta(s + p)o_s(te + x).
Q

Taking the derivative with respect to ¢ for + = 0, one gets

— / e try o (MAG) N m(dy) = Ta(s + p) tr(Vo_s(x)).
Q
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By using Pieri’s formula for spherical functions,

rygs(y) =Y oi($)psie, (),

j=1

and since

> 050) [ i, (0IAG) midy)

Jj=1 n

= Z a;i(S)la(s+ & + plo—s—; (x),
j=1

one obtains

n

r(Vo_s(x) = = > a;(s)

j=1

- d
= — ZO{;(S)(Sj - Z(n - ])>(p—s—£j(x)»

j=1

Ca(s+¢; +p)

To(s+ p) P—s—e; (x)

or
. d
tr(Ves(x)) = ;“j(_s) 5+ 700=1) s, ().
In fact the explicit formula for I'g,

n

d
Pa(s+p) = @0)" " ] r(s,- (e 1>>,

j=1

gives
Tas+e+p)  T(+1-50—1) —s~—i(n—1)
TCa(s + ) P(s;—§m—-D) 7 4 '
(i1) Recall that

D*7IF(z) = —(z+e, VF(2)) —nvF(2).

From (i) we obtain

n

Dﬁz’*)(ps(Z) — Z(sj + %(n — 1))aj(—s)¢s€j (z) — (21: sj+ nv)ws(Z).
j=

j=1
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By using D1 = SP D22 and SPgs(z) = ¢_s_,(2), we get (ii).

We continue the proof of Theorem 9.1. Let us write out (ii) of Lemma 9.2

withs = k — p:

D) @y (w)

(& d
= (Z (k,- +v =20 - 1>)a,~<k — 0)Picse, (W) + |k|<1>k(w))

j=1

e d
—e (Z <kj + E(n - j))a/(—k + ) Px—; (w) + (K| + rW)CDk(w)).

j=1

(Observe that 27:1 pj = 0.) Now, equating the coefficients of ®(z) in both
sides of (9.1), we obtain the formula of Theorem 9.1 for all s = m + % —p.
Since both sides are polynomial functions in s, the equality holds for every s.
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