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INTRODUCTION TO THE EKEDAHL INVARIANTS

IVAN MARTINO

Abstract
In 2009, T. Ekedahl introduced certain cohomological invariants for finite groups. In this work
we present these invariants and we give an equivalent definition that does not involve the notion
of algebraic stacks. Moreover we show certain properties for the class of the classifying stack of
a finite group in the Kontsevich value ring.

In [5], Ekedahl studies whether the class of the classifying stack {BG} of a
group G equals the class of a point {∗} in the Grothendieck group of algebraic
stacks. All the known examples of finite groups when this does not happen
are the counterexamples to the Noether problem: let F be a field and consider
the extension F ⊂ F(xg : g ∈ G)G, one wonders if this is rational (see [12]),
i.e. purely transcendental. To show in which cases {BG} �= {∗}, Ekedahl
introduced in [4] a new kind of geometric invariant for finite groups defined as
the cohomology for the class of classifying stack of G in the Kontsevich value
ring of algebraic varieties.

Let k be an algebraically closed field of characteristic zero. We denote by
K0(Vark) the Grothendieck group of algebraic k-varieties. Let Li be the class
of the affine space Ai

k in K0(Vark) (so L0 = {∗}, the class of a point). Let
K̂0(Vark) be the Kontsevich value ring of algebraic k-varieties (see Section 1).
We note that in this ring Li is invertible.

We denote by L0(Ab) the group generated by the isomorphism classes {G}
of finitely generated abelian groups G under the relation {A⊕B} = {A}+{B}.
For every integer k, Ekedahl defines in [5] a cohomological map

Hk: K̂0(Vark) → L0(Ab)

by assigning Hk({X}/Lm) = {Hk+2m(X;Z)} for every smooth and proper k-
variety X (see Section 3).

Let V be a n-dimensional faithful k-representation of a finite group G and let
G act component-wise on the product V m. Thus consider the quotient V m/G.
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In Proposition 2.5 we show that {BG} is equal to limm→∞{V m/G}L−mn in
K̂0(Vark). So one defines:

Definition 3.2. For every integer i, the i-th Ekedahl invariant ei (G) of
the group G is H−i ({BG}) in L0(Ab). We say that the Ekedahl invariants of
G are trivial if ei (G) = 0 for i �= 0.

The purpose of this paper is to introduce the theory of the Ekedahl invariants
to a reader who is not used to the notion of the algebraic stacks. For this
reason we also present some non-published results from [4] and [5], aiming
to a complete and self contained survey of the topic. The author believes that
one could work with Ekedahl invariants with basic knowledge of algebraic
geometry and for this reason we present the following non-stacky definition:

Definition 4.2. Let V be a n-dimensional faithful k-representation of a
finite group G and let X be a smooth and proper resolution of V m/G:

X
π−−→ V m/G.

There exists a positive integer m = m(i, V ), depending only on i and V , so
that the i-th Ekedahl invariant is defined as follows:

ei (G) = {H2m−i (X;Z)} +
∑

j

nj {H2m−i (Xj ;Z)} ∈ L0(Ab),

where {V m/G} ∈ K0(Vark) is written as the sum of classes of smooth and
proper varieties {X} and {Xj }, {V m/G} = {X} + ∑

j nj {Xj }.
In Proposition 4.1, we prove that such m(i, V ) always exists and, then, in

Proposition 4.3 we show that the latter definition is well given and does not
depend on the choice of the representation V or of the resolution X. Finally
we prove that the two given definitions are equivalent.

We observe that the new definition does not involve the notion of algebraic
stacks and for this reason could be appreciated by a wider audience.

We use the Definition 4.2 to prove the following theorem due to Ekedahl
(see Theorem 5.1 in [4]):

Theorem 4.4. Denote by B0(G)∨ the Pontryagin dual of the Bogomolov
multiplier of the group G. If G is a finite group, then

(a) ei (G) = 0, for i < 0;

(b) e0(G) = {Z};
(c) e1(G) = 0;

(d) e2(G) = {B0(G)∨} + α{Z} for some integer α.
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Item (d) is related to the Noether problem (see Section 1). Ekedahl actu-
ally proved a stronger version of this result since he showed that e2(G) =
{B0(G)∨}.

In Section 1, after a brief historical introduction, we set all the basic defin-
itions and notations. In Section 2, we discuss some properties of the class of
the classifying stack {BG} and in the next section, §3, we define the Ekedahl
invariants as the cohomology of the classifying stack. In Section 4, we present
the equivalent non-stacky definition. Finally, in Section 4.1, we use this defini-
tion to reprove partially Theorem 5.1 of [4]. At the end of the article, we recall
the state of the art of the Ekedahl invariants.

Notation. In all this manuscript F is a field and k is an algebraically
closed field of characteristic zero. We set ∗ = Spec(k). If X is a scheme with
a G-action, then we denote by X/G the schematic quotient and by [X/G] the
stack quotient.

In Sections 1 and 2, G is a linear group without any assumption of finiteness.
In Sections 3 and 4, instead, G is always a finite group.

1. Preliminaries

Let F be a field and let G be a finite group. We denote by F(xg : g ∈ G)

the field of rational functions with variables indexed by the elements of the
group G. The group acts on it via h ·xg = xhg . We consider the field extension

F ⊂ F(xg : g ∈ G)G, (1)

where the latter denotes the field of invariants. In 1914, Emmy Noether in [12]
wondered if the field extension (1) is rational (i.e. purely transcendental).

Mathematicians conjectured a positive answer to the Noether problem, until
the breakthrough result of of Swan [15] in 1969. He proved that the extension
Q ⊂ Q(xg : g ∈ Z/pZ)Z/pZ is not rational for p = 47, 113 and 233.

After this, Saltman [13] proved that for any prime p with (char F, p) = 1,
there exists a group G of order p9 such that the Noether problem has negative
answer. He used a cohomological invariant introduced by Artin and Mumford
in [1]. Bogomolov in [3], showed a concrete way to compute this invariant that
is now called the Bogomolov multiplier B0(G):

B0(G) =
⋂
A

ker
(
H2(G;C∗) → H2(A;C∗)

)
,

where the intersection runs over the abelian subgroups A ⊆ G. This is a
cohomological obstruction to the rationality of (1), i.e. the rationality of (1)
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implies B0(G) = 0. Bogomolov also improved Saltman’s statement from p9

to p6.
Recently in Hoshi, Kang and Kunyavskii in [8], classified all the p5-groups

with non-trivial Bogomolov multiplies.
In the rest of this section we introduce some definitions which we need later.

The Grothendieck group K0(Vark) of varieties over k is the group generated
by the isomorphism classes {X} of algebraic k-varieties X, subjected to the
relation {X} = {Z} + {X \ Z},
for all closed subvarieties Z of X. It is possible to see that K0(Vark) has a ring
structure given by {X} · {Y } = {X × Y }.

The class of the empty set {∅} is also denoted by 0, the class of the point
{∗} by 1 and the class of the affine line L = {A1

k} is called the Lefschetz class.
By multiplying, one gets {An

k} = Ln and {Pn
k} = L0 + L1 + · · · + Ln.

In [2], Bittner proves that K0(Vark) is generated by the class of smooth
and proper varieties modulo the relations {X} + {E} = {BlY (X)} + {Y } with
BlY (X) being the blow up of X along Y with exceptional divisor E:

BlY (X) −−−−→ X

E −−−−−−→ Y

Therefore, with the help of compactification and resolution of singularities one
writes the class of a scheme {X} ∈ K0(Vark) as a sum of classes of smooth
and proper varieties {Xj }: {X} = ∑

j nj {Xj }, with nj ∈ Z.
The motivic ring of algebraic k-varieties is K0(Vark)[L−1]. We naturally

define a filtration in dimension

Filn
(
K0(Vark)[L

−1]
) = {{X}/Li : dim X − i ≤ n

}
.

We denote by K̂0(Vark) the completion of the motivic ring with respect to this
filtration. This ring is called Kontsevich’s value ring.

Definition 1.1. Let X be a scheme over k. A G-torsor P over X, P → X,
is a scheme with a free G-action that is locally trivial over S.

Definition 1.2. The classifying stack BG of a group G is a pseudo-functor
from the category of schemes over k, Schk, to the category of groupoids over k,
Gpdk, sending any open scheme U to the groupoid of G-torsors over U :

BG: Schk → Gpdk,

U 
→ {G-torsors over U}.
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Equivalently, with the only possible trivial action of G on ∗, the classifying
stack of the group G is usually defined as the stack quotient BG = [∗/G].

2. The class of the classifying stack

To go further, it is necessary to introduce another Grothendieck group for
algebraic stacks.

Definition 2.1. We denote by K0(Stackk) the Grothendieck group of al-
gebraic k-stacks. This is the group generated by the isomorphism classes {X} of
algebraic k-stacks X of finite type all of whose automorphism group schemes
are affine (shortly, algebraic k-stack of finite type with affine stabilizer). The
elements of this group fulfil the following relations:

(1) for each closed substack Y of X, {X} = {Y } + {Z}, where Z is the
complement of Y in X;

(2) for each vector bundle E of constant rank n over X, {E} = {X × An}.
Similarly to K0(Vark), K0(Stackk) has a ring structure.

Lemma 2.2. One has that

K0(Stackk) = K0(Vark)[L
−1, (Ln − 1)−1, ∀n ∈ N].

Moreover, the completion map K0(Vark)[L−1] → K̂0(Vark) factors through

K0(Vark)[L
−1] → K0(Stackk) → K̂0(Vark).

Proof. The first part is proved in Theorem 1.2 of [4]. Regarding the second
one, we observe that Ln − 1 = Ln(1 −L−n) is invertible in K̂0(Vark). Indeed,
(1 − L−n)−1 = 1 + L−n + L−2n + · · · and each truncation xk = ∑k

j=0 L
−kn

belongs to Fil−kn. So, the series converges in K̂0(Vark).

Recall that a special group W is a connected algebraic group scheme of
finite type all of whose torsors over any extension field k ⊆ K are trivial. It is
useful to note that GLn is a special group.

Let W be a special group and let X → Y be a W -torsor of algebraic stacks
of finite type over k, then {X} = {W }{Y } in K0(Stackk). Moreover, if F is a
W -space and if Z → Y is the associated fiber space to the G-torsor X → Y ,
then {Z} = {F }{Y } in K0(Stackk).

These two facts are not true for every group G. Indeed special groups play
an important role in this topic (see Proposition 1.4 of [5]).
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Lemma 2.3. If W is a special group over k and if H is a closed subgroup
scheme of W , then

(a) {W }{BW } = 1;

(b) {BH } = {W/H }{BW }.
Proof. Consider the W -torsor ∗ → [∗/W ]. For what we said above,

{∗} = {W }{[∗/W ]}. Moreover ∗ → [∗/W ] is also an H -torsor and the
action of H makes W/H an H -space. There is a natural associated W/H -
fibration, [∗/H ] → [∗/W ], given by BH = W/H ×W BW , and thus
{BH } = {W/H }{BW }.

Now we only consider finite groups.

Lemma 2.4. If V be an n-dimensional linear representation of G and let G

act component-wise on V m. Then

{[V m/G]} = Lnm{BG}; (2)

{[P(V )/G]} = (
1 + L1 + · · · + Ln−1

){BG}. (3)

Proof. From the vector bundle [V/G] → BG and from the second prop-
erty in Definition 2.1, one has that {[V/G]} = Ln{BG}. Similarly, one proves
the first equation.

Let O be the origin of V . The natural map [(V \{O})/G] → [P(V )/G] is
aGm-torsor and this implies {[(V \{O})/G]} = (L−1){[P(V )/G]}. Moreover,
{[(V \ {O})/G]} = (Ln − 1){BG}. Putting things together one has
{[P(V )/G]} = ((Ln − 1)/(L− 1)){BG} and so the result.

Formula (2) expresses how {BG} is connected with {[V m/G]}. The next
proposition links {BG} to {V m/G}. Behind this result there is the study of the
difference between {[V m/G]} and {V m/G} in K0(Vark)[L−1].

We write an element of V m as

v = (v1, . . . , vn, vn+1, . . . , v2n, . . . , v(k−1)n+1, . . . , vkn, vkn+1, . . . , vm)

with k being the quotient of the division of m by n, i.e. �m/n�. In other words,
we consider v ∈ V m as a sequence of k lists of n vectors, followed by a bunch
of other vectors. Let U be the subset of V m such that at least one of the sets
{vjn+1, . . . , vjn+n} is a basis for V .

We denote by M the complement of U in V m. This is a closed subset of
V , because it is defined by k equations det(vjn+1, . . . , vjn+n) = 0, for j =
0, . . . , k − 1. Therefore, codim(M) = codim(M/G) = k. We also observe
thatU is GLn(k)-invariant, because any linear transformation in GLn(k)moves
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a basis of V into another one. Moreover, GLn(k) (and so G) acts freely on it,
hence [U/G] = U/G.

The difference {[V m/G]} − {V m/G} becomes

{[V m/G]} − {V m/G} = ({Z } + {U/G}) − ({M/G} + {U/G})
= {Z } − {M/G}, (4)

where Z is a stack, from the complement to U/G in [V m/G]. Similarly to
M/G, Z has codimension k because both are the complement of the same ob-
ject U/G, but in two different environments V m/G and [V m/G] with the same
dimension. The class of the difference {[V m/G]}−{V m/G} is thus determined
by the class of these complements.

Proposition 2.5 (Proposition 3.1 in [5]). If V is an n-dimensional faithful
linear representation of G, then

(a) {BG} = {GL(V )/G}/{GL(V )};
(b) the image of {BG} in K̂0(Vark) is equal to limm→∞{V m/G}L−mn.

Proof. The general linear group is a special group and we apply Lem-
ma 2.3(b) for G ⊆ GL(V ): {BG} = {GL(V )/G}{B GL(V )}. Using Lem-
ma 2.3(a), one gets {B GL(V )} = 1/{GL(V )} and so we have proved the first
point.

Using formula (2) and formula (4) one has

{BG} − {V m/G}L−mn = ({[V m/G]} − {V m/G})L−mn

= ({Z } − {M/G})L−mn,

where Z and M/G are respectively the complement of U/G firstly seen inside
of [V m/G] and then inside of V m/G. The open set U was defined just before
this lemma.

Remark that Filj (K0(Vark)[L−1]) = {{X}/Li : dim X − i ≤ j}. Then,

{M/G}L−mn ∈ Filj (K0(Vark)[L
−1]) ⇔ dim M/G − mn ≤ j.

One knows that dim M/G−mn = − codim(M/G) = −k. Thus {M/G}L−mn

belongs to Filj for any j ≥ −k = −�m/n�. Therefore,

lim
m→∞{M/G}L−mn = 0

and, with a similar argument, limm→∞{Z }L−mn = 0. Thus, {BG} −
{V m/G}L−mn converges to zero in K̂0(Vark).
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3. The Ekedahl invariants for finite groups

We want to define certain cohomological maps Hk for K̂0(Vark). These (and
the invariants we are going to define) need a more refined target: let L0(Ab)

be the group generated by the isomorphism classes {G} of finitely generated
abelian groups G under the relation {A ⊕ B} = {A} + {B}. We equip L0(Ab)

with the discrete topology.
For clarification, {Z} and {Z/pn} belong to L0(Ab) and there are elements

in L0(Ab) that do not correspond to any group: while {Z} + {Z/5} is the class
of {Z⊕ Z/5}, the element {Z} − {Z/5} is not the class of any group.

If k = C, it is natural to define a cohomological map

Hk: K0(Vark) → L0(Ab),

by assigning to every smooth and proper k-variety X the class of its integral
cohomology group Hk(X;Z). If instead k is different from C, then we send
{X} to the class {Hk(X;Z)} defined as dim Hk(X;Z){Z}+∑

p{tor Hk(X;Zp)}.
Next theorem shows that this map is well defined and that it can be extended

to K̂0(Vark) sending {X}/Lm to {Hk+2m(X;Z)} for any smooth and proper
variety X,

Hk: K̂0(Vark) → L0(Ab).

This theorem can be also proved in a slightly general setting using the corol-
laries in Section 7 and 9 of [10].

Theorem 3.1. The following cohomological map

H∗: K̂0(Vark) → L0(Ab)((t)),

{Y } 
→
∑
k∈Z

Hk({Y })tk,

is well defined. For each k ∈ Z, Hk: K̂0(Vark) → L0(Ab) is also a continuous
group homomorphism.

Proof. The proof is given by Ekedahl in [5] via Proposition 3.2(i), (ii) and
Proposition 3.3(ii). We give an alternative proof.

We first prove that the map Hk: K0(Vark) → L0(Ab) is well defined. We
know that K0(Vark) is generated by the class of smooth and proper varieties
modulo the relations {X} + {E} = {X̃} + {Y }, with X̃ being the blow up of
X along Y (smooth subvariety of codimension d) with exceptional divisor E

(note that E is also smooth because it is a projective bundle over Y , r =
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π |E : E → Y ):
X̃ π−−−−−→ X

h j

E r−−−−→ Y

Moreover, by the Leray-Hirsch Theorem (see for instance [7]),

Hk(E) ∼= Hk(Y ) ⊕ Hk−2(Y ) ⊕ · · · ⊕ Hk−2(d−1)(Y ).

We want to show that {Hk(X̃)} + {Hk(Y )} = {Hk(E)} + {Hk(X)} and
therefore it is enough to show that Hk(X̃) ∼= Hk(X) ⊕ Hk−2(Y ) ⊕ · · · ⊕
Hk−2(d−1)(Y ).

Firstly we observe that the push-forward of the fundamental class of X̃ is
the fundamental class of X, π∗[X̃] = [X] (see [6]). Now, 1 is the dual of [X̃]
and, respectively, of [X], so π∗1 = 1. Using this and the projection formula
one gets that for every y in Hk(X), π∗(1 ·π∗y) = π∗(1) ·y, that is π∗π∗y = y,
and so π∗π∗ = idHk(X). Therefore, π∗: Hk(X̃) → Hk(X) is surjective and one
constructs the isomorphism Hk(X̃) = Hk(X) ⊕ ker(π∗) sending x in Hk(X̃)

into (π∗x, x − π∗π∗x).
Calling U = X \ Y , we also have the following commutative diagram:

· · · → Hk−1(X̃) → Hk−1(U) → Hk−2(E)
k∗−→ Hk(X̃) −→ Hk(U) → · · ·

π∗ id r∗ π∗ id

· · · → Hk−1(X) → Hk−1(U) → Hk−2(Y ) −→ Hk(X)
j∗−→ Hk(U) → · · ·

Firstly we observe that h∗: ker(r∗) → ker(π∗) is an isomorphism. Indeed let
x be in ker(π∗). Since π∗x = 0, then j∗π∗x = 0, but the diagram commutes
and x is also the kernel of Hk(X̃) → Hk(U) and hence, there exists α in
Hk−2(E) mapping to x. It is easy to see that α belongs to ker(r∗). Thus the
map is surjective.

It is also injective because if h∗x = 0 then there exist β in Hk−1(U) mapping
to x. The diagram commutes and so in the second lines, β maps to zero and,
hence, there exists z in Hk−1(X) mapping to β. The map π∗ is surjective
and so there exists z′ in Hk−1(X̃) mapping to β in the first rows. Thus β

has to map to zero and so x = 0. Finally we observe that ker(r∗) is exactly
Hk−2(Y ) ⊕ · · · ⊕ Hk−2(d−1)(Y ). This shows that Hk: K0(Vark) → L0(Ab) is
well defined.

Finally, one extends this map, first to the motivic ring and then to K̂0(Vark).
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Definition 3.2. The i-th Ekedahl invariant of a finite group G is

ei (G) = H−i ({BG}) ∈ L0(Ab).

We say that ei (G) are trivial if ei (G) = 0 for i �= 0.

4. A non-stacky definition

In this section we present an equivalent definition for these invariants that does
not involve the concept of algebraic stacks.

Let V be a n-dimensional faithful k-representation of a finite group G. The
group G acts component-wise on V m. Consider the quotient scheme V m/G

that is usually a singular scheme.

Proposition 4.1. For m large enough, the cohomology H−i ({V m/G}L−mn)

stabilizes.

Proof. We have seen in Proposition 2.5(b) that

{BG} = lim
m→∞{V m/G}L−mn ∈ K̂0(Vark).

From Theorem 3.1, the map Hi is continuous and the topology of L0(Ab) is
discrete, so for m large enough, H−i ({BG}) = H−i ({V m/G}L−mn).

We set m(i, V ) to be the positive integer where this cohomology stabilizes.
Let X be a smooth and proper resolution of V m/G:

X
π−−→ V m/G.

Definition 4.2. Let V , G, m(i, V ) and X be defined as before. The i-th
Ekedahl invariant is defined as follows:

ei (G) = {H2m(i,V )−i (X;Z)} +
∑

j

nj {H2m(i,V )−i (Xj ;Z)} ∈ L0(Ab),

where {V m(i,V )/G} ∈ K0(Vark) is written as the sum of classes of smooth and
proper varieties {X} and {Xj }, {V m(i,V )/G} = {X} + ∑

j nj {Xj }.
This definition does not involve the theory of algebraic stacks, but further-

more it gives a concrete way to compute these invariants.
Now, we show that the two given definitions of Ekedahl invariants are

equivalent. Moreover, by proving this, we prove that the new definition is
independent of the choice of the faithful representation V and of the smooth
and proper resolution X.

Proposition 4.3. Definition 4.2 is equivalent to Definition 3.2.
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Proof. For m = m(i, V ),

H−i ({BG}) = H−i ({V m/G}L−mn;Z) = H2mn−i ({V m/G};Z),
where the shift by 2mn comes from the multiplication of L−mn.

By definition X is a proper resolution of the singularities of V m/G. For
the Bittner results showed in Section 1, we write {V m/G} as a suitable sum
{X}+∑

j nj {Xj } where {X} is smooth, proper and birational to V m/G, the Xj ’s
are smooth and proper with dimension strictly less then dim(V m/G) = mn

and nj ∈ Z. Therefore,

ei (G) = H−i ({BG}) = {H2mn−i (X;Z)} +
∑

j

nj {H2mn−i (Xj ;Z)}.

4.1. The state of the art

The following theorem links to the Noether problem.

Theorem 4.4 (Theorem 5.1 in [4]). We denote by B0(G)∨ the Pontryagin
dual of the Bogomolov multiplier of the group G. If G is a finite group, then

(a) ei (G) = 0, for i < 0;

(b) e0(G) = {Z};
(c) e1(G) = 0;

(d) e2(G) = {B0(G)∨} + α{Z} for some integer α.

Proof. By Definition 4.2 and setting for simplicity m = m(i, V ),

ei (G) = {H2mn−i (X;Z)} +
∑

j

nj {H2mn−i (Xj ;Z)},

where X is a smooth and proper resolution of V m/G; V is a n-dimensional
faithful k-representation of a finite group G and {V m/G} is written in K̂0(Vark)

as the sum of classes of smooth and proper varieties {Xj }, {V m/G} = {X} +∑
j nj {Xj }.
Let i = 0. The only surviving cohomology is H2mn(X;Z) = Z, because

dim(Xj ) < dim(V m/G) = mn. Thus, e0(G) = {H2mn(X;Z)} = {Z}.
If i = 1, for similar reasons, e1(G) = {H2mn−1(X;Z)}. Since X is birational

to V m/G, one has the inclusion k(X) � k(V/G) ⊆ k(V ) and hence X is
unirational and, therefore, simply connected. Thus, using the result of Serre
in [14], H2mn−1(X;Z) � H1(X;Z) = 0 and thus e1(G) = 0.

Regarding e2(G), one firstly observes, by Poincaré duality, that

tor(H2mn−2(X;Z)) ∼= tor(H3(X;Z)).
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Artin and Mumford have proved in [1] that tor(H3(X;Z)) is a birational in-
variant and Bogomolov in [3] proved that this is exactly B0(G). Therefore, we
have proved that e2(G) = {B0(G)∨} + α{Z} for some integer α.

Observation 4.5. Bogomolov proved in Theorem 1.1 of [3] that if X is
smooth, proper and unirational, then the Brauer group Brv(K) is isomorphic to
tor(H3(X;Z)), with K = k(X). Moreover he defined Brv(G) = Brv(k(X)),
where X is smooth, proper and birational to V/G with V being any generically
free representation of G. Thus, in Theorem 3.1 of [3], he has proved that
Brv(G) = B0(G).

Using these results, one finds the first examples of group with non trivial
Ekedahl invariants.

Corollary 4.6 (Non triviality). The second Ekedahl invariant is non trivial
for every algebraically closed field k with char(k) = 0 and for the groups of
order p9 given by Saltman in [13], of order p6 given by Bogomolov in [3] and
the group of order p5 in the the isoclinism family φ10 (see [8]). Moreover in
these cases, {BG} �= {∗} in K̂0(Vark).

Proof. The Bogomolov multiplier is always a finite group and so if
B0(G) �= 0, then e2(G) = {B0(G)∨} + α{Z} �= 0.

For this reasons it is natural to ask the following questions:

Question. For i > 2, does ei (G) �= 0 imply a negative answer to the
Noether problem? In other words, are the Ekedahl invariants obstructions to
the rationality of the extension k(V )G/k?

Another connection between the Noether problem and the non-triviality of
{BG} is the next proposition.

Proposition 4.7 (Corollary 5.8 in [4]). {BZ/47Z} �= {∗} in K̂0(VarQ).

This leads to another natural question:

Question. Is {BG} �= {∗} an obstruction to the rationality of the extension
k(V )G/k?

Regarding item (d) of the previous theorem, Ekedahl actually proved a more
precise statement.

Theorem 4.8 (Theorem 5.1 of [4]). For i > 0, ei (G) is the sum (with
signs) of classes of finite groups in L0(Ab).

Proof. We refer to point (e) of Theorem 5.1 in [4].

Corollary 4.9. The second Ekedahl invariant is exactly e2(G)={B0(G)∨}.
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Proof. We already proved in Theorem 4.4(d) that e2(G) = {B0(G)∨} +
α{Z} for some integer α. Using the previous theorem one gets α = 0.

To the author’s knowledge, there are no examples in literature of finite group
G such that B0(G) = 0 and e3(G) �= 0. Vice versa a lot of groups have trivial
Ekedahl invariants.

Theorem 4.10 (State of art for finite groups). Assume one of the following
cases:

(1) G is the symmetric group and k is any field;

(2) G ⊂ GL1(k) and k is any field (in particular, if G is a cyclic group);

(3) G is a unipotent finite group and k is any field;

(4) G is a finite subgroup of the group of affine transformations of A1
k, for

any algebraically closed field k;

(5) G ⊂ GL3(C) and k = C.

Then {BG} = {∗} ∈ K̂0(Vark) and the trivial Ekedahl invariants are trivial.

Proof. See in order Theorem 4.3, Proposition 3.2, Corollary 3.9, Ex-
ample (ii) on page 8 in [4], and Theorem 2.5 in [11].

Recently the author has proved also the following facts:

Theorem 4.11 (Theorem 3.2 in [11]). Let G be a finite subgroup of GLn(C)

and let H be the image of G under the canonical projection GLn(C) →
PGLn(C).

If H is abelian and if the quotient Pn−1
C /H has only zero dimensional sin-

gularities, then for every integer k

ek(G) + ek+2(G) + · · · + ek+2(n−1)(G) = {H−k(X;Z)},
where X is a smooth and proper resolution of Pn−1

C /H .

Theorem 4.12 (Theorem 4.4 in [11]). The Ekedahl invariants of the fifth
discrete Heisenberg group, ei (H5), are trivial.

We observe that, in [11], the author approaches the study of the Ekedahl
invariants of Hp for a general p, but the assumption p = 5 is necessary because
of the difficulties to extend the technical result in Theorem 4.7 of [11].

Moreover, in Theorem 1.9 of [9], Kang has proved that the Noether prob-
lem for the Heisenberg group Hp has positive answer. Then, it is natural to
conjecture that:

Conjecture. The Ekedahl invariants of the p-discrete Heisenberg group
Hp are trivial.
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