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A FUNCTION ON THE SET OF ISOMORPHISM
CLASSES IN THE STABLE CATEGORY OF

MAXIMAL COHEN-MACAULAY MODULES OVER
A GORENSTEIN RING: WITH APPLICATIONS

TO LIAISON THEORY

TONY J. PUTHENPURAKAL

Abstract
Let (A, �) be a Gorenstein local ring of dimension d ≥ 1. Let CM(A) be the stable category of
maximal Cohen-Macaulay A-modules and let ICM(A) denote the set of isomorphism classes in
CM(A). We define a function ξ : ICM(A) → Z which behaves well with respect to exact triangles
in CM(A). We then apply this to (Gorenstein) liaison theory. We prove that if dim A ≥ 2 and A

is not regular then the even liaison classes of {�n | n ≥ 1} is an infinite set. We also prove that if
A is Henselian with finite representation type with A/� uncountable then for each m ≥ 1 the set
Cm = {I | I is a codim 2 CM-ideal with e0(A/I) ≤ m} is contained in finitely many even liaison
classes L1, . . . , Lr (here r may depend on m).

1. Introduction

Let (A, �) be a Gorenstein local ring of dimension d ≥ 1 and residue field k.
We say an ideal � is a Gorenstein ideal if it is perfect and A/� is a Gorenstein
ring. We should remark that some authors do not require in the definition of
Gorenstein ideals that � be perfect. However we will require it to be so.

We begin by recalling the definition of (Gorenstein) linkage.

Definition 1.1. Ideals I and J of A are (algebraically) linked by a Goren-
stein ideal � if

(a) � ⊆ I ∩ J , and

(b) I = (�: J ) and J = (�: I ).

We write it as I ∼� J .

If � is a complete intersection ideal then we say that I is CI-linked to J .
We say ideals I and J are in the same linkage class if there is a sequence of
ideals I0, . . . , In in A and Gorenstein ideals �0, . . . , �n−1 such that
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(i) Ij ∼�j
Ij+1, for j = 0, . . . , n − 1.

(ii) I0 = I and In = J .

If n is even then we say that I and J are evenly linked. We can analogously
define CI-linkage classes and even CI-linkage classes.

The notion of linkage has been extended to modules [8]. See section 4 for
the definition. Note that ideals I and J are linked as ideals if and only if the
cyclic modules A/I and A/J are linked as modules; see [8, Proposition 1]. In
this paper we prove three results in liaison theory of modules.

Result 1: In [10], Polini and Ulrich investigated when an ideal is the unique
maximal element of its CI-linkage class, in the sense that it contains every
ideal of the class. They showed that if (A, �) is a Gorenstein local ring of
dimension d ≥ 2, with d ≥ 3 if A is regular, then every ideal in the link-
age class of �t is contained in �t provided that the associated graded ring
G(A) = ⊕

n≥0 �n/�n+1 is Cohen-Macaulay, or A is a complete intersection,
or ecodim A ≤ 3, or t ≤ 3 (here ecodim stands for embedding codimen-
sion of A). They conjectured that this holds in general. This was proved by
Wang, see [14, Theorem 1.1]. We note that this result has a non-trivial applic-
ation in constructing equimultiple ideals of reduction number one, see [14,
Theorem 1.2].

In particular if A is regular and dim A ≥ 3 then the CI-liaison classes of
�n for n ≥ 1 are all distinct. This fails spectacularly for Gorenstein liaison.
If A = K[[X1, . . . , Xn]] then �n is evenly linked to �n−1 for all n ≥ 2 (this
follows from [6, Theorem 3.6]).

If (A, �) is a one-dimensional Gorenstein local ring then one can prove
that there exists s ≥ 1 such that �sn+r is evenly linked to �s(n−1)+r for all
n � 0 and r = 0, 1, . . . , s −1; see Proposition 5.1 (here we can choose s = 1
if the residue field of A is infinite). A natural question is when is the set of
ideals {�n | n ≥ 1} is contained in finitely many even liaison classes. Our first
result implies that the above two cases are essentially the only ones when the
above condition holds. We prove the following more general result:

Theorem 1.2. Let (A, �) be a Gorenstein local ring. Let M be a finitely
generated A-module of dimension r ≥ 2. If there exists finitely many even
liaison classes of modules L1, L2, . . . , Lm such that

M/�nM ∈
m⋃

i=1

Li, for all n ≥ 1,

then A is regular.
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Result 2: Assume (A, �) is a complete equi-characteristic Gorenstein local
ring. Let I be an ideal in A generated by a regular sequence. Using results in [6,
Theorem 3.6] it can be proved that I n is evenly linked to I n−1 for all n ≥ 2,
see Proposition 6.1. Thus the modules A/In is evenly linked to A/In−1 for all
n ≥ 2. It follows that if F is a finitely generated free A-module then F/InF is
evenly linked to F/In−1F for all n ≥ 2. A natural question is whether the set of
modules {M/InM | n ≥ 1} is contained in finitely many even liaison classes
when M is a maximal Cohen-Macaulay A-module. We prove the following
surprising result:

Theorem 1.3. Let (A, �) be a Gorenstein local ring of dimension d ≥ 2.
Let M be a maximal Cohen-Macaulay A-module. Let x1, . . . , xr be an A-
regular sequence with r ≥ 2 and let I = (x1, . . . , xr). If there exists finitely
many even liaison classes of modules L1, L2, . . . , Lm such that

M/InM ∈
m⋃

i=1

Li, for all n ≥ 1,

then M is free.

Note that in the above result we do not assume that A is complete or contains
a field. We do not know whether the result holds if r = 1. Our result implies
that for r ≥ 2 a regular sequence of length r can determine whether a maximal
Cohen-Macaulay module is free.

Result 3: Let I be a perfect ideal of codimension 2. It is well-known that
I is licci (i.e., it is CI-linked to a complete intersection). However an arbitrary
codimension two Cohen-Macaulay ideal need not be licci. For instance if
(A, �) is non-regular Gorenstein ring of dimension 2 then � is not a licci-
ideal (this is so because if I is licci then projdim A/I is finite.) So a natural
question is whether codimension two Cohen-Macaulay ideals are contained
in finitely many even liaison classes. Again this is not possible. Let (A, �) be
a non-regular Gorenstein ring of dimension 2. Then by Theorem 1.2 the set
of ideals {�n | n ≥ 1} is not contained in finitely many even liaison classes
of ideals in A. Note that �(A/�n) → ∞ as n → ∞. So we reformulate the
question. Let Cm = {I | I is a codim 2 CM-ideal with e0(A/I) ≤ m}. Here
e0(A/I) is the multiplicity of the ring A/I with respect to its maximal ideal.
Our question is whether Cm contained in finitely many even liaison classes of
ideals. Regular rings trivially have this property. Our next result shows that
most rings of finite representation type have this property. Recall a Henselian
Cohen-Macaulay local ring B is said to be of finite representation type if it
has only finitely many indecomposable maximal Cohen-Macaulay modules.
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If A is Gorenstein and it is of finite representation type then it is an abstract
hypersurface ring [4, 1.2]. We prove:

Theorem 1.4. Let (A, �) be a Henselian Gorenstein ring of finite repres-
entation type and dimension d ≥ 2. Assume k = A/� is uncountable. For
m ≥ 1 let

Cm = {I | I is a codim 2 CM-ideal with e0(A/I) ≤ m}.

Then for every m ≥ 1 there exists finitely many even liaison classes L1, . . . , Lr

(depending on m) such that

Cm ⊆
r⋃

i=1

Li.

For examples of hypersurfaces with finite representation type see [7]. The
assumption k is uncountable is a bit irritating, however it is essential in our
proof. We conjecture that the converse of this theorem is also true.

The technique to prove the above three results is new and involves a con-
struction of “triangle functions” on the stable category of A. Let CM(A) de-
note the full subcategory of maximal Cohen-Macaulay A-modules and let
CM(A) denote the stable category of maximal Cohen-Macaulay A-modules.
Recall that objects in CM(A) are the same as objects in CM(A). However
the set of morphisms HomA(M, N) between M and N is equal to
HomA(M, N)/P (M, N), where P(M, N) is the set of A-linear maps from
M to N which factor through a finitely generated free module. It is well-
known that CM(A) is a triangulated category with translation functor �−1.
Here �(M) denotes the syzygy module of M and �−1(M) denotes the co-
syzygy module of M . Also recall that an object M is zero in CM(A) if
and only if it is free considered as an A-module. Furthermore M ∼= N in
CM(A) if and only if there exists finitely generated free modules F, G with
M ⊕ F ∼= N ⊕ G as A-modules. Let ICM(A) denote the set of isomorphism
classes in CM(A) and for an object M ∈ CM(A) denote its isomorphism class
by [M].

We say a function ξ : ICM(A) → Z is a triangle function if it satisfies the
following properties:

(1) ξ([M]) ≥ 0, for all M ∈ CM(A);

(2) ξ([M]) = 0 if and only if M = 0 in CM(A);

(3) ξ([M1 ⊕ M2]) = ξ([M1]) + ξ([M2]), for all M1, M2 ∈ CM(A);
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(4) (sub-additivity) if M → N → L → �−1(M) is an exact triangle
in CM(A) then

(a) ξ([N ]) ≤ ξ([M]) + ξ([L]),
(b) ξ([L]) ≤ ξ([N ]) + ξ([�−1(M)]) and
(c) ξ([�−1(M)]) ≤ ξ([L]) + ξ([�−1(N)]).

Remark 1.5.
(i) Since rotations of exact triangles are exact it follows that if ξ satisfies

(4)(b) for all exact triangles then it will also satisfy 4(a),(c).

(ii) Axiom (3) implies that ξ([M]) = 0 if M = 0 in CM(A). However note
that axiom (2) also implies that if ξ([M]) = 0 then M = 0 in CM(A).

We have the following result on existence of triangle functions. Let �(N)

denote the length of an A-module N .

Theorem 1.6. Let (A, �) be a Gorenstein local ring of dimension d ≥ 1.
Then the function

eT
A([M]) = lim

n→∞
(d − 1)!

nd−1
�

(
TorA

1

(
M,

A

�n+1

))
, where [M] ∈ ICM(A),

is a triangle function on ICM(A).

Unlike the multiplicity function which can be defined uniquely through a set
of axioms, triangle functions are highly non-unique. In §3.5 we will construct
infinitely many triangle functions. However eT

A is the simplest triangle function
that we have constructed. It also behaves well with generic hyperplane sections,
see Proposition 2.9 for details.

The existence of triangle functions has non-trivial implications in liaison
theory. In fact we prove results 1 and 2 by using any triangle function. However
for the third result we need some additional properties of eT

A.
We now briefly describe the contents of the paper. In section 2 we introduce

the function eT
A(−) and prove some of its basic properties. In section 3 we

prove Theorem 1.6. In section 4 we discuss some results on liaison theory of
modules and discuss the notion of maximal Cohen-Macaulay approximations.
In section 5, 6 and 7 we prove Theorems 1.2, 1.3 and 1.4 respectively.

2. Pre-triangles in CM(A)

In this paper all rings are commutative Noetherian local and all modules are
assumed to be finitely generated. In this section (A, �) is a Cohen-Macaulay
local ring of dimension d ≥ 1 and residue field k. Let ICM(A) denote the set
of isomorphism classes of maximal Cohen-Macaulay A-modules and for an
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object M ∈ CM(A), we denote its isomorphism class by [M]. In this section
we study the function

eT
A([M]) = lim

n→∞
(d − 1)!

nd−1
�

(
TorA

1

(
M,

A

�n+1

))
, where [M] ∈ ICM(A).

We also abstract some of its properties and call the notion a pre-triangle func-
tion.

2.1. Let M be an A-module. We denote it’s first syzygy-module by �(M).
If we have to specify the ring, then we write it as �A(M).

Set �1(M) = �(M). For i ≥ 2, define �i(M) = �(�i−1(M)). It can be
easily proved that �i(M) are invariants of M .

2.2. The function eT
A(−) arose in the author’s study of certain aspects of the

theory of Hilbert functions [11], [12]. Let N be an A-module of dimension r .
It is well-known that there exists a polynomial PN(z) ∈ Q[z] of degree r such
that PN(n) = �(N/�n+1N) for all n � 0. We write

PN(z) =
r∑

i=0

(−1)iei(N)

(
z + r − i

r − i

)
.

Then e0(N), . . . , er (N) are integers and are called the Hilbert coefficients
of N . The number e0(N) is called the multiplicity of N . It is positive if N

is non-zero. The number e1(N) is non-negative if N is Cohen-Macaulay; see
[11, Proposition 12]. Also note that

∑
n≥0

�(N/�n+1N)zn = hN(z)

(1 − z)r+1
,

where hN(z) ∈ Z[z] with ei(N) = h
(i)
N (1)/i!, for i = 0, . . . , r .

2.3. Let M ∈ CM(A). In [11, Proposition 17], we proved that the function

n �→ �

(
TorA

1

(
M,

A

�n+1

))

is of polynomial type, i.e., it coincides with a polynomial tM(z) for all n � 0.
In [11, Theorem 18], we also proved that:

(1) M is free if and only if deg tM(z) < d − 1;

(2) if M is not free then deg tM(z) = d − 1 and the normalized leading
coefficient of tM(z) is μ(M)e1(A) − e1(M) − e1(�(M)), here μ(M)

denotes the minimal number of generators of M;
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(3) for any M ∈ CM(A),

eT
A(M) = lim

n→∞
(d − 1)!

nd−1
�

(
TorA

1

(
M,

A

�n+1

))

= μ(M)e1(A) − e1(M) − e1(�(M)).

By (1) note that eT
A(M) = 0 if and only if M is free. Otherwise eT

A(M) > 0.
In fact eT

A(M) ≥ e0(�(M)), see [11, Lemma 19].
Our first result shows that we need not confine to a minimal presentation to

compute eT
A(M).

Lemma 2.4. Let M ∈ CM(A) and let 0 → N → F → M → 0 be an exact
sequence in CM(A) with F free. Then

eT
A(M) = e1(F ) − e1(M) − e1(N).

Proof. By Schanuel’s Lemma [9, Lemma 3, section 19] we have Aμ(M) ⊕
N ∼= F ⊕ �(M). So

μ(M)e1(A) + e1(N) = e1(F ) + e1(�(M)).

The result follows.

Our next result shows that e1(−) is sub-additive over short-exact sequences
in CM(A).

Proposition 2.5. Let 0 → M1 → M2 → M3 → 0 be a short-exact
sequence in CM(A). Then

e1(M2) ≥ e1(M1) + e1(M3).

Proof. Note e0(M2) = e0(M1) + e0(M3). For n ≥ 0 we define modules
Kn by the exact sequence

0 → Kn → M1

�n+1M1
→ M2

�n+1M2
→ M3

�n+1M3
→ 0.

It follows that

∑
n≥0

�(Kn)z
n = hM1(z) − hM2(z) + hM3(z)

(1 − z)d+1
.
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Since e0(M2) = e0(M1) + e0(M3), we have that hM1(z) − hM2(z) + hM3(z) =
(1 − z)�K(z) for some �K(z) ∈ Z[z]. So we have

∑
n≥0

�(Kn)z
n = �K(z)

(1 − z)d
.

Notice �K(1) = e1(M2) − e1(M1) − e1(M3). It follows that for all n � 0

�(Kn) = (e1(M2) − e1(M1) − e1(M3))
nd−1

(d − 1)!
+ lower order terms in n.

So e1(M2) ≥ e1(M1) + e1(M3).

We now prove that eT
A(−) is sub-additive over short-exact sequences in

CM(A).

Theorem 2.6. Let 0 → M1 → M2 → M3 → 0 be a short-exact sequence
in CM(A). Then

eT
A(M2) ≤ eT

A(M1) + eT
A(M3).

Proof. By a standard result in homological algebra we have the following
diagram with exact rows and columns, with Fi free A-modules for i = 1, 2, 3:

0 0 0

0 N1 N2 N3 0

0 F1 F2 F3 0

0 M3 M2 M1 0

0 0 0

Note F2
∼= F1 ⊕ F3. So e1(F2) = e1(F1) + e1(F3). However e1(M2) ≥

e1(M1) + e1(M3) and e1(N2) ≥ e1(N1) + e1(N3); see Proposition2.5.
By Lemma 2.4, we have eT

A(Mi) = e1(Fi)−e1(Mi)−e1(Ni), for i = 1, 2, 3.
The result follows.

2.7. Let us recall the definition of superficial elements. Let N be an A-
module. An element x ∈ �\�2 is said to be N -superficial if there exists c > 0
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such that (�n+1N : x) ∩ �cN = �nN , for all n � 0. It is well-known that
superficial elements exist if k is infinite. If depth N > 0, then one can prove that
an N -superficial element x is N -regular. Furthermore (�n+1N : x) = �nN ,
for all n � 0.

2.8. Behavior of Hilbert coefficients with respect to superficial elements:
assume N is an A-module with depth N > 0 and dimension r ≥ 1. Let x be
N -superficial. Then by [11, Corollary 10] we have

ei(N/xN) = ei(N), for i = 0, . . . , r − 1.

Our next result shows that eT
A(−) behaves well modulo superficial elements.

Proposition 2.9. Suppose dim A ≥ 2 and let M ∈ CM(A). Assume the
residue field k is infinite. Let x be A⊕M⊕�A(M)-superficial. Set B = A/(x)

and N = M/xM . Then
eT
B(N) = eT

A(M).

Proof. Note

eT
A(M) = e1(A)μ(M) − e1(M) − e1(�A(M)),

= e1(B)μ(N) − e1(N) − e1(�A(M)/x�A(M)).

The result follows from observing that �A(M)/x�A(M) ∼= �B(M/xM).

2.10. We now abstract some of the essential properties of eT
A(−).

We say a function ξ : ICM(A) → Z is a pre-triangle function if it satisfies
the following properties:

(1) ξ([M]) ≥ 0 for all M ∈ CM(A);

(2) ξ([M]) = 0 if and only if M is free;

(3) ξ([M1 ⊕ M2]) = ξ([M1]) + ξ([M2]) for all M1, M2 ∈ CM(A);

(4) (sub-additivity) if 0 → M → N → L → 0 is an exact sequence in
CM(A), then

ξ([N ]) ≤ ξ([M]) + ξ([L]).

We state our basic existence result for pre-triangle functions.

Theorem 2.11. Let (A, �) be a Cohen-Macaulay local ring of dimension
d ≥ 1. Then the function

eT
A([M]) = lim

n→∞
(d − 1)!

nd−1
�

(
TorA

1

(
M,

A

�n+1

))
, where [M] ∈ ICM(A),

is a pre-triangle function on ICM(A).
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Proof. Properties (1), (2) are satisfied by §2.3. Property (3) is trivially
satisfied. Property (4) is satisfied by Theorem 2.6.

2.12. If ξ is a pre-triangle function then trivially kξ is a pre-triangle function
for any k ≥ 1. Perhaps less-obvious is the following:

Proposition 2.13. Let ξ be a pre-triangle function. Then the function
ξ (i): ICM(A) → Z defined by

ξ (i)([M]) = ξ([�i(M)])

is a pre-triangle function for all i ≥ 0.

Proof. Note ξ (0) = ξ . Also note that for i ≥ 2, we have

ξ (i) =(
ξ (i−1)

)(1)
.

So it suffices to prove that ν = ξ (1) is a pre-triangle function.
It is very easy to prove that ν satisfies properties (1), (2) and (3) and is left

to the reader. We prove that ν satisfies property (4). Let 0 → M1 → M2 →
M3 → 0 be a short exact sequence in CM(A). Note that we have a short exact
sequence

0 → �(M1) → �(M2) ⊕ F → �(M3) → 0,

where F is a finitely generated free A-module (possibly zero). Since ξ is a
pre-triangle function we have

ξ([�(M2)]) = ξ([�(M2) ⊕ F ]) ≤ ξ([�(M1)]) + ξ([�(M3)])

The result follows.

Remark 2.14. In general ξ (i) will be different from ξ . For instance if ξ =
eT
A(−) and if the Betti-numbers of M are unbounded, then since eT

A(M) ≥
e0(�(M)) ≥ μ(�(M)), see [11, Lemma 19], we get that for i � 0 that
eT (�i(M)) > eT (M). So in this case ξ (i)(M) 
= ξ(M).

The following easy proposition (proof left to the reader) combined with 2.12
and Proposition 2.13 yields yet another abundant number of pre-triangle func-
tions.

Proposition 2.15. Let ξ1, ξ2 be two pre-triangle functions. Then ξ = ξ1+ξ2

is a pre-triangle function.

3. Triangle functions on CM(A)

For the rest of the paper (A, �) denotes a Gorenstein local ring of dimen-
sion d ≥ 1 with residue field k. Let CM(A) denote the full subcategory of
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maximal Cohen-Macaulay A-modules and let CM(A) denote the stable cat-
egory of maximal Cohen-Macaulay A-modules. Let ICM(A) denote the set
of isomorphism classes in CM(A) and for an object M ∈ CM(A) we denote
its isomorphism class by [M]. In this section we prove Theorem 1.6. We also
construct a large class of triangle functions on ICM(A).

3.1. Let M ∈ CM(A). By M∗ we mean the dual of M , i.e., M∗ =
HomA(M, A). Note M ∼= M∗∗. By �−1(M) we mean the co-syzygy of M .
Recall this is constructed as follows. Let F → G ε−→ M∗ → 0 be a minimal
presentation of M∗. Dualizing we get an exact sequence 0 → M ε∗−→ G∗ →
F ∗. Then �−1(M) = coker ε∗. It can be easily shown that if F ′ → G′ η−→
M∗ → 0 is another minimal presentation of M∗ then coker ε∗ ∼= coker η∗.

3.2. The triangulated category structure on CM(A). The reference for this
topic is [3, §4.7]. We first describe a basic exact triangle. Let f : M → N be a
morphism in CM(A). Note that we have an exact sequence 0 → M i−→ Q →
�−1(M) → 0, with Q free. Let C(f ) be the pushout of f and i. Thus we have
a commutative diagram with exact rows

0 −−−→ M i−−−−−→ Q
p−−−−−→ �−1(M) −−−→ 0

f j

0 −−−→ N i ′−−−−→ C(f )
p′−−−−→ �−1(M) −−−→ 0

Here j is the identity map on �−1(M). As N, �−1(M) ∈ CM(A) it follows
that C(f ) ∈ CM(A). Then the projection of the sequence

M
f−→ N

i ′−→ C(f )
−p′−→ �−1(M)

in CM(A) is a basic exact triangle. Exact triangles in CM(A) are triangles
isomorphic to a basic exact triangle.

Remark 3.3. If 0 → M
f−→ N → L → 0 is an exact sequence in CM(A)

then we have an exact triangle M → N → L → �−1(M) in CM(A). To see
this we do the basic construction with the map f . We have the following exact
sequence:

0 → Q → C(f ) → L → 0.

As A is Gorenstein and Q is free we get C(f ) ∼= Q ⊕ L. It follows that
C(f ) ∼= L in CM(A). The result follows.

The main result of this section is
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Theorem 3.4. Let ξ : ICM(A) → Z be a pre-triangle function. Then ξ

induces a triangle function ξ ′: ICM(A) → Z defined as

ξ ′([M]) = ξ(〈M〉).
(Here by 〈M〉 we mean the isomorphism class of M in CM(A)).

Proof. We first show that ξ ′ is a well-defined function. Let [M] = [N ].
Then there exists free modules F and G such that M ⊕ F ∼= N ⊕ G. So
〈M ⊕ F 〉 = 〈N ⊕ G〉 in ICM(A). Thus ξ(〈M ⊕ F 〉) = ξ(〈N ⊕ G〉). But ξ is
a pre-triangle function. So

ξ(〈M ⊕ F 〉) = ξ(〈M〉) + ξ(〈F 〉) = ξ(〈M〉).
Similarly ξ(〈N ⊕ G〉) = ξ(〈N〉). It follows that ξ ′ is a well-defined function.

Properties (1), (2) and (3) are trivial to show and are left to the reader. We
prove property (4). Let M → N → L → �−1(M) be an exact triangle in
CM(A). Then it is isomorphic to a basic triangle M ′ f−→ N ′ → C(f ) →
�−1(M). We have an exact sequence 0 → N ′ → C(f ) → �−1(M ′) → 0.
As ξ is a pre-triangle we have

ξ(〈C(f )〉) ≤ ξ(〈N ′〉) + ξ(〈�−1(M ′)〉).
Note C(f ) ∼= L, �−1M ∼= �−1(M ′) and N ∼= N ′ in CM(A). So we have

ξ ′([L]) ≤ ξ ′([N ]) + ξ ′([�−1(M)]).

Thus we have shown property 4(b) for all exact triangles. By 1.5 it follows that
properties 4(a) and (c) are also satisfied for all exact triangles.

We now give

Proof of Theorem 1.6. This follows from Theorem 2.11 and Theo-
rem 3.4.

3.5. We now give a construction of infinitely many triangle functions on
CM(A). Since we have one pre-triangle function on ICM(A), we constructed
in §2.12, Proposition 2.13 and Proposition 2.15 infinitely many pre-triangle
functions. Each of these will yield a triangle function on CM(A).

4. Some preliminaries on liaison of modules and maximal Cohen-
Macaulay approximation

In this section we recall the definition of linkage of modules as given in [8].
We also recall the notion of maximal Cohen-Macaulay approximations and
then breifly explain its connection with liaison theory.
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4.1. Let us recall the definition of the transpose of a module. Let F1
φ−→

F0 → M → 0 be a minimal presentation of M . Let (−)∗ = Hom(−, A). The
transpose Tr(M) is defined by the exact sequence

0 → M∗ → F ∗
0

φ∗−→ F ∗
1 → Tr(M) → 0.

Definition 4.2. Two A-modules M and N are said to be horizontally
linked if M ∼= �(Tr(N)) and N ∼= �(Tr(M)).

Next we define linkage in general.

Definition 4.3. Two A-modules M and N are said to be linked via a
Gorenstein ideal � if

(1) � ⊆ ann M ∩ ann N , and

(2) M and N are horizontally linked as A/�-modules.

We write it as M ∼� N .

Remark 4.4. It can be shown that ideals I and J are linked by a Gorenstein
ideal � (Definition 1.1 in the introduction) if and only if the module A/I is
linked to A/J by �, see [8, Proposition 1].

4.5. We say M, N are in the same linkage class of modules if there is a
sequence of A-modules M0, . . . , Mn and Gorenstein ideals �0 . . . , �n−1 such
that

(i) Mj ∼�j
Mj+1, for j = 0, . . . , n − 1,

(ii) M0 = M and Mn = N .

If n is even then we say that M and N are evenly linked.

4.6. (MCM-approximations) An MCM approximation of a A-module M is
a short exact sequence 0 → Y → X → M → 0, where X is maximal Cohen-
Macaulay and projdim Y < ∞. If 0 → Y ′ → X′ → M → 0 is another MCM
approximation of M then X and X′ are stably isomorphic, i.e., there exists free
modules F and G with X ⊕ F ∼= X′ ⊕ G. Thus we have a well-defined object
XM in CM(A).

The relation between liaison theory and MCM approximation is the follow-
ing result by Martsinkovsky and Strooker [8, Theorem 13].

Theorem 4.7. Let (A, �) be a Gorenstein local ring and let M and N be
two A-modules. If M is evenly linked to N then XM

∼= XN in CM(A).

4.8. If M is Cohen-Macaulay then maximal Cohen-Macaulay approxima-
tion of M are very easy to construct, see [1, p. 7]. Set codim M = dim A −
dim M . The following result is well-known.
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Proposition 4.9. Let M , N and L be Cohen-Macaulay A-modules with
codim = n. Suppose we have an exact sequence 0 → M → N → L → 0.
Then we have an exact triangle

XM → XN → XL → �−1(XM)

in CM(A).

5. Proof of Theorem 1.2

First we prove that for one-dimensional rings the set of even liaison classes of
{�n | n ≥ 1} is a finite set.

Proposition 5.1. Let (A, �) be a one-dimensional Gorenstein ring. Then
there exists s ≥ 1 such that �sn+r is evenly linked to �s(n−1)+r for all n � 0
and r = 0, 1, . . . , s − 1.

Proof. Let a ∈ �s\�s+1 be such that image of a in �s/�s+1 is a parameter
for the associated graded ring G = ⊕

n≥0 �n/�n+1. Then it can be shown that
a is a non-zero divisor of A and (�n+s : a) = �n for all n � 0. We also have
that �n+s = a�n for all n � 0.

It is easily verified that for alln � 0 we have (an: �sn−r ) = (an−1: �s(n−1)−r)

for r = 0, 1, . . . , s − 1. Therefore �sn−r is evenly linked to �s(n−1)−r for
r = 0, 1, . . . , s − 1 and for all n � 0.

Remark 5.2. If k is infinite, then note we can choose s = 1 in the above
Proposition, see [2, 1.5.12]. So we get �n is evenly linked to �n−1 for all
n � 0.

5.3. By [6, Theorem 3.6], it follows that if K is a field and R = K[[X1, . . . ,

Xn]] then �i is evenly linked to �i−1 for all i ≥ 2; here � is the maximal ideal
of R. We do not know whether in general for a regular local ring (R, �) with
dim R ≥ 3 we have �i is evenly linked to �i−1. We also do not know whether
the set of even liaison classes of {�i | i ≥ 1} is a finite set.

5.4. Let M be an A-module of dimension r . The function

H(M, n) = �(�nM/�n+1M), n ≥ 0,

is called the Hilbert function of M . It is well-known that it is of polynomial
type of degree r − 1. In particular, if r ≥ 2 then H(M, n) → ∞ as n → ∞.

We now give:

Proof of Theorem 1.2. For n ≥ 0 we have an exact sequence of finite
length A-modules

0 → �nM

�n+1M
→ M

�n+1M
→ M

�nM
→ 0.
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For n ≥ 0, let Xn, Yn denote the maximal Cohen-Macaulay approximations of
�nM/�n+1M and M/�n+1M respectively. Note Xn

∼= X
H(M,n)
k in CM(A).

By Proposition 4.9, for all n ≥ 1 we have an exact triangle in CM(A)

Xn → Yn → Yn−1 → �−1(Xn). (5.4.1)

Suppose if possible that M/�nM ∈ ⋃m
i=1 Li for some finitely many even

liaison classes L1, . . . , Lm and for all n ≥ 1. Choose Vi ∈ Li for i = 1, . . . , m.
Then for all n ≥ 0 we have Yn

∼= XVi
in CM(A) for some i (depending on n).

Notice we also have �−1(Yn) ∼= �−1(XVi
) in CM(A).

Let ξ be any triangle function on ICM(A). Then by Proposition 5.4.1 we
have

ξ([�−1(Xn)]) ≤ ξ([Yn−1]) + ξ([�−1(Yn)]). (5.4.2)

Let
α = max{ξ([XVi

]) | i = 1, . . . , m},
β = max{ξ([�−1(XVi

)]) | i = 1, . . . , m}.
Also note that

�−1(Xn) = (�−1Xk)
H(M,n), in CM(A).

By Proposition 5.4.2 we have

H(M, n)ξ([�−1Xk]) ≤ α + β.

Since dim M ≥ 2 we have that H(M, n) → ∞ as n → ∞. It follows
that ξ([�−1Xk]) = 0. Therefore �−1(Xk) is free. It follows that Xk is free.
Therefore projdim k < ∞. This implies that A is regular.

6. Proof of Theorem 1.3

The following result follows easily from [6, Theorem 3.6]. However we sketch
a proof as we do not have a reference. It also explains the significance of
Theorem 1.3.

Proposition 6.1. Let (A, �) be a complete equi-characteristic Gorenstein
local ring. Let I be an ideal generated by a regular sequence. The I n is evenly
linked to I n−1 for all n ≥ 2.

To prove this result we need the following general result which is easy to
prove.

Lemma 6.2. Let φ: (A, �) → (B, �) be a faithfully flat homomorphism of
Gorenstein local rings. Let I, J be ideals in A and let � be a Gorenstein ideal
in A such that I ∼� J . Then
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(1) �B is a Gorenstein ideal in B.

(2) IB ∼�B JB.

As an easy consequence we have

Corollary 6.3. Let K be a field. Let R = K[[X1, . . . , Xn]]. Fix r ≥ 1.
Set I = (X1, . . . , Xr). Then I n is evenly linked to I n−1 for n ≥ 2.

Proof. Let T = K[[X1, . . . , Xr ]] and let � = (X1, . . . , Xr). The inclu-
sion T → R is flat. By [6, Theorem 3.6], �n is evenly linked to �n−1 for
n ≥ 2. By Lemma 6.2 we have that I n is evenly linked to I n−1 for n ≥ 2.

We now give

Proof of Proposition 6.1. Let I = (x1, . . . , xr). Extend this regular
sequence to a system of parameters x1, . . . , xd of A. Assume A = K[[Y1, . . . ,

Ym]]/I . Consider the subring B = K[[x1, . . . , xd ]] of A. Then note that

(1) A is finitely generated as a B-module.

(2) B ∼= K[[X1, . . . , Xd ]] the power series ring over K in d-variables.

(3) As A is Cohen-Macaulay we have that A is free as a B-module. Thus
the inclusion i: B → A is flat.

By Corollary 6.3, we have that the B-ideal J = (x1, . . . , xr) has the property
that J n is evenly linked to J n−1 for all n ≥ 2. By Lemma 6.2 it follows that
I n is evenly linked to I n−1 for all n ≥ 2.

Remark 6.4 (With the hypotheses of Proposition 6.1). Note that as mod-
ules, A/In is evenly linked to A/In−1 for all n ≥ 2. It follows that if F is a
finitely generated free A-module then F/InF is evenly linked to F/In−1F for
all n ≥ 2.

We now give

Proof of Theorem 1.3. As M is a maximal Cohen-Macaulay A-module
it follows that x1, . . . , xr is an M-regular sequence. Note that I nM/In+1M ∼=
(M/IM)γn where γn = (

n+r−1
r−1

)
, see [2, Theorem 1.1.8]. For all n ≥ 0 we also

have an exact sequence

0 → I nM

In+1M
→ M

In+1M
→ M

InM
→ 0. (6.4.1)

Inductively one can prove that M/InM is a Cohen-Macaulay A-module of
codimension r for all n ≥ 1. Thus (6.4.1) is an exact sequence of codimen-
sion r Cohen-Macaulay A-modules. For n ≥ 0 let Xn and Yn denote maximal
Cohen-Macaulay approximations of I nM/In+1M and M/In+1M respectively.
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Therefore by Proposition 4.9, for all n ≥ 1, we have the following exact tri-
angle in CM(A)

Xn → Yn → Yn−1 → �−1(Xn).

Suppose if possible that M/InM ∈ ⋃m
i=1 Li for some finitely many even

liaison classes L1, . . . , Lm and for all n ≥ 1. Choose Vi ∈ Li for i = 1, . . . , m.
Then for all n ≥ 0 we have Yn

∼= XVi
in CM(A) for some i (depending on n).

Notice we also have �−1(Yn) ∼= �−1(XVi
) in CM(A).

Let ξ be any triangle function on ICM(A). Then by (5.4.1) we have

ξ([�−1(Xn)]) ≤ ξ([Yn−1]) + ξ([�−1(Yn)]). (6.4.2)

Let
α = max{ξ([XVi

]) | i = 1, . . . , m},
β = max{ξ([�−1(XVi

)]) | i = 1, . . . , m}.
Also note that

�−1(Xn) = (�−1XM/IM)γn , in CM(A).

By (6.4.2) we have
γnξ([�−1XM/IM ]) ≤ α + β.

Since r ≥ 2 we have that γn → ∞ as n → ∞. It follows that ξ([�−1XM/IM ])
= 0. Therefore �−1(XM/IM) is free. It follows that XM/IM is free. Therefore
projdimA M/IM < ∞. As x1, . . . , xr is an M-regular sequence it follows that
projdimA M is finite. So M is free.

7. Proof of Theorem 1.4

Let r ≥ 1. Let CMr (A) denote the full sub-category of Cohen-Macaulay A-
modules of codimension r . In this section we define an invariant of modules
in CMr (A) and then use it to prove Theorem 1.4.

Definition 7.1. Let N ∈ CMr (A). Let XN be a maximal Cohen-Macaulay
approximation of N . Set θA(N) = eT

A([XN ]).

As eT
A(−) is a triangle function on CM(A) it follows that θA(N) is a well-

defined invariant of M .
The number θA(−) behaves well modulo superficial sequences. Let us recall

the notion of a superficial sequence. Let N be an A-module of dimension r .
We say x = x1, . . . , xs (with s ≤ r) is an N -superficial sequence if x1 is
N -superficial, xi is N/(x1, . . . , xi−1)N superficial for 2 ≤ i ≤ s.

Proposition 7.2. Let N ∈ CMr (A) with r ≥ 1 and let dim A = d. Let
0 → Y → X → N → 0 be a maximal Cohen-Macaulay approximation of
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M . Let x = x1, . . . , xd−r be an A ⊕ X ⊕ �(X) ⊕ N superficial sequence. Set
B = A/(x). Then

θA(N) ≤ e0(N)θB(k).

Proof. Note x is a X ⊕ Y ⊕ N regular sequence. So 0 → Y/xY →
X/xX → N/xN → 0 is a maximal Cohen-Macaulay approximation of the B-
module N/xN . Note as r ≥ 1 we have that d−r ≤ d−1. Using Proposition 2.9
we get eT

B(X/xX) = eT
A(X). So we have θA(N) = θB(N/xN). It suffices to

prove θB(N/xN) ≤ e0(N)θB(k). By §2.8 we get that N/xN is a B-module of
length e0(N).

Let L be a finite length B-module. We prove by induction on �(L) that
θB(L) ≤ �(L)θB(k). We have nothing to prove if �(L) = 1. So assume �(L) =
m ≥ 2 and the result is proved for all B-modules of length ≤ m − 1.

We have an exact sequence 0 → V → L → k → 0, where �(V ) = m− 1.
In CM(B) we have an exact triangle

XV → XL → Xk → �−1(XV ).

It follows that eT
B(XL) ≤ eT

B(XV )+eT
B(Xk) ≤ meT

B(k). Thus θB(L) ≤ mθB(k).

Our proof of Theorem 1.4 uses the following result by Herzog and Kühl,
[5, 2.1].

Theorem 7.3. Let R be a local Gorenstein domain with infinite residue
field k. Let 0 → F1 → M1 → I1 → 0 and 0 → F2 → M2 → I2 → 0 be any
two Bourbaki sequences (i.e., F1, F2 are free, M1, M2 are maximal Cohen-
Macaulay modules and I1, I2 are Cohen-Macaulay ideals of codimension 2).
Then the following two statements are equivalent:

(1) M1 and M2 are stably isomorphic.

(2) I1 and I2 are evenly linked by a complete intersection.

We should remark that a Bourbaki sequence is simply a maximal Cohen-
Macaulay approximation of I , where I is a codimension 2 Cohen-Macaulay
ideal. We now give

Proof of Theorem 1.4. Suppose if possible that for some m ≥ 1 the set
Cm is not contained in any collection of finitely many even liaison classes. For
j ≥ 1 let Ij be ideals with e0(A/Ij ) ≤ m such that the liaison classes Lj of Ij
are all distinct.

For j ≥ 1 let 0 → Yj → Xj → A/Ij → 0 be maximal Cohen-Macaulay
approximation of A/Ij .

As the residue field of A is uncountable it can be easily shown that there
exists x = x1, . . . , xd−2 such that x is a A ⊕ Xj ⊕ �(Xj) ⊕ A/Ij -superficial
for all j ≥ 1.
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Set B = A/(x). By Proposition 7.2 we get that

eT
A(Xj ) = θA(A/Ij ) ≤ mθB(k).

Set c = mθB(k). Let M1, M2, . . . , Mm be all the indecomposable non-free
maximal Cohen-Macaulay A-modules. Write

Xj = M
a1,j

1 ⊕ . . . ⊕ M
am,j

m ⊕ Alj .

Here ai,j , lj ≥ 0. Note that

m∑
j=1

ai,j ≤ eT
A(Xj ) ≤ c, for all j ≥ 1.

By the pigeon-hole principle it follows that there exists r and s with r < s such
that Xr is stably isomorphic to Xs . Note �(Xr) (and a free summand) will
give a maximal Cohen-Macaulay approximation of Ir . By the result of Herzog
and Kühl we have that Ir is evenly linked to Is . So Lr = Ls a contradiction.
Thus Cm is contained in finitely many even liaison classes of A.

Remark 7.4. If e0(A/I) = m and X is a MCM approximation of A/I it
does not follow that X decomposes as a direct sum of at most m indecompos-
able MCM A-modules. For a counterexample let k be an algebraically closed
field of characteristic zero and let A = k[[X, Y, Z]]/(XY − Z2) be the A2

singularity. Then Syz2
A(k) decomposes as a direct sum of two indecompos-

able non-free MCM A-modules, see [13, Theorem B]. It follows that if X is
a MCM-approximation of k then X is at least the direct sum of two non-free
indecomposable MCM A-modules.
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