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A SIMPLE SUFFICIENT CONDITION FOR TRIVIALITY
OF OBSTRUCTIONS IN THE ORBIFOLD

CONSTRUCTION FOR SUBFACTORS

TOSHIHIKO MASUDA∗

Abstract
We present a simple sufficient condition for triviality of obstructions in the orbifold construction.
As an application, we can show the existence of subfactors with principal graph D2n without full
use of Ocneanu’s paragroup theory.

1. Introduction

In the subfactor theory initiated by V. F. R. Jones [15], one of the fundamental
constructions of subfactors is the orbifold construction. It was introduced by
D. E. Evans and Y. Kawahigashi [6] as a method of producing new subfactors.
The origin of their work is [16], where Kawahigashi showed the existence of
subfactors whose principal graphs are Dynkin diagram D2n. Roughly speaking,
the orbifold construction is to take a “quotient” by an internal symmetry of
subfactors, which is realized by taking a crossed product construction by an
abelian group. The orbifold construction has been further studied by [21], [22],
[9], [10].

A typical example of the orbifold construction is the case of a Jones subfactor
with principal graph A2n−1 [15], which possesses certain Z/2Z-symmetry. By
the orbifold construction, graph change occurs only for A4n−3-subfactors, and
the orbifold construction produces subfactors with principal graph D2n. This is
because some obstruction, which prevents graph change, appears for an A4n−1-
subfactor. Thus the most important problem is to determine the triviality of
obstructions in the construction. In general, this problem requires complicated
combinatorial computations of connections.

In this paper, we present a simple sufficient condition for triviality of ob-
structions appearing in the orbifold construction. Namely, we show that an
obstruction vanishes if a tensor category arising from a subfactor has a nice
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fusion rule. As an application, we can show the existence of subfactors with
principal graph D2n without full use of Ocneanu’s paragroup theory, and the
proof is easier than that of [16]. Our argument is inspired by the computation
presented in [12], and we use a sector technique for the proof. The sector ap-
proach has been used in the theory of α-induction [23], [1], [2], [3], [4] in an
effective manner. For example, Böckenhauer and Evans [2, Section 3] studied
details of the orbifold construction and D2n-subfactors by using the theory of
α-induction in the framework of conformal field theory. Also see [23, pp. 381,
Examples 1, 2] about E6 subfactors and E8 subfactors arising from conformal
inclusions. We mention that our approach in this paper does not require con-
formal field theory and is simpler when compared with above cited papers.

This paper is organized as follows. In §2, we recall the definition of the Loi
invariant [18], and construct half braidings in the sense of Izumi [14]. This
allows us to extend an endomorphism to a crossed product factor, which is a
special case of α-induction. In §3, we explain basic properties of this exten-
sion, and show the main theorem. Then we present examples of applications
of our theorem.

2. Half braidings

We refer to [7] for the fundamentals of subfactor theory, and [11], [13] for
the basics of sector theory. In this paper, we mainly treat type III factors.
Here we recall some notation for sectors. For von Neumann algebras A , B,
let Mor(A , B) be the set of all unital continuous injective morphisms from
A into B, and Sect(B, A ) = Mor(A , B)/ Int(B). When A = B, we
write Mor(A , A ) = End(A ) and Sect(A , A ) = Sect(A ). For ρ, σ ∈
Mor(A , B), the space of intertwiners is defined by (σ, ρ) := {a ∈ B |
ρ(x)a = aσ(x), x ∈ A }. When σ is irreducible, i.e., (σ, σ ) = σ(A )′ ∩ B =
C1, (σ, ρ) becomes a Hilbert space via the inner product 〈a, b〉1 = b∗a.

Let N ⊂ M be an irreducible subfactor of type III with finite index, and
ι: N ↪→ M an inclusion map. Then γ = ιῑ is a canonical endomorphism for
N ⊂ M. Set

M ⊃ ι(N ) ⊃ ιῑ(M) ⊃ ιῑι(N ) ⊃ · · · = M ⊃ N1 ⊃ N2 ⊃ N3 ⊃ · · · .
Set

M�M = {[σ ] ∈ Sect(M) | σ ≺ (ιῑ)n, n ∈ N, σ is irreducible},
M�N = {[σ ] ∈ Sect(M, N ) | σ ≺ (ιῑ)nι, n ∈ N, σ is irreducible},
N �M = {[σ ] ∈ Sect(N , M) | σ ≺ (ῑι)nῑ, n ∈ N, σ is irreducible},
N �N = {[σ ] ∈ Sect(N ) | σ ≺ (ῑι)n, n ∈ N, σ is irreducible}.

and � := M�M � M�N � N �M � N �N .
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We recall the definition of the Loi invariant [18]. Fix isometries R ∈ (id, ιῑ)

and R̄ ∈ (id, ῑι) such that R∗ι(R̄) = R̄∗ ῑ(R) = 1/d(ι). Let Aut(M, N )

be a set of automorphisms of M which preserve N globally. Take α ∈
Aut(M, N ). Since α preserves ι(N ), we have αι = ια. Thus [ῑ][α] = [α][ῑ] ∈
Sect(N , M), and we can take u ∈ U(N ) such that αῑ = Ad(u)◦ῑα. The choice
of u is not unique, but we can easily see ι(u)∗α(R) ∈ (id, ιῑ), u∗α(R̄) ∈ (id, ῑι)

and
(u∗α(R̄))∗ ῑ(ι(u)α(R)) = (ι(u)α(R))∗ι(u∗α(R̄)) = 1

d(ι)
.

Thus we can choose a unique uα ∈ U(N ) by ι(u∗
α)α(R) = R, and u∗

αα(R̄) =
R̄.

Lemma 2.1.
(1) We have ι(uαβ) = αι(uβ)ι(uα) for α, β ∈ Aut(M, N ).

(2) We have uα = vῑ(v∗) for α = Ad(v), v ∈ U(N ).

Proof. Statement (1) follows from the uniqueness of uα . Statement (2) can
be verified by direct computation.

Define v(0)
α := 1 and v(k+1)

α := v(k)
α (ιῑ)kι(uα). Then we have v(k)

α ∈ N2k−1,
α(ιῑ)k = Ad(v(k)

α ) ◦ (ιῑ)kα, and v(k)∗
α satisfies a 1-cocycle identity for α.

Let α(k) := Ad(v(k)∗
α ) ◦ α. Then α(k) preserves the Jones projections for

a tunnel M ⊃ N1 ⊃ · · · ⊃ N2k ⊃ N2k+1. (Note the Jones projections are
given by {(ιῑ)n(RR∗)}n≥0 ∪{(ῑι)n(R̄R̄∗)}n≥0.) Hence α(k) preserves this tunnel
globally, and α(k)(N ′


 ∩ M) = N ′

 ∩ M hold for all 0 ≤ 
 ≤ 2k + 1. We can

see α(k)|N ′
2
+1∩M = α(
)|N ′

2
+1∩M for all 
 ≤ k.

Definition 2.2 ([18]). The Loi invariant �(α) of α is defined by �(α) =
{α(k)|N ′

2k+1∩M}k .

By using the triviality of the Loi-invariant, we can construct a half braiding
unitary E (σ, α) ∈ (σα, ασ) for [σ ] ∈ �, α ∈ Ker(�). (The notion of a
half braiding was introduced by Izumi [14], inspired by the work of Xu [23].)
Namely, we have the following theorem.

Theorem 2.3 ([19, Theorem 2.1]). Let α ∈ Aut(M, N ). If �(α) is trivial,
then there exists a unitary E (σ, α) for [σ ] ∈ � such that

(i) E (σ, α) ∈ (σα, ασ),

(ii) E (σ1, α)σ1
(
E (σ2, α)

)
T = α(T )E (σ3, α) for any [σi] ∈ �, i = 1, 2, 3,

and T ∈ (σ3, σ1σ2),

(iii) E (σ, αβ) = α(E (σ, β))E (σ, α), E (σ, Ad(v)) = vσ(v∗) for v ∈ U(N ).

The second condition is a braiding fusion equation (BFE), and the third
condition means that E (σ, α)∗ is a 1-cocycle for α.
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Here we only explain how to construct E (σ, α), and outline of the proof.
See [19] for the details of the proof.

Let [σ ] ∈ M�M . Fix n ∈ N and an isometry T ∈ (σ, (ιῑ)n). Define WT =
α(T ∗)v(n)

α T . It is clear that WT ∈ (σα, ασ). By using �(α) = 1, we can show
that the definition of WT does not depend on the choice of T ∈ (σ, (ιῑ)n), and
that WT is a unitary.

Next we show that WT does not depend on n. Take any π ≺ σ ι, and an
isometry S ∈ (π, σ ι). Then S̃ = √

d(σ )d(ι)d(π)−1S∗σ(R) ∈ (σ, π ῑ) is an
isometry [13, Proposition 2.2]. We can easily verify T SS̃ ∈ (σ, (ιῑ)n+1). Again
by the triviality of �(α), we can show WT = WT SS̃ .

Combining these ideas, we know that WT does not depend on n and T .
Hence E (σ, α) := WT is well-defined. The condition (iii) follows from Lem-
ma 2.1.

To show (ii), fix n, m and isometries S1 ∈ (σ1, (ιῑ)
n), S2 ∈ (σ2, (ιῑ)

m). Then
S3 := S1σ1(S2)T ∈ (σ3, (ιῑ)

n+m) is an isometry. We can show WS1σ1(WS2)T =
α(T )WS3 by using �(α) = 1. In a similar way, we can construct a half braiding
E (σ, α) for each [σ ] ∈ A �B , A , B ∈ {N , M}.

Remark 2.4. We can extend E (σ, α) for a reducible σ as follows. Let
σ = ∑n

i=1 wiσi(x)w∗
i and set E (σ, α) := ∑

i α(wi)E (σi, α)w∗
i . Then BFE

implies E (ρσ, α) = E (ρ, α)ρ(E (σ, α)).

3. Vanishing of obstructions in the orbifold construction

In this section, we make the following assumption.

Assumption 3.1.
(A1) there exists α ∈ Aut(M, N ) such that [α] ∈ M�M , and α gives an

outer action of Z/nZ on N ⊂ M,

(A2) the Loi-invariant of α is trivial,

(A3) there exists a self-conjugate [ρ] ∈ M�M such that [α][ρ] = [ρ] and
[ρ]2 � [ρ].

In (A3), we can choose representatives of [α] and [ρ] such that αρ = ρ

as in [12, Example 3.2]. We remark that this condition yields the triviality of
the Connes obstruction of α, and hence (A1) holds. In general, we only have
Z/nZ-kernel if we do not assume (A3). In what follows, we fix this choice of
α and ρ.

The crossed product inclusion N �α Z/nZ ⊂ M �α Z/nZ is called an
orbifold subfactor for N ⊂ M, and this construction is called the orbifold
construction [6].
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As seen in the previous section, we have a half braiding E (σ, α) ∈ (σα, ασ),
[σ ] ∈ �. Once we get half braidings, we can define an extension

σ ∈ Mor(A , B) → σ̃ ∈ Mor(A �α Z/nZ, B �α Z/nZ)

by setting
σ̃ (λ) = E (σ, α)∗λ,

where λ is an implementing unitary for α, and A , B ∈ {N , M}. The condi-
tions (i) and (iii) in Theorem 2.3 imply that σ̃ indeed gives a morphism. The
condition (ii) implies (σ3, σ1σ2) ⊂ (σ̃3, σ̃1σ̃2). Thus the extension σ → σ̃

preserves the sector operation, and it is a special case of α-induction studied
in [23], [1], [2], [3], [4]. It is easy to see α̂σ̃ = σ̃ α̂, where α̂ is the dual action
given by α̂(λ) = ωλ, ω = e2πi/n.

It is trivial that E (α, α) is a scalar with E (α, α)n = 1, but it may be non-
trivial. We say E (α, α) is an obstruction in the orbifold construction. This
notion comes from the following theorem.

Theorem 3.2. Assume E (α, α) = 1. Then we have the following.

(1) We have α̃ = Ad(λ). Thus [σ̃ ] = [α̃σ ] holds as sectors. If we have
[σ ] �= [αkσ ] for all k = 1, 2, . . . , n − 1, then σ̃ is irreducible.

(2) We have (ρ̃, ρ̃) = {∑n−1
k=0 akλ

k | ak ∈ C
} ∼= 
∞(Z/nZ). Therefore

we have an irreducible decomposition [ρ̃] = ⊕n−1
k=0[πi]. Here πk is an

irreducible sector corresponding to a minimal projection pk =
n−1 ∑n−1


=0 ωk
λ
.

(3) Let α̂ be the dual action. Then [α̂][πk][α̂−1] = [πk+1]. Thus d(πk) =
d(ρ)/n.

(4) If n is odd, then all [πk] are self-conjugate. If n is even, then [πk] = [πk],
or [πk] = [

πk+ n
2

]
hold.

Proof. (1) For a ∈ M, α̃(a) = α(a) = Ad(λ)(a) holds. For λ, α̃(λ) =
E (α, α)∗λ = λ = Ad(λ)(λ) by the assumption. Hence we have α̃ = Ad(λ).

We show the latter statement for [σ ] ∈ M�M . (Other cases can be verified
in the same way.) Take a = ∑n−1

k=0 akλ
k ∈ (σ̃ , σ̃ ). For x ∈ M,

n−1∑
k=0

σ(x)akλ
k = σ̃ (x)a = aσ̃ (x) =

n−1∑
k=0

akλ
kσ (x) =

n−1∑
k=0

akα
k(σ (x))λk.

Thus ak ∈ (αkσ, σ ). By the assumption, ak = 0 for 1 ≤ k ≤ n − 1, and a0 ∈
C1. Hence σ̃ is irreducible. (For a proof of this fact, the condition E (α, α) = 1
is unnecessary.)



106 T. MASUDA

(2) Let a = ∑n−1
k=0 akλ

k ∈ (ρ̃, ρ̃). In a similar way as above, we get ak ∈
(αkρ, ρ). Since we have chosen α and ρ so that αρ = ρ, ak ∈ C1.

If we apply BFE for σ1 = α, σ2 = σ3 = ρ and T = 1 ∈ (ρ, αρ) = (ρ, ρ),
we get α(E (ρ, α)) = E (α, α)∗E (ρ, α). Thus we have α(E (ρ, α)) = E (ρ, α)

by the assumption. Then we have

ρ̃(λ)a =
n−1∑
k=0

E (ρ, α)∗akλ
k+1,

and

aρ̃(λ) =
(n−1∑

k=0

akλ
k

)
E (ρ, α)∗λ =

n−1∑
k=0

akα
k(E (ρ, α)∗)λk+1

=
n−1∑
k=0

E (ρ, α)∗akλ
k+1.

Thus a ∈ (ρ̃, ρ̃), and we obtain (ρ̃, ρ̃) = {∑n−1
k=0 akλ

k | ak ∈ C}
.

(3) Fix an isometry vk with vkv
∗
k = pk , and set u = α̂(v∗

k )vk+1. Since
α̂(pk) = pk+1, we can easily see u is a unitary. Again by α̂(pk) = pk+1, we
have

α̂πkα̂
−1(x) = α̂(v∗

k )α̂ρ̃α̂−1(x)α̂(vk) = α̂(v∗
k )ρ̃(x)α̂(vk)

= α̂(v∗
kpk)ρ̃(x)α̂(pkvk) = α̂(v∗

k )pk+1ρ̃(x)pk+1α̂(vk)

= uv∗
k+1ρ̃(x)vk+1u = Ad(u)πk+1(x).

(4) Since ρ is self-conjugate, there exists k with [π0] = [πk]. By considering
the conjugate of [πk] = α̂k[π0]α̂−k , we get

[π0] = [πk] = α̂k[π0]α̂−k = α̂k[πk]α̂−k

and hence [π0] = [π2k] holds. Thus k = 0 if n is odd. In this case, all [πi] are
self-conjugate. If n = 2n′, then k must be 0 or n′. If k = 0, then all [πi] is
self-conjugate. If k = n′, then we have [πi] = [πi+n′ ] for all i.

Remark 3.3. (1) It is easy to see ι̃ is an inclusion map N �α Z/nZ ↪→
M �α Z/nZ, and ι̃ῑ is a canonical endomorphism for this inclusion.

(2) Even if we do not assume E (α, α) = 1, we get similar results. For
example, the statement corresponding to (2) is the following:

Let E (α, α) be a primitive 
-th root, and set n/
 = m. Then the
irreducible decomposition of ρ̃ is ρ̃ = ⊕m−1

k=0 [πk].
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(3) As we mentioned before Theorem 3.2, E (α, α)n = 1 follows from the
triviality of the Connes obstruction of α. In general, E (α, α)n is equal to the
Connes obstruction of α [17, Lemma 2.3].

By Theorem 3.2, the graph change occurs by the orbifold construction under
the assumption E (α, α) = 1. (See also the following examples.)

We would like to determine when E (α, α) = 1. We have the following
sufficient condition.

Theorem 3.4. Put m := dim(ρ, ρ2). If m and n are relatively prime, then
we have E (α, α) = 1.

Proof. This proof is inspired by the computation in [12]. As explained
in the proof of Theorem 3.2, we have α(E (ρ, α)) = E (α, α)∗E (ρ, α). Put
U = E (ρ, α)∗, and a = E (α, α). Of course we have an = 1.

Since (ρα, αρ) = (ρα, ρ), we have ρα = Ad(U)ρ, and hence U ∈
(ρ, ρα).

We also have U ∈ (ρ2, ρ2) due to αρ = ρ. Let z ∈ (ρ2, ρ2) be a minimal
central projection corresponding to the irreducible component ρ of ρ2. Fix an
orthonormal basis {Ti}mi=1 ⊂ (ρ, ρ2). We have

∑m
i=1 TiT

∗
i = z, and

U =
m∑

i=1

dijTiT
∗

j + (1 − z)U = (T1, . . . , Tm)D

⎛
⎝ T ∗

1
...

T ∗
m

⎞
⎠ + (1 − z)U,

for some unitary matrix D = (dij ) ∈ Mm(C).
Since α acts on (ρ, ρ2) as a unitary and α(z) = z, there exists a unitary

matrix V ∈ Mm(C) such that

(α(T1), . . . , α(Tm)) = (T1, . . . , Tm)V .

By the condition α(U) = aU , we get V DV ∗ = aD. By taking determin-
ants, we get det(D) = am det(D). Hence we get am = 1. Since m and n are
relatively prime, we have a = 1.

Remark 3.5. (1) In the above proof, if we have Tr(D) �= 0, then a = 1
follows immediately. However it does not seem easy to determine Tr(D) �= 0
in the general case.

(2) Let us assume that M�M is a near group category, i.e., M�M =
{[αg]}g∈G ∪ {[ρ]} for some action α of a finite group G. Gannon and Evans
show that dim(ρ, ρ2) is |G| − 1 or multiple of |G| in [5]. (In the former case,
|G| is prime.)
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Example 3.6. Let N ⊂ M be a Jones subfactor with principal graph A4n−3

[15]. Sectors of N ⊂ M appear as follows:

[ρ0] − [ρ1] − · · · − [ρ2n−2] − · · · − [ρ4n−4]

Here ρ0 = idM , and ρ1 = ι. Then α := ρ4n−4 is an automorphism of N ⊂ M

with period 2. It is well known that all [ρ2k] are self-conjugate, and [α][ρk] =
[ρ4n−4−k] hold for 0 ≤ k ≤ 2n − 2. (See [11].) In particular, the sector
[ρ2n−2] is self-conjugate, and [α][ρ2n−2] = [ρ2n−2] holds. Moreover, we have
dim(ρ2n−2, ρ

2
2n−2) = 1. Thus the assumption of Theorem 3.4 is satisfied, and

the obstruction vanishes. By Theorem 3.2, we have [ρ̃k] = [ρ̃4n−4−k] for
0 ≤ k < 2n − 2, and [ρ̃2n−2] = [π0] ⊕ [π1]. Hence the principal graph of the
orbifold subfactor is a Dynkin diagram D2n.

Since there exists essentially only one biunitary connection on Dn (see [16,
Section 3] for details of the proof), the above argument shows the uniqueness
of the flat connection on D2n.

Example 3.7. Let N ⊂ M be a subfactor with principal graph E
(1)
6 . Then

M�M is {[id], [α], [α]2, [ρ]} with the following fusion rule:

[α]3 = [id], [α][ρ] = [ρ][α] = [ρ], [ρ]2 = [id] ⊕ [α] ⊕ [α2] ⊕ 2[ρ]

We can take α as α3 = id, and α gives an outer action of Z/3Z on N ⊂ M

with trivial Loi invariant. Thus Theorem 3.4 can be applied. In this case, we
have

[ĩd] = [α̃] = [α̃2], [ρ̃] = [π0] ⊕ [π1] ⊕ [π2].

Therefore, the principal graph of an orbifold subfactor is D
(1)
4 . (Note the stat-

istical dimension of ρ is d(ρ) = 3.) There exist two subfactors with principal
graph D

(1)
4 , which arise as the crossed product by Z/4Z, and Z/2Z × Z/2Z,

respectively. Condition (4) of Theorem 3.2 implies that the orbifold subfactor
is the crossed product by Z/2Z× Z/2Z.

The subfactor treated above is an SU(3)3 subfactor. (See [20], [6] for
SU(N)
 subfactors.) We can apply our main theorem to SU(3)3k-subfactors
for k + 1 �≡ 0 (mod 3). Indeed, there exist α ∈ Aut(M, N ) with α3 = id,
�(α) = id, and a unique self-conjugate sector [ρ] fixed by α for an SU(3)3k

subfactor N ⊂ M. (The sector [ρ] corresponds to a young diagram (2k, k, 0).)
We have dim(ρ, ρ2) = k + 1 by applying the Littlewood-Richardson rule for
SUq(3)3k [8]. (When k + 1 ≡ 0 (mod 3), we can not apply Theorem 3.4.
However, the obstruction vanishes in this case [6].)

If the assumption of Theorem 3.4 is not satisfied, E (α, α) may be fail to
be 1.
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Example 3.8 ([12, Example 3.4]). Let N ⊂ M be a subfactor with prin-
cipal graph E6. Then M�M = {[id], [α], [ρ]} and they obey the following
fusion rule:

[ρ2] = [id] ⊕ [α] ⊕ 2[ρ], [α]2 = [id], [α][ρ] = [ρ].

We have Ker(�) = Aut(M, N ), and hence the Loi invariant of α is trivial.
Izumi showed that one can take isometries S1 ∈ (id, ρ2), S2 ∈ (α, ρ2), S3, S4 ∈
(ρ, ρ2) and a unitary U ∈ (ρ, ρα) as

S2 = α(S1), α(S3) = S3, α(S4) = −S4, U = S1S
∗
1 −S2S

∗
2 +S3S

∗
4 +S4S

∗
3 .

Then α(U) = −U , and hence E (α, α) = −1. In this case, the graph change
does not occur by the orbifold construction.

Acknowledgements. The author thanks the referee for various useful
comments on this paper.
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