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A WEIGHTED EXTREMAL FUNCTION
AND EQUILIBRIUM MEASURE

LEN BOS, NORMAN LEVENBERG, SIONE MA‘U and FEDERICO PIAZZON∗

Abstract
We find an explicit formula for the weighted extremal function ofRn ⊂ Cn with weight (1+x2

1 +
· · · + x2

n)−1/2 as well as its Monge-Ampère measure. As a corollary, we compute the Alexander
capacity of RPn.

1. Introduction

For K ⊂ Cn compact, define the usual Siciak-Zaharjuta extremal function

VK(z) = sup
{
u(z) : u ∈ L(Cn), u ≤ 0 on K

}
,

where L(Cn) is the Lelong class of all plurisubharmonic (psh) functions u on
Cn with the property that u(z) − log |z| = O(1), |z| → ∞. Define

L+(Cn) := {
u ∈ L(Cn) : u(z) ≥ log+ |z| + C

}
,

where C is a constant depending on u. We have

VK(z) := max

{
0, sup

p

{
1

deg(p)
log |p(z)| : p poly.,

‖p‖K := max
z∈K

|p(z)| ≤ 1

}}
, (1.1)

where the supremum is taken over (nonconstant) holomorphic polynomials p.
Letting V ∗

K(z) := lim supζ→z VK(ζ ) be the upper semicontinuous (usc) regu-
larization, we have either V ∗

K ∈ L+(Cn) or V ∗
K ≡ ∞; this latter case occurring

when K is pluripolar, i.e., there exists u �≡ −∞ psh on a neighborhood of K

with K ⊂ {u = −∞}.
If K ⊂ Cn is closed, a nonnegative usc function w: K → [0, ∞) with

{z ∈ K : w(z) > 0} not pluripolar is called a weight function on K and
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Q(z) := − log w(z) is the potential of w. The associated weighted extremal
function is

VK,Q(z) := sup
{
u(z) : u ∈ L(Cn), u ≤ Q on K

}
.

Note VK,0 = VK for compact K . For unbounded K , the potential Q is required
to grow at least like log |z|. If lim infz∈K,|z|→+∞(Q(z) − log |z|) > −∞,
then Q is weakly admissible; if |z|w(z) → 0 as |z| → ∞, z ∈ K , then Q

is admissible. In the former case, the Monge-Ampère measure (ddcV ∗
K,Q)n

might not have compact support. For bounded K , and for unbounded K with
admissible Q (or even weakly admissible Q, if VK,Q is continuous),

VK,Q(z) = sup

{
1

deg(p)
log |p(z)| : p poly., ‖pe− deg(p)Q‖K ≤ 1

}
.

If we let X = Pn with the usual Kähler form ω normalized so that
∫
Pn ωn =

1, we can define the class of ω-psh functions (cf. [9])

PSH(X, ω) := {
φ ∈ L1(X) : φ usc, ddcφ + ω ≥ 0

}
.

Let z := [z0 : z1 : · · · : zn] be homogeneous coordinates on X = Pn. Identify-
ingCn with the affine subset ofPn given by {[1 : z1 : · · · : zn]}, we can identify
the ω-psh functions with the Lelong class L(Cn), i.e., PSH(X, ω) ≈ L(Cn),
and the bounded (from below) ω-psh functions coincide with the subclass
L+(Cn). For example, if φ ∈ PSH(X, ω), then

u(z) = u(z1, . . . , zn) := φ([1 : z1 : · · · : zn]) + 1
2 log(1 + |z|2) ∈ L(Cn).

Abusing notation, we write u = φ +u0, where u0(z) := 1
2 log(1+|z|2). Given

a closed subset K ⊂ Pn and a function q on K , we can define a weighted
ω-psh extremal function

vK,q(z) := sup
{
φ(z) : φ ∈ PSH(X, ω), φ ≤ q on K

}
.

Thus if K ⊂ Cn ⊂ Pn, for [1 : z1 : · · · : zn] = [1 : z] ∈ Cn we have

vK,q([1 : z]) = sup
{
u(z) : u ∈ L(Cn), u ≤ u0 + q on K

} − u0(z)

= VK,u0+q(z) − u0(z).
(1.2)

If q = 0, the Alexander capacity Tω(K) of K ⊂ Pn was defined in [9] as

Tω(K) := exp
[− sup

Pn

vK,0
]
.

This notion has applications in complex dynamics, cf. [8].
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These extremal psh and ω-psh functions VK , VK,Q and vK,0, vK,q , as well
as the homogeneous extremal psh function HE of E ⊂ Cn (Section 4), are
very difficult to compute explicitly. Even when an explicit formula exists,
computation of the associated Monge-Ampère measure is problematic. Our
main goal in this paper is to utilize a novel approach to explicitly compute
VK,Q and (ddcVK,Q)n for the closed set K = Rn ⊂ Cn with weakly admissible
weight w(z) = |f (z)| = |(1 + z2)−1/2|, where z2 = z2

1 + · · · + z2
n.

Theorem 1.1. For K = Rn ⊂ Cn and weight w(z) = |f (z)| = |(1 +
z2)−1/2|, we have

VRn,Q(z) = 1
2 log

([
1+|z|2]+{[

1+|z|2]2 −|1+z2|2}1/2
)
, z ∈ Cn, (1.3)

and
(ddcVRn,Q)n = n!

ωn

(1 + x2)(n+1)/2
dx. (1.4)

Here dx is Lebesgue measure on Rn and ωn denotes the volume of the
Euclidean unit ball in Rn. Note that for n = 1, it is easy to see that

VRn,Q(z) = max{log |z − i|, log |z + i|} (1.5)

which agrees with formula (1.3). We remark that VRn,Q(z) = VLn+1(1, z) where
Ln+1 is the Lie ball in Cn+1 (see (2.1)).

The potential Q(z) in this case is the standard Kähler potential u0(z) re-
stricted to Rn. Using (1.2) and the fact that RPn \Rn is (locally) pluripolar in
Pn, for z ∈ Cn we have

VRn,Q(z) = u0(z) + vRn,0([1 : z]) = u0(z) + vRPn,0([1 : z]).

As an application of (1.3) we can calculate the Alexander capacity Tω(RPn)

of RPn.

Corollary 1.2. The unweighted ω-psh extremal function of RPn is given
by

vRPn,0([1 : z]) = 1

2
log

([
1 + |z|2]
+ {[

1 + |z|2]2 − |1 + z2|2}1/2
)

− u0(z)

= 1

2
log

(
1 +

[
1 − |1 + z2|2

(1 + |z|2)2

]1/2) (1.6)
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for [1 : z] ∈ Cn and

vRPn,0([0 : z]) = lim sup
|t |→∞

[
1

2
log

(
1 +

[
1 − |1 + (tz)2|2

(1 + |tz|2)2

]1/2)]

= 1

2
log

(
1 +

[
1 − |z2|2

(|z|2)2

]1/2)
.

(1.7)

Thus the exact value of the Alexander capacity Tω(RPn) is 1/
√

2.

The proofs of (1.3) and (1.4) are in Sections 2 and 3. The proof of (1.3) in
Section 2 is by nature a verification of a formula found by other means. It is
the purpose of Section 6, based on the results in Section 5, to provide readers
interested in deriving formulas for other examples of K and Q an alternative,
deductive proof of (1.3) from which this formula was originally discovered. It
is our hope (and indeed expectation) that these techniques can be used in other
cases. We would like to thank Ragnar Sigurdsson for many helpful suggestions,
in particular, for the main calculation in the next section.

2. Relation with Lie ball and maximality of VRn,Q

In this section we prove (1.3) of Theorem 1.1 as well as Corollary 1.2. Writing
Z := (z0, z) = (z0, z1, . . . , zn) ∈ Cn+1, define the Lie ball

Ln+1 = {
Z ∈ Cn+1 : |Z|2 + {|Z|4 − |Z2|2}1/2 ≤ 1

}
. (2.1)

The extremal function of this circled set (Z ∈ Ln+1 ⇐⇒ eiθZ ∈ Ln+1) is

VLn+1(Z) = 1
2 log+(|Z|2 + {|Z|4 − |Z2|2}1/2

);
thus

V (z) := VLn+1(1, z) = 1
2 log

([
1+|z|2]+{[

1+|z|2]2 −|1+z2|2}1/2
)

(2.2)

agrees with formula (1.3). The function VLn+1(Z) in Cn+1 is maximal out-
side Ln+1, i.e., (ddcVLn+1)

n+1 = 0 there. We show:

our candidate function V :Cn → R in (2.2) for VK,Q in (1.3), where
K = Rn ⊂ Cn and Q(x) = 1

2 log(1 + x2), is maximal in Cn \ Rn.

Note for x ∈ Rn, |x|2 = x2 and V (x) = Q(x). Let ‖ · ‖c denote the Lie norm
on Cn+1: ‖Z‖2

c = |Z|2 + (|Z|4 − |Z2|2)1/2
, Z ∈ Cn+1. This is a norm on Cn+1

and V (z) = log ‖(1, z)‖c.
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Let u be a C2 function on a domain D inCn+1. If u is of the form u = log v,
we write the Levi form of u at Z ∈ D applied to w ∈ Cn+1 as

Lu(Z; w) = 1

v(Z)

(
Lv(Z; w) − 1

v(Z)

∣∣〈∇v(Z), w〉∣∣2
)

, (2.3)

where ∇v = (∂v/∂Z1, . . . , ∂v/∂Zn+1) and 〈a, b〉 = ∑n+1
j=1 ajbj .

Consider v(Z) = ‖Z‖2
c = |Z|2 + ϕ(Z)1/2, where ϕ(Z) = |Z|4 − |Z2|2.

Note that |Z|2 = |Z2| if and only if Z ∈ C ·Rn+1. This occurs precisely when
Re Z is a real multiple of Im Z. Hence v ∈ C∞(Cn+1 \C ·Rn+1). Working on
Cn+1 \ C · Rn+1, we have

∂v

∂Zj

= Z̄j + 1

2
ϕ(Z)−1/2 ∂ϕ

∂Zj

,

so that

∂2v

∂Zj∂Z̄k

= δjk + 1

2
ϕ(Z)−1/2 ∂2ϕ

∂Zj∂Z̄k

− 1

4
ϕ(Z)−3/2 ∂ϕ

∂Zj

∂ϕ

∂Z̄k

.

The formula (2.3) for the Levi form of u becomes

Lu(Z; w) = 1

v(Z)

(
|w|2 + 1

2
ϕ(Z)−1/2Lϕ(Z; w)− 1

4
ϕ(Z)−3/2

∣∣〈∇ϕ(Z), w〉∣∣2

− 1

v(Z)

∣∣∣∣〈Z̄, w〉 + 1

2
ϕ(Z)−1/2〈∇ϕ(Z), w〉

∣∣∣∣2)
.

We have the formulas

∂ϕ

∂Zj

= 2|Z|2Z̄j − 2Zj

(
Z̄2

)
and

∂2ϕ

∂Zj∂Z̄k

= 2|Z|2δjk + 2Z̄jZk − 4Zj Z̄k,

yielding
〈∇ϕ(Z), w〉 = 2

(|Z|2〈Z̄, w〉 − (
Z̄2

)〈Z, w〉)
and

Lϕ(Z; w) = 2|Z|2|w|2 + 2|〈Z̄, w〉|2 − 4|〈Z, w〉|2.
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In particular, 〈∇ϕ(Z), Z̄〉 = 0 and Lϕ(Z; Z̄) = −2ϕ(Z). Moreover, since
u(λZ) = log |λ| + u(Z) for λ ∈ C \ {0}, Lu(Z; Z) = 0. Also

Lu(Z; Z̄) = 1

v(Z)

(
|Z|2 + 1

2
ϕ(Z)−1/2(−2ϕ(Z)) − |Z2|2

v(Z)

)

= 1

v(Z)2

((|Z|2 + ϕ(Z)1/2
)(|Z|2 − ϕ(Z)1/2

) − |Z2|2
)

= 1

v(Z)2

(|Z|4 − ϕ(Z) − |Z2|2) = 0.

Since u = 2 log ‖Z‖c and ‖ · ‖c is a complex norm on Cn+1, the function u

is psh and w �→ Lu(Z; w) is positive semi-definite. The vectors Z and Z̄ are
linearly independent if and only if Z ∈ Cn+1 \ C · Rn+1, so we have proved
that the eigenspace at such Z corresponding to the eigenvalue 0 has dimension
at least two and includes Im Z.

For V (z) = log ‖(1, z)‖c in (2.2) the vector (1, z) is in C ·Rn+1 if and only
if z ∈ Rn, so V ∈ C∞(Cn \ Rn). We write V = 1

2u(1, z) where z ∈ Cn. For
z /∈ Rn,

LV (z; Im z) = 1
2 Lu((1, z); (0, Im z)) = 1

2 Lu((1, z); Im(1, z)) = 0.

Thus V is maximal on Cn \Rn, and since V = Q on Rn, we have V = VRn,Q

in (1.3).
For the proof of Corollary 1.2, the formulas for vRPn,0 follow immediately

and it remains to get the value of Tω(RPn) (see Example 5.12 of [9]). Clearly
|1 + z2| ≤ 1 + |z|2; hence (1.6) is maximized if 1 + z2 = 0; e.g., taking
z = i(1/

√
n, . . . , 1/

√
n). Then using |z2| ≤ |z|2 in (1.7),

sup
z∈Pn

vRPn,0(z) = 1
2 log 2.

Thus Tω(RPn) = exp[− supPn vRPn,0] = 1/
√

2. We remark that Dinh and
Sibony had observed that the value of Tω(RPn) was independent of n (Propos-
ition A.6 in [8]).

3. Calculation of (ddcVRn,Q)n with VRn,Q in (1.3)

In this section we prove (1.4). First some background. Let δ(x; y) be a Finsler
metric, where x ∈ Rn and y ∈ Rn is a tangent vector at x; i.e., y → δ(x; y)

is a norm on Rn varying smoothly in x. We write Bx := {y : δ(x; y) ≤ 1} for
the associated unit ball about x and

B∗
x := {y : δ(x; y) ≤ 1}∗ = {a : a · y = aty ≤ 1 for all y ∈ Bx}
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for the dual unit ball (at denotes transpose of the vector a). Finsler metrics
arise in pluripotential theory in the following setting: if K = 
̄ where 
 is a
bounded domain in Rn ⊂ Cn, the quantity

δB(x; y) := lim sup
t→0+

VK(x + ity)

t
= lim sup

t→0+

VK(x + ity) − VK(x)

t
, (3.1)

for x ∈ K and y ∈ Rn, defines a Finsler metric called the Baran pseudometric
(cf. [5]). It is generally not Riemannian. The Riemannian situation yields more
information on volumes of Bx and B∗

x . Recall ωn denotes the volume of the
Euclidean unit ball in Rn.

Proposition 3.1. Suppose

δ(x; y)2 = ytG(x)y

is a Riemannian metric, i.e., G(x) is a symmetric, positive definite matrix.
Then

vol(B∗
x ) · vol(Bx) = ω2

n and vol(B∗
x ) = ωn

√
det G(x).

Proof. Writing G(x) = Ht(x)H(x), we have

δ(x; y)2 = ytG(x)y = ytH t (x)H(x)y.

Letting ‖ · ‖2 denote the standard Euclidean (�2) norm, we have

Bx = {y ∈ RN : ‖H(x)y‖2 ≤ 1} = H−1(x)(unit ball in �2-norm)

and
B∗

x = H(x)t (unit ball in �2-norm).

Hence vol(B∗
x ) · vol(Bx) = ω2

n and

vol
({y : δ(x; y) ≤ 1}∗) = vol(B∗

x ) = ωn det H(x) = ωn

√
det G(x),

completing the proof.

Motivated by (3.1) and Theorem 3.2 below, for u(z) = VRn,Q(z) in (1.3),
we show

δu(x; y) := lim
t→0+

u(x + ity) − u(x)

t

exists. Fixing x ∈ Rn and y ∈ Rn, let

F(t) := u(x + ity)

= 1
2 log

{
(1 + x2 + t2y2) + 2[t2y2 + t2x2y2 − (x · ty)2]1/2

}
= 1

2 log
{
(1 + x2 + t2y2) + 2t[y2 + x2y2 − (x · y)2]1/2

}
.
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It follows that

δu(x; y) = F ′(0) = 1

2

2[y2 + x2y2 − (x · y)2]1/2

1 + x2

= [y2 + x2y2 − (x · y)2]1/2

1 + x2
.

We write

δ2
u(x; y) = y2 + x2y2 − (x · y)2

(1 + x2)2
= ytG(x)y,

where

G(x) := (1 + x2)I − xxt

(1 + x2)2
.

Since this matrix is symmetric and positive definite, δu(x; y) defines a Rieman-
nian metric.

The eigenvalues of the rank one matrix xxt ∈ Rn×n are x2, 0, . . . , 0 for
(xxt )x = x(xtx) = x2 · x; and clearly v ⊥ x implies (xxt )v = x(xtv) = 0.
The eigenvalues of (1 + x2)I − xxt are then

(1 + x2) − x2, (1 + x2) − 0, . . . , (1 + x2) − 0 = 1, 1 + x2, . . . , 1 + x2

and the eigenvalues of G(x) are 1
(1+x2)2 ,

1
1+x2 , . . . ,

1
1+x2 . This shows det G(x) =

1/(1 + x2)n+1. From Proposition 3.1, for δu(x; y),

vol(B∗
x ) = ωn

√
det G(x) = ωn

(1 + x2)(n+1)/2
= ω2

n

vol(Bx)
. (3.2)

Note from (1.5) this agrees with the density of �VRn,Q with respect to Le-
besgue measure dx on R if n = 1 and this will be the case for the density of
(ddcVRn,Q)n with respect to Lebesgue measure dx on Rn for n > 1 as well.
For motivation, we recall the main result of [7] (see [2] for the symmetric case
K = −K):

Theorem 3.2. Let K ⊂ Rn be a convex body; i.e., K is compact, convex
and intRn K �= ∅. Let VK be its Siciak-Zaharjuta extremal function. The limit

δ(x; y) := lim
t→0+

VK(x + ity)

t

exists for each x ∈ intRn K and y ∈ Rn and

(ddcVK)n = λ(x)dx
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where
λ(x) = n! vol({y : δ(x; y) ≤ 1}∗) = n! vol(B∗

x ).

The conclusion of Theorem 3.2 required Proposition 4.4 of [7]:

Proposition 3.3. Let D ⊂ Cn and let 
 := D∩Rn. Let v be a nonnegative
locally bounded psh function on D which satisfies 
 = {v = 0}; (ddcv)n = 0
on D \ 
; (ddcv)n = λ(x)dx on 
; for all x ∈ 
, y ∈ Rn, the limit

h(x, y) := lim
t→0+

v(x + ity)

t
exists and is continuous on 
 × iRn;

and for all x ∈ 
, y → h(x, y) is a norm. Then λ(x) = n! vol{y : h(x, y) ≤
1}∗.

We now give the proof of (1.4):

Proof. It will be useful to extend Q(x) = 1
2 log(1 + x2) on Rn to all of Cn

as
Q(z) = 1

2 log |1 + z2| ∈ L(Cn).

With this extension of Q, and writing u := VRn,Q, we claim:

(1) Q is pluriharmonic on Cn \ S where S = {z ∈ Cn : 1 + z2 = 0};
(2) u − Q ≥ 0 in Cn, and Rn = {z ∈ Cn : u(z) − Q(z) = 0};
(3) for each x, y ∈ Rn,

lim
t→0+

Q(x + ity) − Q(x)

t
= 0.

Item (1) is clear; (2) may be verified by direct calculation (the inequality also
follows from the observation that Q ∈ L(Cn) and Q equals u on Rn). For (3),
observe that

|1 + (x + ity)2|2 = (1 + x2 − t2y2)2 + 4t2(x · y)2 = (1 + x2)2 + O(t2)

so that

Q(x + ity) − Q(x) = 1

2
log |1 + (x + ity)2| − 1

2
log(1 + x2)

= 1

4
log

(1 + x2)2 + O(t2)

(1 + x2)2
≈ 1

4

O(t2)

(1 + x2)2
as t → 0.

Thus (1) and (2) imply that v := u − Q defines a nonnegative psh function in
Cn \ S , in particular, on a neighborhood D ⊂ Cn of Rn. From (1),

(ddcv)n = (ddcu)n on D; (3.3)
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and from (3), for each x, y ∈ Rn,

lim
t→0+

v(x + ity) − v(x)

t

= lim
t→0+

u(x + ity) − Q(x + ity) − u(x) + Q(x)

t

= lim
t→0+

u(x + ity) − u(x)

t
− lim

t→0+

Q(x + ity) − Q(x)

t
= δu(x; y).

Then (3.3), (3.2) and Proposition 3.3 give (1.4), completing the proof.

This completes the proof of Theorem 1.1.

4. Known results on extremal functions

We list some results on extremal functions used in the sequel. We know much
information about VK when K is a convex body in Rn. Through every point
z ∈ Cn \ K there is either a complex ellipse or a complex line L with z ∈ L

such that VK restricted to L is harmonic on L \ K (cf. [1], [6]). For K = Bn,
the real unit ball in Rn ⊂ Cn, the real ellipses and lines L ∩ Bn are symmetric
with respect to the origin and, other than great circles in the real boundary of
Bn, each L ∩ Bn hits this boundary at exactly two antipodal points. Lundin
proved [11], [1] that

VBn
(z) = 1

2 log h(|z|2 + |z2 − 1|), (4.1)

where h is the inverse Joukowski map h( 1
2 (t + 1

t
)) = t for 1 ≤ t ∈ R.

Moreover,

(ddcVBn
)n = n! vol(Bn)

dx

(1 − |x|2)1/2
= n!

ωn

(1 − |x|2)1/2
dx.

We may consider the class of logarithmically homogeneous psh functions

H := {
u ∈ L(Cn) : u(tz) = log |t | + u(z), t ∈ C, z ∈ Cn

}
and, for E ⊂ Cn, the homogeneous extremal function of E, denoted H ∗

E , where

HE(z) := max
[
0, sup{u(z) : u ∈ H, u ≤ 0 on E}].

Note that HE(z) ≤ VE(z). If E is compact, we have

HE(z) = max

[
0, sup

{
1

deg(h)
log |h(z)|

: h homogeneous polynomial, ‖h‖E ≤ 1

}]
. (4.2)
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Finally, we mention the following beautiful result of Sadullaev [12].

Theorem 4.1. Let A be a pure m-dimensional, irreducible analytic sub-
variety of Cn, where 1 ≤ m ≤ n − 1. Then A is algebraic if and only if for
some (all) K ⊂ A compact and nonpluripolar in A, VK in (1.1) is locally
bounded on A.

Note thatA and henceK is pluripolar inCn soV ∗
K ≡ ∞; moreover, VK = ∞

onCn\A. In this setting, VK |A (precisely, its usc regularization in A) is maximal
on the regular points Areg of A outside of K; i.e., (ddcVK |A)m = 0 there, and
VK |A ∈ L(A). Here L(A) is the set of psh functions u on A (u is psh on Areg

and locally bounded above on A) with the property that u(z)− log |z| = O(1)

as |z| → ∞ through points in A, see [12].

5. Relating extremal functions

Let K ⊂ Cn be closed and let f be holomorphic on a neighborhood 
 of K .
We define F : 
 ⊂ Cn → Cn+1 as

F(z) := (f (z), zf (z)) = W = (W0, W
′) = (W0, W1, . . . , Wn),

where W ′ = (W1, . . . , Wn). Thus

W0 = f (z), W1 = z1f (z), . . . , Wn = znf (z).

Moreover we assume there exists a polynomial P = P(z0, z) in Cn+1 with
P(f (z), z) = 0 for z ∈ 
; i.e., f is algebraic. Taking such a polynomial P of
minimal degree, let

A := {
W ∈ Cn+1

: P(W0, W
′/W0) = P(W0, W1/W0, . . . , Wn/W0) = 0

}
. (5.1)

Note that writing P(W0, W
′/W0) = P̃ (W0, W

′)/Ws
0 where P̃ is a polynomial

on Cn+1 and s is the degree of P(z0, z) in z we see that A differs from the
algebraic variety

Ã := {W ∈ Cn+1 : P̃ (W0, W
′) = 0}

by at most the set of points in A where W0 = 0, which is pluripolar in A. Thus
we can apply Sadullaev’s Theorem 4.1 to nonpluripolar subsets of A. Now
P(f (z), z) = 0 for z ∈ 
 says that

F(
) = {(f (z), zf (z)) : z ∈ 
} ⊂ A.
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We can define a weight function w(z) := |f (z)|, which is well defined on all
of 
 and, in particular, on K; as usual, we set

Q(z) := − log w(z) = − log |f (z)|. (5.2)

We will need our potentials defined in (5.2) to satisfy

Q(z) = max{− log |W0| : W ∈ A, W ′/W0 = z} (5.3)

and we mention that (5.3) can give an a priori definition of a potential for those
z ∈ Cn at which there exist W ∈ A with W ′/W0 = z.

We observe that for K ⊂ 
, we have two natural associated subsets of A:

(1) K̃ := {W ∈ A : W ′/W0 ∈ K} and

(2) F(K) = {W = F(z) ∈ A : z ∈ K}.
Note that F(K) ⊂ K̃ and the inclusion can be strict.

Proposition 5.1. Let K ⊂ Cn be closed with Q in (5.2) satisfying (5.3). If
F(K) is nonpluripolar in A,

VK,Q(z) − Q(z) ≤ HF(K)(W) for z ∈ 
 with f (z) �= 0

where the inequality is valid for W = F(z) ∈ F(
).

In general, Proposition 5.1 only gives estimates for VK,Q(z) if z ∈ 
 and
f (z) �= 0. We use this and Proposition 5.4 in the next section to get for-
mula (1.3) for VRn,Q(z) with weight w(z) = |f (z)| = ∣∣ 1

(1+z2)1/2

∣∣ for z in a
neighborhood 
 of Rn.

Proof. First note that for z ∈ K and W = F(z) ∈ F(K), given a polyno-
mial p in Cn,

|w(z)deg(p)p(z)| = |f (z)|deg(p)|p(z)| = |W deg(p)

0 p(W ′/W0)|
= |p̃(W)|

(5.4)

where p̃ is the homogenization of p. Thus ‖wdeg(p)p‖K ≤ 1 implies |p̃| ≤ 1
on F(K).

Now fix z ∈ 
 at which f (z) �= 0 (so Q(z) < ∞) and fix ε > 0. Choose a
polynomial p = p(z) with ‖wdeg(p)p‖K ≤ 1 and

1

deg(p)
log |p(z)| ≥ VK,Q(z) − ε.
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Thus for W ∈ A with W0 �= 0 and W ′/W0 = z,

VK,Q(z) − ε − Q(z) ≤ 1

deg(p)
log |p(W ′/W0)| − Q(W ′/W0)

≤ 1

deg(p)
log |p(W ′/W0)| + log |W0|,

with (5.3) used in the second inequality. By (5.4) and the fact that ‖p̃‖F(K) ≤ 1,

1

deg(p)
log |p(W ′/W0)| + log |W0| = 1

deg(p̃)
log |p̃(W)| ≤ HF(K)(W).

This shows that VK,Q(z) − ε − Q(z) ≤ HF(K)(W). Finally, let ε → 0, com-
pleting the proof.

Next we prove a lower bound involving K̃ which will be applicable in our
special case.

Definition 5.2. Let A ⊂ Cn+1 be an algebraic hypersurface. We say that
A is bounded on lines through the origin if there exists a uniform constant
c ≥ 1 such that for all W ∈ A, if αW ∈ A also holds for some α ∈ C, then
|α| ≤ c.

Example 5.3. A simple example of a hypersurface bounded on lines
through the origin is one given by an equation of the form p(W) = 1, where
p is a homogeneous polynomial. In this case, if αW ∈ A then

1 = p(αW) = αdeg(p)p(W) = αdeg(p),

so α must be a root of unity. Hence we may take c = 1.

Proposition 5.4. Let K ⊂ Cn and let Q(z) = − log |f (z)| with f defined
and holomorphic on 
 ⊃ K . Define A as in (5.1) and assume Q satisfies (5.3).
We suppose A is bounded on lines through the origin, K̃ is a nonpluripolar
subset of A, and that Q has an extension toCn (which we still call Q) satisfying
(5.3) such that Q ∈ L(Cn). Then given z ∈ Cn,

HK̃(W) ≤ VK̃(W) ≤ VK,Q(z) − Q(z)

for all W = (W0, W
′) ∈ A with W ′/W0 = z.

Proof. The left-hand inequality HK̃(W) ≤ VK̃(W) is immediate. For the
right-hand inequality, we first note that VK̃(W) ∈ L(A) if K̃ is nonpluripolar
in A. Hence there exists a constant C ∈ R such that

VK̃(W) ≤ log |W | + C = log |W0| + 1
2 log(1 + |W ′/W0|2) + C

for all W ∈ A with W0 �= 0.
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Define the function

U(z) := max{VK̃(W) : W ∈ A, W ′/W0 = z} + Q(z).

Note that the right-hand side is a locally finite maximum since A is an algebraic
hypersurface. Away from the singular points Asing of A one can write VK̃(W)

as a psh function in z by composing it with a local inverse of the map A �
W �→ z = W ′/W0 ∈ Cn. Hence U is psh off the pluripolar set

{z ∈ Cn : z = W ′/W0 for some W ∈ Asing},
and hence psh everywhere since it is clearly locally bounded above on Cn.
Also, since VK̃ = 0 on K̃ it follows that U ≤ Q on K .

We now verify that U ∈ L(Cn) by checking its growth. By the definitions
of U and Q and (5.3), given z ∈ Cn there exist W, V ∈ A with z = W ′/W0 =
V ′/V0 such that

U(z) = VK̃(W) + Q(z) and Q(z) = − log |V0|.
Note that W = αV , and since A is uniformly bounded on lines through the
origin, there is a uniform constant c (independent of W, V ) such that |α| ≤ c.
We then compute

U(z) = VK̃(W) − log |V0| ≤ VK̃(W) − log |W0| + log c

≤ log |W | + C − log |W0| + log c

= log |W/W0| + C + log c

= 1
2 log(1 + |z|2) + C + log c,

where C > 0 exists since VK̃ ∈ L(A). Hence U ∈ L(Cn), and since U ≤ Q

on K this means that U(z) ≤ VK,Q(z). By the definition of U ,

VK̃(W) + Q(z) ≤ VK,Q(z)

for all W ∈ A such that W ′/W0 = z, which completes the proof.

Remark 5.5. When f ≡ 1 we have Q ≡ 0, F(z) = (1, z) and F(K) =
K̃ = {1}×K . Combining Propositions 5.1 and 5.4 yieldsVK(z) = H{1}×K(1, z),
which is an instance of the H -principle of Siciak that relates functions in L(Cn)

to functions in H(Cn+1).
A weighted version of this equality also holds. Given K ⊂ Cn closed and

w a weight function on K (with Q = − log w), form the circled set

Z(K) := {(t, tz) ∈ Cn+1 : z ∈ K, |t | = w(z)}.
Then from Bloom (cf. [4] and [3]), HZ(K)(1, z) = VK,Q(z).
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6. Theorem 1.1 revisited

Let K = Rn ⊂ Cn and w(z) = |f (z)| = ∣∣ 1
(1+z2)1/2

∣∣. Here f (z) �= 0 and

we may extend Q(z) = − log |f (z)| to all of Cn as Q(z) = 1
2 log |1 + z2| ∈

L(Cn). We use the results of the previous section to give our original proof of
Theorem 1.1; this also shows where the formula (1.3) arose. Since (1 + z2) ·
f (z)2 − 1 = 0, we take

P(z0, z) = (1 + z2)z2
0 − 1.

Here,

A = {
W : P(W0, W

′/W0) = (1 + W ′2/W 2
0 )W 2

0 − 1 = W 2
0 + W ′2 − 1 = 0

}
is the complexified sphere in Cn+1. From Definition 5.2 and Example 5.3, A is
bounded on lines through the origin. Note that f is clearly holomorphic in a
neighborhood of Rn; thus we can take, e.g., 
 = {z = x + iy ∈ Cn : y2 =
y2

1 + · · · + y2
n < s < 1} in Propositions 5.1 and 5.4 where zj = xj + iyj .

Condition (5.3) also holds for Q(z) = 1
2 log |1 + z2|: given z = W ′/W0 for

some W = (W0, W
′) ∈ A, we have W 2

0 = 1/(1 + z2). Hence − log |W0| =
1
2 log |1 + z2| is the same value for all such W . We have

F(K) = {
(f (z), zf (z)) : z = (z1, . . . , zn) ∈ K = Rn

}
=

{(
1

(1 + x2)1/2
,

x

(1 + x2)1/2

)
: x ∈ Rn

}
.

Writing uj = Re Wj , we see that

F(K) =
{
(u0, . . . , un) ∈ Rn+1 :

n∑
j=0

u2
j = 1, u0 > 0

}
.

On the other hand,

K̃ = {
W ∈ A : W ′/W0 ∈ K

} =
{
(u0, . . . , un) ∈ Rn+1 :

n∑
j=0

u2
j = 1

}
.

Clearly K̃ is nonpluripolar in A which completes the verification that Pro-
position 5.4 is applicable. We also observe that since for any homogeneous
polynomial h = h(W0, . . . , Wn) we have

|h(−u0, u1, . . . , un)| = |h(u0, −u1, . . . ,−un)|,
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the homogeneous polynomial hulls of K̃ and F(K) in Cn+1 coincide, so that
HK̃ = HF(K) in A (see (4.2)). Since

F(K) \ F(K) =
{
(u0, . . . , un) ∈ Rn+1 :

n∑
j=0

u2
j = 1, u0 = 0

}
⊂ A ∩ {W0 = 0}

is a pluripolar subset of A,
HK̃ = HF(K) (6.1)

onA\P whereP ⊂ A is pluripolar inA. Combining (6.1) with Propositions 5.1
and 5.4, we have

HK̃(W) = VK̃(W) = VK,Q(z) − Q(z) = HF(K)(W) (6.2)

for z ∈ 
̃ := 
 \ P̃ and W = F(z) where P̃ is pluripolar in Cn.
To compute the extremal functions in this example, we first consider VK̃ in

A. Let

B := Bn+1 =
{
(u0, . . . , un) ∈ Rn+1 :

n∑
j=0

u2
j ≤ 1

}

be the real (n + 1)-ball in Cn+1.

Proposition 6.1. We have VB(W) = VK̃(W) for W ∈ A.

Proof. Clearly VB |A ≤ VK̃ . To show equality holds, the idea is that if we
consider the complexified extremal ellipses Lα for B whose real points Sα are
great circles on K̃ , the boundary of B inRn+1, then the union of these varieties
fill out A:

⋃
α Lα = A. Since VB |Lα

is harmonic, we must have VB |Lα
≥ VK̃ |Lα

so that VB |A = VK̃ .
To see that

⋃
α Lα = A, we first show A ⊂ ⋃

α Lα . If W ∈ A \ K̃ , then
W lies on some complexified extremal ellipse L whose real points E are an
inscribed ellipse in B with boundary in K̃ (and VB |L is harmonic). If L �= Lα

for some α, then E ∩ K̃ consists of two antipodal points ±p. By rotating
coordinates we may assume ±p = (±1, 0, . . . , 0) and

E ⊂ {(u0, . . . , un) : u2 = · · · = un = 0}.
We have two cases:

(1) E = {(u0, . . . , un) : |u0| ≤ 1, u1 = 0, u2 = · · · = un = 0}, a real
interval: in this case

L = {(W0, 0, . . . , 0) : W0 ∈ C}.
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But then L ∩ A = {(W0, 0, . . . , 0) : W0 = ±1} = {±p} ⊂ K̃ , contradicting
W ∈ A \ K̃ .

(2) E = {(u0, . . . , un) : u2
0 + u2

1/r2 = 1, u2 = · · · = un = 0} where
0 < r < 1, a nondegenerate ellipse: in this case,

L := {(W0, . . . , Wn) : W 2
0 + W 2

1 /r2 = 1, W2 = · · · = Wn = 0}.
But then if W ∈ L ∩ A we have

W 2
0 + W 2

1 /r2 = 1 = W 2
0 + W 2

1

so that W1 = · · · = Wn = 0 and W 2
0 = 1; i.e., L ∩ A = {±p} ⊂ K̃ which

again contradicts W ∈ A \ K̃ .
For the reverse inclusion, recall that the variety A is defined by

∑n
j=0 W 2

j =
1. If W = u + iv with u, v ∈ Rn+1, we have

n∑
j=0

W 2
j =

n∑
j=0

[u2
j − v2

j ] + 2i

n∑
j=0

ujvj .

Thus for W = u + iv ∈ A, we have
∑n

j=0[u2
j − v2

j ] = 1 and
∑n

j=0 ujvj = 0.
If we take an orthogonal transformation T on Rn+1, then, by definition, T

preserves Euclidean lengths in Rn+1; i.e.,

n∑
j=0

u2
j =

n∑
j=0

(T (u)j )
2 and

n∑
j=0

v2
j =

n∑
j=0

(T (v)j )
2.

Moreover, if u, v are orthogonal; i.e.,
∑n

j=0 ujvj = 0, then
∑n

j=0(T (u))j ·
(T (v))j = 0. Extending T to a complex-linear map on Cn+1 via

T (W) = T (u + iv) := T (u) + iT (v),

we see that if W ∈ A, then
∑n

j=0(T (u))j · (T (v))j = 0, so that

n∑
j=0

(T (W)j )
2 =

n∑
j=0

[(T (u)j )
2 − (T (v)j )

2] =
n∑

j=0

[u2
j − v2

j ] = 1.

Thus T preserves A.
Clearly the ellipse

L0 := {
(W0, . . . , Wn) : W 2

0 + W 2
1 = 1, W2 = · · · = Wn = 0

}
corresponding to the great circle S0 := {(u0, . . . , un) : u2

0 + u2
1 = 1, u2 =

· · · = un = 0} lies in A and any other great circle Sα can be mapped to S0 via
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an orthogonal transformation Tα . From the previous paragraph, we conclude
that

⋃
α Lα ⊂ A, completing the proof.

We use the Lundin formula VB(W) = 1
2 log h

(|W |2 + |W 2 − 1|) in (4.1),
where h(t) = t+√

t2 − 1 for t ∈ C\[−1, 1]. Now the formula for VK̃ can only
be valid on A; and indeed, since W 2 = 1 on A, by the previous proposition
we obtain

VK̃(W) = 1
2 log h(|W |2), W ∈ A.

Remark 6.2. Note that since the real sphere K̃ and the complexified sphere
A are invariant under real rotations, the Monge-Ampère measure

(ddcVK̃(W))n = (
ddc 1

2 log h(|W |2))n

must be invariant under real rotations as well and hence is the normalized sur-
face area measure on the real sphere K̃ . This can also be seen as a consequence
of VK̃ being the Grauert tube function for K̃ in A as (ddcVK̃(W))n gives the
volume form dVg on K̃ corresponding to the standard Riemannian metric g

there (cf. [13]).

Getting back to the calculation of VK,Q, note that since W = (1, z)/(1 +
z2)1/2,

|W |2 := |W0|2 + |W1|2 + · · · + |Wn|2 = 1 + |z|2
|1 + z2| .

Plugging in to (6.2),

VK̃(W) = VB(W) = VK,Q(z) − Q(z) = VK,Q(z) − 1
2 log |1 + z2|

gives

VK,Q(z) = 1
2 log

([
1 + |z|2] + {[

1 + |z|2]2 − |1 + z2|2}1/2
)

for z ∈ 
̃, agreeing with (1.3).
A similar observation leads to another derivation of the above formula.

Consider F(K) as the upper hemisphere

S :=
{
(u0, . . . , un) ∈ Rn+1 :

n∑
j=0

u2
j = 1, u0 ≥ 0

}

inRn+1 and letπ :Rn+1 → Rn be the projectionπ(u0, . . . , un) = (u1, . . . , un),
which we extend to π :Cn+1 → Cn via π(W0, . . . , Wn) = (W1, . . . , Wn). Then

π(S) = Bn :=
{
(u1, . . . , un) ∈ Rn :

n∑
j=1

u2
j ≤ 1

}
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is the real n-ball inCn. Each great semicircle Cα in S – these are simply half of
the Lα’s from before – projects to half of an inscribed ellipse Eα in Bn, while the
other half of Eα is the projection of the great semicircle given by the negative
u1, . . . , un coordinates of Cα (still in F(K), i.e., with u0 > 0). As before, the
complexifications E ∗

α of the ellipses Eα correspond to complexifications of the
great circles.

Proposition 6.3. We have

HF(K)(W0, . . . , Wn) = VBn
(π(W)) = VBn

(W1, . . . , Wn)

= VBn
(W ′) ≤ VK̃(W0, . . . , Wn)

for W = (W0, . . . , Wn) = (W0, W
′) ∈ A.

Proof. Clearly VBn
(π(W)) ≤ VK̃(W). For the inequality HF(K)(W) ≤

VBn
(π(W)), note that for W ∈ A with W = (W0, W

′), we have π−1(W ′) =
(±W0, W

′) ∈ A, but the value of HF(K) is the same at both of these points.
Thus W ′ → HF(K)(π

−1(W ′)) is a well-defined function of W ′ for W ∈ A

which is clearly in L(Cn) (in the W ′ variables) and nonpositive if W ′ ∈ Bn;
hence HF(K)(π

−1(W ′)) ≤ VBn
(W ′), completing the proof.

From (6.2),

HK̃(W) = VK̃(W) = VK,Q(z) − Q(z) = HF(K)(W)

for z ∈ 
̃ and W = F(z), so that we have equality for such W in Proposi-
tion 6.3 and an alternate way of computing VK,Q. From the Lundin formula,
for (W0, W

′) ∈ A we have W 2
0 + W ′2 = 1 so

VBn
(W ′) = 1

2 log h
(|W ′|2 + |W ′2 − 1|) = 1

2 log h(|W |2)
and we get the same formula (1.3)

VK,Q(z) = 1
2 log

([
1 + |z|2] + {[

1 + |z|2]2 − |1 + z2|2}1/2
)

=: V (z)

for z ∈ 
̃.
To show this formula holds on all of Cn, we know V ≤ VK,Q on Cn since

V ≤ Q on Rn. Now V ∈ L+(Cn) since, e.g., V (z) = VLn+1(1, z) and VLn+1 ∈
L+(Cn+1). Thus VK,Q ∈ L+(Cn) as well. This implies that the total Monge-
Ampère mass of V and VK,Q are the same (cf. [10], Corollary 5.5.3). But
VK,Q is maximal outside of Rn and (ddcV )n = (ddcVK,Q)n on 
 ⊃ Rn.
Thus (ddcV )n must vanish outside of 
; i.e., V is maximal on Cn \ Rn and
V = VK,Q on Cn.
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