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BOUNDING SMOOTH SOLUTIONS OF
BEZOUT EQUATIONS

NIKOLAI NIKOLSKI∗

Abstract
Given data f = (f1, f2, . . . , fn) in the holomorphic part A = F+ of a symmetric Banach/
topological algebra F on the unit circle T, we estimate solutions gj ∈ A to the corresponding
Bezout equation

∑n
j=1 gj fj = 1 in terms of the lower spectral parameter δ, 0 < δ ≤ |f (z)|,

and an inversion controlling function c1(δ, F ) for the algebra F . A scheme developed issues from
an analysis of the famous Uchiyama-Wolff proof to the Carleson corona theorem and includes
examples of algebras of “smooth” functions, as Beurling-Sobolev, Lipschitz, or Wiener-Dirichlet
algebras. There is no real “corona problem” in this setting, the issue is in the growth rate of the
upper bound for ‖g‖An as δ → 0 and in numerical values of the quantities that occur, which are
determined as accurately as possible.

1. The effective corona problem in holomorphic algebras

1.1. Holomorphic algebras

Let A be a holomorphic algebra on the unit discD = {z ∈ C : |z| < 1}, which
means a Banach space of holomorphic functions A ⊂ Hol(D) (continuous
inclusion) being a unital topological Banach algebra in the sense that 1 ∈ A

and ‖fg‖ ≤ K1‖f ‖ · ‖g‖ (∀f, g ∈ A),

where K1 = K1(A) > 0 is a constant. It follows that A ⊂ H∞(D), the
algebra of bounded holomorphic functions on D (and ‖f ‖∞ ≤ K1‖f ‖A for
every f ∈ A). We speak of a Banach algebra A, if K1(A) = 1 and ‖1‖ = 1; see
the comments in Section 2 below on differences between topological Banach
and Banach algebras.

Given an n-tuple f = (fj ) ∈ An := A × · · · × A of functions fj ∈ A

(“data”), the question of solutions g = (gj ) ∈ An to the corresponding Bezout
equation,

g · f =
n∑

j=1

gjfj = 1,
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attracted quite a lot of attention because of its interest in complex analysis
(interpolation, closed ideals, etc.), as well as an applied importance (say, in
H∞-control theory, in the spectral theory on Sz.-Nagy-Foias model, etc.). For
references, see [9], [11], [14], [4].

Originally, Bezout equations were responsible for the so-called “corona
problem” (whether the disc D is dense in maximal ideal space �(A)) and a
classification of finitely generated ideals in A. The techniques of solving these
equations, as well as the needs of applications, show that the primary problem
is in estimates of solutions g in terms of the data f , even though there is no
doubt about the emptyness of the “corona” �(A) \ (clos(D)). In order to deal
with these estimates, we introduce a norm on An as

‖f ‖ =
( n∑

j=1

‖fj‖2
A

)1/2

(for f = (fj ) ∈ An),

and the least norm solution for Bezout equations

[f ]−1 := inf
{‖g‖ : g · f = 1, g ∈ An

}
(the inf of an empty set is +∞), and finally, given δ, 0 < δ ≤ 1, the quantity
(possibly infinite)

cn(δ, A) = sup
{
[f ]−1 : f ∈ An, ‖f ‖ ≤ 1, δ ≤ |f (z)| (z ∈ D)

}
,

where |f (z)|2 = ∑n
j=1 |fj (z)|2. An “effective corona problem” for an algebra

A consists in estimates of cn(δ, A) (upper and lower) for n = 1, 2, . . . and
0 < δ ≤ 1; c1(δ, A) is an effective inversion bound,

c1(δ, A) = sup
{‖1/f ‖ : f ∈ A, ‖f ‖ ≤ 1, δ ≤ |f (z)| (z ∈ D)

}
.

As is well-known, the canonical setting for Bezout equations (known as
Carleson corona problem/theorem) is related to the Hardy algebra of the disc
H∞ = H∞(D), but our approach does not cover this case (since we need a
bounded Riesz projection P+ on a larger symmetric algebra, as L∞ in this
case). The best known estimate for the classical Carleson theorem (elaborated
mostly by A. Uchiyama and T. Wolff, 1980) is

cn(δ, H
∞) ≤ 20

log(eδ−1)

δ2
,

see [11] for references and the proof of this quantitative form.
In this note, for a class of holomorphic algebras A described in Section 1.2

below and called (smoothly) symmetrizable, we give an estimate for cn(δ, A)



BOUNDING SMOOTH SOLUTIONS OF BEZOUT EQUATIONS 123

in terms of c1(δ, F ), where F is a symmetric extension of A. The result is stated
in Sections 1.3 and 2.3; Section 2 contains comments on topological Banach
algebras. Symmetrizability and other hypotheses of Theorems 1.1 and 2.1
are discussed in Section 3. Some examples (Lipschitz, Beurling-Sobolev, and
Wiener-Dirichlet algebras) are considered in Section 4, and the proof of The-
orem 1.1 is given in Section 5. Our axiomatic approach is mostly inspired
by the paper of O. El-Fallah and M. Zarrabi [8] where the case of Beurling
convolution algebras �1(Z+, wn) is settled and the case of Beurling-Sobolev
algebras �p(Z+, wn) is suggested (but without entering into the modifications
needed for this case; see “Remarque” p. 315 in [8], and a discussion in §§2
and 4.2 below).

1.2. Basic requirements on A

Holomorphic algebras A considered below are “analytic halves” of symmetric
function algebras.

A symmetric function Banach algebra (respectively, symmetric topological
Banach algebra) on the unit circle T is, by definition, a Banach algebra F

(respectively, a topological function algebra), F ⊂ L∞(T) (continuous inclu-
sion), containing the trigonometric polynomials P := Lin(zk : k ∈ Z) and
satisfying the following properties:

(A1) f ∈ F implies f ∈ F, f∗ ∈ F and ‖f ‖F = ‖f ‖F = ‖f∗‖F , where
f∗(z) = f (z), and R := lim|n|→∞ ‖zn‖1/n

F = 1;

(A2) the Riesz projection

P+
(∑

j∈Z
f̂ (j)zj

)
=

∑
j≥0

f̂ (j)zj (f ∈ F)

(f̂ (j) stands for a Fourier coefficient) is bounded on F , and Poisson,
meaning fr , 0 ≤ r < 1, fr(z) = f (rz), define contractive maps on A =
F+ = P+(F ), ‖fr‖A ≤ ‖f ‖A.

Clearly, the analytic half of a symmetric algebra,

A = F+ = P+(F ),

is (after a natural extension of P+f to the disc D) a unital holomorphic topo-
logical Banach algebra. The next requirement (A3) states a kind of sequential
weak completeness of A, as follows.

(A3) If fk ∈ A = F+, supk≥1 ‖fk‖A < ∞ and the limit f (z) = limk fk(z)

(∀z ∈ D) exists, then f ∈ A.
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From now on, we fix the notation

F and A = F+

for algebras satisfying (A1)–(A3). Later, we give several examples of such
algebras F and A, but for now we only mention that the classical Wiener
algebra F = W ,

W =
{
f =

∑
n∈Z

f̂ (n)zn :
∑
n∈Z

|f̂ (n)| < ∞
}
,

satisfies (A1)–(A3), but F = L∞(T) does not (P+ is not bounded). We notice
a few immediate consequences of the definitions.

(1) The limit R in (A1) exists and is the spectral radius of the function z;
(2) The Szegő kernels kλ = 1/(1 − λz) are in A for every λ, λ ∈ D. Also,

every L∞ function which is real analytic onT is in F (in particular, the Poisson
means fr of a function f ∈ F are automatically in F ). The contractivity of
f �→ fr is just a technical detail, which permits to avoid some unpleasant
computations of constants; it is satisfied for any rotation invariant algebra F :
f ∈ F ⇒ fζ ∈ F and ‖fζ‖F = ‖f ‖F , where fζ (z) = f (ζz), ∀ζ ∈ T.

(3) The backward shift operator

S∗f = P+(zf ) = f − f (0)

z

is bounded on A. Moreover, given a holomorphic function h ∈ Hol(D), h =∑
k≥0 ĥ(k)zk , and an analytic polynomial f ∈ Pa := Lin(zk : k ∈ Z+), the

function h(S∗)f = ∑
k≥0 ĥ(k)(S∗)kf is well defined and is a polynomial, so

that h(S∗): Pa → Pa is a linear mapping. We define the functional calculus
algebra of S∗ as the set

M(A) = {h ∈ Hol(D) : h(S∗): Pa → Pa

extends to a bounded map A → A}.
Clearly, M(A) equipped with the operator norm

‖h‖M = ‖h(S∗)‖A→A

is a unital Banach algebra contractively embedded into H∞ (since h(S∗)kλ =
h(λ)kλ for every λ ∈ D). In fact, h(S∗) is nothing but an anti-analytic Toeplitz
operator on A.
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1.3. Main theorem

Theorem 1.1. Let F and G be (A1)–(A3) Banach algebras on the unit circleT
satisfying

F ⊂ G and G+ ⊂ M(F+)

(continuous embeddings), and the (embedding type) condition:

(A4)

∫ 1

0
‖ϕ′

r‖G+ dr ≤ K4‖ϕ‖F+ for every ϕ ∈ F+ = A,

where K4 = K4(F+, G+) > 0 is a constant. Then, the following estimate
holds for Bezout equations in A = F+:

cn(δ, A) ≤ Kc1(δ
2, F )2

for all 0 < δ ≤ 1 and all n = 1, 2, . . ., where K is a constant depending on
F and G. In particular,

K ≤ ‖P+‖F + 4‖S∗‖A→AK3
2 K3K4‖P+‖G := K

where K2 is an embedding constant ‖f ‖G ≤ K2‖f ‖F (∀f ∈ F), K3 a
functional calculus constant ‖h(S∗)‖ = ‖h‖M(F+) ≤ K3‖h‖G+ (∀h ∈ G+),
and ‖P+‖F = ‖P+‖F→F , ‖P+‖G = ‖P+‖G→G.

In the case when all involved mappings are contractions (i.e., ‖S∗‖A→A =
‖P+‖F = K2 = K3 = K4 = ‖P+‖G = 1), we have K = 5; see Section 4 for
examples.

Condition (A4) of Theorem 1.1 looks rather technical but it should be con-
sidered as a requirement on a holomorphic algebra A allowing estimatation of
solutions of Bezout equations in A. The theorem can also be stated as follows.

Theorem 1.2. If A is the holomorphic part A = F+ of a symmetric algebra
F , stable under the backward shift S∗ (S∗A ⊂ A), and the functional calculus
for S∗ is so good that there exists a symmetric algebra G such that G+ ⊂ M(A)

and ∫ 1

0
‖ϕ′

r‖G+ dr ≤ K4‖ϕ‖A (∀ϕ ∈ A),

where K4 > 0 and ϕr stands for the Poisson mean of ϕ, then solutions of
Bezout equations in A allow an estimate cn(δ, A) ≤ Kc1(δ

2, F )2 (0 < δ ≤ 1;
n = 1, 2, . . .).

Below, we largely comment on property (A4) of Theorem 1.1. In particular,
we analyze possibilities of the “extreme” choices G+ = A and G+ = M(A),
and show that (A4) is an improved form of the inclusion A ⊂ M(A), which,
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in turn, is equivalent to a “symmetrizability” of A (see Section 3). In the
next Section 2, we also show how to modify the claim of Theorem 1.1 when
replacing “Banach algebras” by “topological Banach algebras”. The principal
examples (presented in Section 4) deal just with topological Banach algebras
rather than Banach algebras.

2. Remarks on topological Banach algebras

2.1. The scaling of the constant cn(δ, X) for equivalent norms

Suppose we have two equivalent norms on an algebra X, say,

a‖f ‖ ≤ ‖f ‖∗ ≤ b‖f ‖ (∀f ∈ X),

for some a > 0, b > 0. Taking f from the definition of cn(δ, X), i.e. ‖f ‖ ≤ 1,
|f | ≥ δ > 0, we get ‖f/b‖∗ ≤ 1, |f/b| ≥ δ/b > 0, and hence ‖f −1‖ =
(1/b)‖(f/b)−1‖ ≤ (1/ab)‖(f/b)−1‖∗, i.e.

cn(δ, X) ≤ 1

ab
cn(δ/b, X∗),

and symmetrically,
1

ab
cn(δ/a, X∗) ≤ cn(δ, X).

We apply this remark to topological Banach algebras.

2.2. Topological Banach algebras versus Banach algebras

A unital topological Banach algebra X is a Banach space and a unital algebra
with a continuous multiplication, i.e. 1 ∈ X and

‖fg‖ ≤ K1‖f ‖ · ‖g‖ (∀f, g ∈ X),

where K1 = K1(X) > 0 is a constant. There exists an equivalent norm ‖ · ‖∗
which makes X∗ = (X, ‖ · ‖∗) a Banach algebra, which means that K1(X∗) =
1. For example, ‖f ‖∗ = ‖Mf ‖,
where Mf g = fg is a multiplication operator X → X. In this case,

1

‖1‖‖f ‖ ≤ ‖f ‖∗ ≤ K1‖f ‖ (∀f ∈ X),

and hence, from §2.1,

‖1‖
K1

cn(δ‖1‖, X∗) ≤ cn(δ, X) ≤ ‖1‖
K1

cn(δ/K1, X∗).
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The following statement shows how the estimate of Theorem 1.1 can vary
when dealing with topological Banach algebras instead of Banach algebras. It
will be useful, in particular, for Beurling-Sobolev topological Banach algebras
F�p(Z, wn) (see §4.2) which are never Banach algebras for p > 1. In the case
when the inverse controlling function δ �→ c1(δ) grows rapidly as δ ↓ 0, the
most important difference between Theorem 1.1 and Theorem 2.1 below is, of
course, in the argument scaling factor K1(F )2‖1‖F .

2.3. Theorem 1.1 for topological Banach algebras

Theorem 2.1. With the notation and hypotheses of Theorem 1.1, assume that
F and G are topological Banach algebras on the unit circle T. Then,

cn(δ, A) ≤ K̃c1

(
δ2

K1(F )2‖1‖F

, F

)2

for all 0 < δ ≤ 1 and all n = 1, 2, . . ., where

K̃ = K̃(F, G) := K1(F )

‖1‖F

K∗,

K∗ = K1(F )‖P+‖F ‖1‖F

+ 4K1(F )K1(G)5K3
2 K3K4‖1‖5

F ‖1‖2
G‖P+‖G‖S∗‖A∗ ,

K2 = K2(F → G), K3 = K3(G+ → M(F+)) and K4 = K4(G, F ).

Proof. It easily follows from the remarks of §2.2 above and Theorem 1.1
applied to Banach algebras E∗ and F∗; we only need to recalculate the embed-
ding constants

K2 = K2(F → G) and K3 = K3(G+ → M(F+)).

Omitting the details, we get K2∗ := K2(F∗ → G∗) ≤ K1(G)K2‖1‖F ,
K3∗ := K3(G∗+ → M(F∗+)) ≤ K3K1(F )‖1‖G‖1‖F , and then by The-
orem 1.1 cn(δ, F∗+) ≤ K∗c1(δ

2, F∗)2, where

K∗ ≤ ‖P+‖F∗ + 4K3
2∗K3∗K4∗‖P+‖G∗‖S∗‖A∗

≤ K1(F )‖P+‖F ‖1‖F

+ 4K1(F )K1(G)5K3
2 K3K4‖1‖5

F ‖1‖2
G‖P+‖G‖S∗‖A∗ =: K∗.

Finally, using §2.2, we get the estimate stated in Theorem 2.1.

Remark 2.2. Of course, in the case of a Banach algebra F (i.e., ‖1‖F =
K1(F ) = 1), we have K∗ = K and K∗ = K . One more observation is that we
always have ‖S∗‖A∗ ≤ 2‖S∗‖A;
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indeed, taking f, g ∈ A we obtain

gS∗f = g
f − f (0)

z
= gf − (gf )(0)

z
− f (0)

g − g(0)

z

= S∗(fg) − f (0)S∗g,

and hence ‖gS∗f ‖A ≤ ‖S∗(fg)‖A + |f (0)| · ‖S∗g‖A ≤ ‖S∗‖A‖f ‖∗‖g‖A +
|f (0)| · ‖S∗‖A‖g‖A ≤ 2‖S∗‖A‖f ‖∗‖g‖A, which means ‖S∗f ‖∗ ≤
2‖S∗‖A‖f ‖∗, and the claim follows.

Yet another case occurring in applications (see §4.2 below) is the “contract-
ive case” of a topological Banach algebra A, where ‖S∗‖A→A = ‖P+‖F =
‖P+‖G = ‖1‖G = ‖1‖F = K1(G) = K2 = K3 = K4 = 1, and hence
K̃ ≤ 9K1(F )2.

3. Symmetrizable algebras and embedding condition (A4)

3.1. Symmetrizable holomorphic algebras

Commenting on condition (A4) of the theorem, notice that there ϕ′
r means

(ϕ′)r = ∑
k≥1 ϕ̂(k)krk−1zk−1, so that

S∗ϕ(z) = ϕ(z) − ϕ(0)

z
=

∑
k≥1

ϕ̂(k)zk−1 =
∫ 1

0
ϕ′

r (z) dr,

ϕ(z) = ϕ(0) + z

∫ 1

0
ϕ′

r (z) dr (∀z ∈ D),

and then

‖ϕ‖M ≤ |ϕ(0)| + ‖z‖M

∫ 1

0
‖ϕ′

r‖M dr ≤ ‖ϕ‖A + ‖S∗‖K2K3‖ϕ‖A.

Consequently,
(A4) ⇒ A ⊂ M(A),

and
‖ϕ‖M ≤ (1 + K2K3‖S∗‖)‖ϕ‖A (∀ϕ ∈ A).

The claim follows.
We say that a holomorphic algebra A is symmetrizable if there exists a

symmetric topological Banach algebra B such that

A = P+(B) =: B+

(with equivalent norms); B is called a symmetric extension of A.
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Clearly, for a symmetrizable algebra A, there exists a minimal symmetric
extension B = SA, where

SA = A + A0

(the direct sum), A0 stands for complex conjugate, A0 = {f ∈ A : f̂ (0) = 0},
and the norm is defined as a symmetrization of the norm‖g+h‖ = ‖g‖A+‖h‖A

(g ∈ A, h ∈ A0),

‖f ‖B = 1
4 (‖f ‖ + ‖f ‖ + ‖f∗‖ + ‖f ∗‖).

In this case, ‖P+: SA → SA‖ = 1.

3.2. A theorem

Theorem 3.1. A holomorphic algebra A is symmetrizable if and only if A ⊂
M(A).

Proof. If there exists a symmetric extension B of A, then

‖h(S∗)f ‖A = ‖P+(h∗f )‖A ≤ α‖P+‖B→B · ‖h∗f ‖B ≤ β‖h‖A‖f ‖A

for all h, f ∈ A (and some constants α, β > 0), and hence h ∈ M(A).
Conversely, if A ⊂ M(A), we can set, as before, B = SA = A + A0

endowed with the above mentioned symmetrization ‖ · ‖B of the norm ‖g +
h‖ = ‖g‖A + ‖h‖A for g ∈ A, h ∈ A0. Then A = B+ (with an equivalence of
norms, because the norms f �→ ‖f ‖A and f �→ ‖f ∗‖A are equivalent on A)
and B is a topological Banach algebra: if g + h, k + � ∈ B = A + A0, then

(g + h)(k + �) = gk + P+(g� + hk) + h� + P−(g� + hk),

where P− = I − P+, so that ‖P+(g�)‖ = ‖�∗(S∗)g‖ ≤ c‖�‖A‖g‖A, and
similarly for other mixed products; thus ‖(g+h)(k+�)‖ ≤ c(‖g‖+‖h‖)(‖k‖+
‖�‖) ≤ c‖g + h‖ · ‖k + �‖, where c > 0 are constants (maybe different), and
the claim follows.

3.3. Symmetrization and condition (A4)

A symmetrizable holomorphic algebra A has a symmetric extension F ⊃ A =
F+ and satisfies a functional calculus estimate ‖ϕ‖M(A) ≤ C‖ϕ‖A. If the latter
can be improved up to inequalities (A4),

‖ϕ‖M(A) ≤ c

∫ 1

0
‖ϕ′

r‖G+ dr ≤ d‖ϕ‖F+ (∀ϕ ∈ F+)
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with a weaker symmetric norm ‖ · ‖G, then Theorem 1.1 may be applied and we
get an estimate for cn(δ, A). Therefore, looking for a candidate for an algebra
G we consider symmetrizable intermediate holomorphic algebras G+,

F+ ⊂ G+ ⊂ M(F+).

We start with a list of examples (anticipating exact definitions and justifications,
for which we refer to next Section 4).

3.4. Examples of working with condition (A4)

3.4.1. Beurling-Sobolev algebras A := F�p(Z+, wn) = (F�p(Z, wn))+.
(See §4.2 for the definition) are symmetrizable under a (very weak) condi-
tion that the weight function is monotone (wn+1 ≥ wn), or quasi-monotone
(sup0≤k≤n

wk

wn
< ∞). A natural choice of G in order to satisfy (A4) is G =

W = F�1(Z), see §4.2.

3.4.2. H∞ is not symmetrizable. Indeed, the norms ‖S∗n‖H∞→H∞ ≈ log n

cannot be bounded by ‖zn‖H∞ = 1. In fact, M(H∞) is the algebra of Cauchy-
Stieltjes multipliers {ϕ ∈ Hol(D) : ϕ · (L1/H 1−) ⊂ L1/H 1−}, and in particular,
‖ϕ(S∗)‖H∞→H∞ ≤ c‖ϕ‖H 1

1
, where H 1

1 = {ϕ ∈ Hol(D) : ϕ′ ∈ H 1}, see [18].

3.4.3. Lipschitz holomorphic algebra A = Lip(T, α)+, 0 < α < 1. (See
§4.3 for the definition), is symmetrizable (since Lip(T, α) is symmetric). Here
M(A) = H∞ (see point §3.4.5 below), which is not symmetrizable, but one
can take an intermediate G = Lip(T, ε) with a sufficiently small ε > 0 in
order to get condition (A4), see §4.3 below for details.

3.4.4. About the choice G = F . Taking G = F , where F is a symmetric
topological Banach algebra, we get G+ = F+ ⊂ M(F+), but an embedding
inequality (A4)

∫ 1

0
‖ϕ′

r‖F+ dr ≤ K4‖ϕ‖F+ (∀ϕ ∈ F+)

seems to hold very seldom. As we will see (Section 4), it is true for Wiener-
Beurling algebras F = F�1(Z, wn), but it fails for other interesting algebras,
as in the following examples.

(1) (A4) fails with G = F for Beurling-Sobolev algebras F = F�p(Z, wn)

with p > 1: indeed, let us compare the left/right hand sides of the inequality
for ϕε = ∑

k≥1
1

k(1+ε)/pwk
zk , ε > 0 as ε → 0:

‖ϕε‖ =
(∑

k≥1

1

k1+ε

)1/p

≈ (1/ε)1/p as ε → 0,
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whereas (with constants c > 0 which may vary from one expression to another)

∫ 1

0
‖ϕ′

r‖ dr =
∫ 1

0

(∑
k≥1

kprp(k−1)

k1+ε

(
wk−1

wk

)p)1/p

≥ c

∫ 1

0

(∑
k≥1

kprp(k−1)

k1+ε

)1/p

dr ≥ c

∫ 1

0

(
1

(1 − rp)p−ε

)1/p

dr

≥ c

∫ 1

0

1

(1 − r)1−(ε/p)
dr ≥ c

ε
as ε → 0,

and the claim follows.
(2) (A4) fails with G = F for the Lipschitz algebras F = Lip(T, α),

0 < α < 1: indeed, a classical result of Hardy-Littlewood (1932) tells us that
the norms

‖f ‖α = ‖f ‖L∞(D) + sup
x �=y

|f (x) − f (y)|
|x − y|α ,

and
‖f ‖ = ‖f ‖L∞(D) + sup

|z|<1
|f ′(z)|(1 − |z|)1−α

are equivalent for holomorphic functions for 0 < α < 1; see for example §5.2
of [5]. Now, take ϕ(z) = ∫ z

0 (1 − ζ )α−1 dζ ; then ‖ϕ‖ < ∞ but

∫ 1

0
‖ϕ′

r‖ dr ≥
∫ 1

0
|ϕ′′(r2)|(1 − r)1−α dr ≥ (1 − α)

∫ 1

0
(1 − r)−1 dr = ∞,

and the claim follows.
Notice that both F�p(Z, wn) and Lip(T, α) satisfy (A4) condition, but with

different choices of the algebra G (see Section 4).

3.4.5. About the choice G+ = M(F+). Given a symmetric algebra F , the
inequality ∫ 1

0
‖ϕ′

r‖M(F+) dr ≤ K4‖ϕ‖F+ (∀ϕ ∈ F+)

is the weakest embedding requirement in the series of (A4) conditions. It may
happen that it is always true (we have no symmetric algebra counterexamples;
see point (3) below for a non-symmetric one) but it would be useful for The-
orem 1.1/2.1 only if the algebra M(F+) is symmetrizable. Let us give a couple
of examples.

(1) For a Beurling-Sobolev algebra F = F�p(Z, wn) with a “quasi-mono-
tone” weight (wn) (see §4.2 below) satisfying (A1), embedding (A4) holds
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with G+ = M(F+): indeed, F is backward stable (see §4.1) and hence F+ ⊂
W+ ⊂ M(F+) and (A4) follows (see §§4.1–4.2 below).

(2) For the Lipschitz algebra F = Lip(T, α), 0 < α < 1, we have

M(F+) = M(Lip(T, α)+) = H∞,

which is not symmetrizable (see §3.4.2 above), but however (A4) holds for
G+ = M(F+): indeed, it is known that F+ is a dual space to a quasi-normed
Hardy space Hp(D), p = 1

1+α
, in the sense that the norm ‖f ‖Lip(α)+ is equi-

valent to
‖f ‖ = sup

{∣∣∣∣
∑
k≥0

ĝ(k)f̂ (k)

∣∣∣∣: ‖g‖p = 1

}
,

where g ∈ Pa and ‖g‖p = sup0<r<1

(∫
T |g(rζ )|p dm(ζ )

)1/p
(B. W. Romberg,

1960; see Theorem 7.5 in [5]). Since the backward shift S∗: F+ → F+ is
the adjoint operator to the shift S: Hp(D) → Hp(D) (Sg = zg), we obtain
that ϕ(S∗) is bounded on Lip(T, α)+ if and only if the multiplication operator
Mϕg = ϕg is bounded on Hp(D), that is, if and only if ϕ ∈ H∞. Therefore,
M(Lip(T, α)+) = H∞.

In order to check (A4) with G+ = M(Lip(T, α)+) = H∞, we use the same
Hardy-Littlewood theorem as in §3.4.4(2) above: if ϕ ∈ F+ = Lip(T, α)+,
then |ϕ′(z)| ≤ c‖ϕ‖Lip(α)+(1 − |z|)α−1, so that

∫ 1

0
‖ϕ′

r‖M(F+) dr ≤ c‖ϕ‖Lip(α)+

∫ 1

0
(1 − r)α−1 dr = C‖ϕ‖Lip(α)+ ,

where c > 0, C > 0 are constants, and the claim follows.
Later, we will show that for F = Lip(T, α), 0 < α < 1, there exists a

symmetric G satisfying (A4).
(3) For a non-symmetric algebra F = L∞(T), (A4) fails (even with G+ =

M(F+)): indeed, it is well-known that there exists ϕ ∈ F+ = H∞ such that∫ 1
0 |ϕ′(r)| dr = ∞ (i.e., ϕ is a mapping for which the curve ϕ([0, 1)) has

infinite length), and ‖ϕ′
r‖M(F+) ≥ ‖ϕ′

r‖∞ ≥ |ϕ′(r)|, so that
∫ 1

0 ‖ϕ′
r‖M(F+) dr =

∞, and the claim follows.
See also §3.4.2 on the algebra M(H∞).

4. Backward stable, Beurling-Sobolev and Lipschitz algebras, and
other examples

Here we give some examples of algebras satisfying (A1)–(A4), and so the
conclusion of Theorem 1.1/2.1. We start with a general remark on a class of
algebras satisfying (A1)–(A4).
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4.1. Backward stable algebras satisfying (A1)–(A3)

A holomorphic algebra A is backward stable if

K5 := sup
n≥0

‖S∗n‖A→A < ∞.

Lemma 4.1. Let A be a backward stable algebra satisfying (A1)–(A3) and
embedded into the Wiener holomorphic algebra, A ⊂ W+, with

‖f ‖W+ ≤ K6‖f ‖A (∀f ∈ A).

Then A satisfies (A4) with G+ = W(T)+ (and with G+ = M(A)) and

K4(A, M(A)) ≤ K5K6, K4(A, W+) ≤ K6.

Proof. Indeed, it is clear that ‖h‖M = ‖h(S∗)‖ = ∥∥∑
k≥0 ĥ(k)S∗k

∥∥ ≤
K5‖h‖W (∀h ∈ W+), so that W+ ⊂ M(A), and moreover

∫ 1

0
‖h′

r‖M dr ≤ K5

∫ 1

0
‖h′

r‖W dr = K5

∫ 1

0

∑
k≥0

|ĥ(k)|krk−1 dr ≤

≤ K5‖h‖W ≤ K5K6‖h‖A,

and the claim follows.

Remark 4.2. If, in the above computations, G = W and F is a symmetric
algebra and A = F+ then in the notation of Theorem 1.1/2.1, we have

K6 ≤ K2(F → G), K5 = K3(G+ → M(A)).

4.2. Example: Beurling-Sobolev algebras satisfy (A1)–(A4)

Given positive numbers wk > 0, we denote by �p(Z, wn) a weighted space

�p(Z, wn) = {x = (xj )j∈Z : (xjwj ) ∈ �p(Z)}, 1 ≤ p ≤ ∞,

equipped with the norm ‖x‖ = (
∑

k∈Z |xkwk|p)1/p (with the usual modification
for p = ∞). If

wk = w−k (k ∈ Z),
the Banach space �p(Z, wn) is symmetric with respect to involutions x �→ x

and x �→ x∗ = (x−j )j∈Z. For each finitely supported sequence x, its (discrete)
Fourier transform is

F (xj ) = f (z) =
∑
j∈Z

xjz
j , |z| = 1.
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Assuming
R = lim

k→∞ w
1/k

k = 1,

one can see that �p(Z, wn) is a convolution topological Banach algebra on Z if
and only if the mapping F extends to a continuous embedding F : �p(Z,wn) →
C(T) and

F := F�p(Z, wn)

is a (topological) function algebra on the circle T (i.e., ‖fg‖ ≤ K1‖f ‖ ·
‖g‖ for every f, g ∈ F�p(Z, wn), where ‖Ff ‖ = ‖f ‖�p(wj )); it is called a
Beurling-Sobolev algebra (BS algebra, for short). In fact, it is easy to see that
if F�p(Z, wn) ⊂ C(T), then already

F�p(Z, wn) ⊂ W(T)

with the same embedding constant

K1 = K2(F, W(T)).

For these and other basic properties of BS algebras, as well as for estimates
for c1(δ, A), see [7], [13]. Similar definitions and properties hold for holo-
morphic BS algebras

A := F�p(Z+, wn) = (F�p(Z, wn))+.

Recall that for p = 1, a necessary and sufficient condition for F�p(Z+, wn)

to be a BS algebra is the (classical) submultiplicativity property

wj+k ≤ K1wjwk

(it is simply a Banach algebra, if w0 = 1 and wj+k ≤ wjwk). For 1 < p ≤ ∞,
no reasonable necessary and sufficient condition is known, but for “regular”
weights (wj ) (for example, if wj ≥ 1 and (log wj) is concave or convex, see
details in [7]) the condition in question does exist:

(1/wj ) ∈ �p′
(Z+),

1

p′ + 1

p
= 1,

or equivalently, �p(Z+, wn) ⊂ �1(Z+), or F�p(Z+, wn) ⊂ W+.
Speaking of numerical values of the above constants Kj = Kj(A) for BS

algebras (which participate in estimates of cn(δ, A)), recall that (see [10])

K1(A) ≤ sup
n≥0

( n∑
k=0

(
wn

wkwn−k

)p′)1/p′

,
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where 1
p
+ 1

p′ = 1 (this also gives yet another sufficient condition for �p(Z+,wn)

to be a topological convolution Banach algebra, see [10]). The sharpness of
this estimate is known (and obvious) for p = 1 only; for p > 1, whatever
is the weight (wn), we always have K1(A) > 1 (see [7]). So, in this case, a
renormalization of §2.2 is necessary. Constants K5 and K6 can be (obviously)
exactly computed as

K5(A) = sup
n,k≥0

wn

wn+k

, K6(A) = ‖(1/wn)n≥0‖�p′
(Z+),

so that K4(A, W+) ≤ K5 (by §3.1 above). K5 = 1 means that (wn)n≥0 is a non
decreasing sequence; a weight with K5(A) < ∞ is said to be quasi-monotone.

Consequently, Theorem 1.1/2.1 applies to a BS algebra A = F�p(Z+, wn),
if

K5(A) < ∞ and K6(A) < ∞
(as is mentioned above, the latter condition implies already K1(A) < ∞ if
(wn) is “regular”), with auxiliary algebras

F = F�p(Z, wn) and G = W(T) = F�1(Z).

Since G = W(T), we have K3(A, W+) = K5(A) and

K4(F+, W+) = K6(A) ≤ K2(F ) = ‖(1/wn)n∈Z‖�p′
(Z).

If (wn) is a non-decreasing submultiplicative sequence, w0 = 1 and p = 1,
then all Kj = 1.

Under the “regularity” conditions on (wn) mentioned above, the norm in-
version constant c1(δ, F ) is known to be finite for all 0 < δ ≤ 1 whenever
F = F�p(Z, wn) �= F�1(Z) = W (so, if p > 1, or p = 1 and limn wn = ∞).
Numerical estimates for c1(δ, F ) (strongly depending on (wn)) are given in [7],
[6], [16], [2]. Applying Theorem 1.1/2.1, we use G = W(T), ‖P+‖F =
‖P+‖G = K1(G) = 1, ‖1‖F = w0, as well as the above relations between
the constants Kj . Assuming for simplicity that w0 = 1 and (wn) is monotone
(K3 = K5 = 1), we obtain

cn(δ, F�p(Z, wα
n )) ≤ K̃c1(δ

2/K1(F )2, F )2,

where K1 and K̃ are bounded as above in terms of the constants Kj ; in partic-
ular, following the case “Banach algebra” or “topological Banach algera”, we
have

K̃ ≤ K1(F )2
(
1 + 4K2(F )4

)
or K̃ ≤ K1(F )2

(
1 + 8K2(F )4

)
.
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It follows from previous comments (see also [7], [13]), that the constantsK1(F )

and K2(F ), for “regular” weights (wn), have the same order of magnitude, in
which case we have

K̃ ≤ aK2(F )6,

where a > 0 stands for an absolute constant.

Numerical examples. (1) The case p = 1. If (wn)n≥0 is a non-decreasing
submultiplicative sequence, w0 = 1 and p = 1, then all Kj = 1, and we have

cn(δ, A) ≤ 5c1(δ
2, F )2, 0 < δ ≤ 1

(a result obtained earlier in [8]).
For p = 1 and bounded (wn), we have A = F�1(Z+, 1) = W+, F =

F�1(Z, 1) = W (with equivalent norms), and the results are different; we
quote them for wn = 1:

(a) cn(δ, A) ≥ c1(δ, A) = ∞ for 0 < δ ≤ 1/2 and c1(δ, A) = (1 − 2δ)−1

for 1/2 < δ ≤ 1 (see [12]);
(b) cn(δ, F ) ≤ (1 − 2δ2)−1 for all n ≥ 1 and δ, 1/

√
2 < δ ≤ 1 (and still

cn(δ, F ) ≥ c1(δ, F ) = ∞ for 0 < δ ≤ 1/2). By Theorem 1.1, it entails

cn(δ, W+) ≤ 5(1 − 2δ4)−2 for all n ≥ 2 and δ, 1/
4
√

2 < δ ≤ 1,

but c1(δ, W+) = (1 − 2δ)−1 for 1/2 < δ ≤ 1.
(2) The case p > 1, Sobolev spaces. Sobolev spaces occur for

wα
n = (|n| + 1)α (n ∈ Z).

F�p(Z, wα
n ) is an algebra if and only if α > 1/p′. Inclusion F�p(Z+, wα

n ) ⊂
W+ means that (here and before) a BS algebra F�p(Z,wn) consists of “smooth”
functions on T. All conditions Kj < ∞ (1 ≤ j ≤ 6) are satisfied, and so
F = F�p(Z, wα

n ) is a symmetric topological Banach algebra satisfying (A1)–
(A4). Theorem 1.1/2.1 is applied with G = W ; the numerical values of Kj are
as follows: K3 = K4 = 1 (since wα

n ↑ ∞),

K4 ≈ K2 = ‖(1/wα
n )‖�p′ ≈ (αp′ − 1)−1/p′

(up to a numerical factor) and a similar value for K1 ≈ (αp′ − 1)−1/p′
(as it is

bounded in [7]). A basic c1(δ, �
p(Z, wn)) estimate is given in [7]:

c1(δ, �
p(Z, wn)) ≤ const · δ−β,

where β = β(α, p) > 0 and the constant also depends on α and p. In [7], this
is proved for α > 1

2

(
1 + 1

p′
)
, and in [6] for p = 1 and α > 0. In both cases,
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the existing bounds for β are (probably) not optimal: the known values for β

vary between
β = 4α + 2 (for α > 1 + 1/p′)

and
β = 2p′

αp′ − 1
+ 2 (for small αp′ − 1 > 0),

whereas examples shows that there exists a const such that c1(δ, �
p(Z, wn)) >

const · δ−β ′
with β ′ = max

(
2, 1 + αp′−1

p′
)
; see [7].

Notice that an important issue of the power-like growth of c1(δ) (as above)
is that the topological/Banach algebra passage from §2.2 (replacing c1(δ

2) by
c1(δ

2/K2
1 )) is not so painful as for rapidly growing c1(δ), because it results in

an equivalent majorant (only changing the value of const).

4.3. Example: Lipschitz algebras satisfy (A1)–(A4)

Let 0 < α < 1; the Lipschitz algebra Lip(T, α) consists of functions on T
satisfying

‖f ‖α = ‖f ‖L∞(T) + sup
x �=y

|f (x) − f (y)|
|x − y|α < ∞.

This is a Banach algebra norm (‖1‖α = 1, ‖fg‖α ≤ ‖f ‖α‖g‖α). Properties
(A1)–(A3) are classical (for example, ‖zn‖α ≈ nα implies R = 1, whereas the
boundedness of P+: Lip(T, α) → Lip(T, α) goes back to I. Privalov (1918),
see [5] for references and proofs).

We check condition (A4) with G = Lip(T, ε), ε = α/2, and a constant K4

having (at most) the order of α−2 (up to a numerical constant).
Indeed, we make use the same Hardy-Littlewood equivalent norm which is

mentioned in §3.4.4 above,

‖f ‖ = ‖f ‖L∞(D) + sup
|z|<1

|f ′(z)|(1 − |z|)1−α.

Let ϕ ∈ Lip(T, α)+, 0 < r < 1. Since |F ′(z)| ≤ ‖F‖∞(1 − |z|)−1 for every
F ∈ H∞, we have (with a norm equivalence constant c > 0)

‖ϕ′
r2‖ε ≤ c(‖ϕ′

r2‖∞ + sup
|z|<1

r2|ϕ′′(r2z)|(1 − |z|)1−ε)

≤ c(‖ϕr2‖∞ + sup
|z|<1

r‖ϕ′
r‖∞(1 − r|z|)−1(1 − |z|)1−ε)

(and using (1 − r)ε(1 − |z|)1−ε ≤ 1 − r|z|)
≤ c(‖ϕ′

r2‖∞ + r‖ϕ′
r‖∞(1 − r)−ε)

≤ c(‖ϕ‖(1 − r)α−1 + r‖ϕ‖(1 − r)−ε+α−1),
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whence ‖ϕ′
r2‖ε ≤ c‖ϕ‖(1−r)−1+α/2 (with a slightly different constant c > 0).

Condition (A4) follows (since Lip(T, ε) is a symmetric Banach algebra) with
a constant K4 of the order c/α where c > 0 a constant from the Hardy-
Littlewood equivalence. The latter also have an order 1/α (up to an absolute
constant), see the proof of Theorem 5.1 in [5]. The claim follows.

Conclusion. cn(δ, Lip(T, α)+) ≤ K
δ8 (0 < δ ≤ 1; n = 2, 3, . . .), where

the constant K has (at most) order max
(

1
α3 ,

1
1−α

)
, 0 < α < 1.

Indeed, we use Theorem 1.1, where G = Lip(T,α/2), K2 = K2(Lip(T,α) ⊂
Lip(T, α/2)) ≤ 2α/2 ≤ √

2, K3 ≤ 1 (see §3.4.5 above), K4 is of the order 1/α2,
and ‖P+‖Lip(T,α) is of the order max(1/α, 1/(1 − α)) (for the latter estimate
see [1] where the exact value for the norm of Hilbert transform H = 2P+ − I

is found ‖H‖Lip(T,α) = π−1B(α/2, (1 − α)/2), where B stands for the Euler
beta function).

As for the norm controlling constant c1(δ, Lip(T, α)), it can be bounded
obviously: δ ≤ |f | ≤ ‖f ‖α ≤ 1 implies

‖1/f ‖α ≤ δ−1 + sup
x �=y

|f (x) − f (y)|
|f (x)| · |f (y)| · |x − y|α ≤ 2δ−2,

so c1(δ, Lip(T, α)) ≤ 2δ−2, and the claim follows.
It should be mentioned that some good estimates for Bezout equations in

Lipschitz algebras were already obtained in [17] (with a better growth rate
O(1/δ2) as δ → 0, but with the use of quite special and complicated tech-
niques of M. Dzhrbashyan integral representations and with no control of the
numerical constants, which even may depend on n).

4.4. The Wiener-Dirichlet algebra

This algebra is useful in Toeplitz matrix/operator theory, see [15]. The Dirichlet
space D(T) is defined by

D(T) = F�2(Z, |n|1/2) =
{
f ∈ L1(T) : ‖f ‖2

D :=
∑
n∈Z

|n| · |f̂ (n)|2 < ∞
}
,

and the Wiener-Dirichlet algebra by

F = WD = W ∩ D(T),

equipped with the norm ‖f ‖ = ‖f ‖W + ‖f ‖D . A formula of J. Douglas [3]

‖f ‖2
D =

∫
T

∫
T

∣∣∣∣f (z1) − f (z2)

z1 − z2

∣∣∣∣
2

dm(z1) dm(z2)
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shows that F = WD really is a Banach algebra. Also, for f ∈ D(T)+ (holo-
morphically extended to the disc D), we obviously have

‖f ‖2
D = 1

π

∫
D

|f ′(x + iy)|2 dx dy.

Since ‖S∗‖WD+→WD+ ≤ 1, the algebra A = WD+ is a special case of the
backward stable algebras case from §4.1, and hence it satisfies (A1)–(A4)
with G = W , Kj = 1 (∀j ) and ‖P+‖ = 1.

However, using an (obviously) available estimate c1(δ, WD) ≤ c1(δ, W)+
1/δ2 ≤ (2δ2 − 1)−1 + 2 (for 1/

√
2 < δ ≤ 1) and Theorem 1.1, one can only

get
cn(δ, WD+) ≤ 2

(
(2δ4 − 1)−1 + 2

)2
(for 1/

4
√

2 < δ ≤ 1).

The claim follows. It is still unclear whether c1(δ, WD) can be infinite for a
δ > 0.

Remark 4.3. A Krein algebra K = L∞ D := L∞(T) ∩ D(T) is even
more interesting for Toeplitz analysis, and surely c1(δ, K) < ∞ for every δ,
0 < δ ≤ 1, but K is not symmetric in our definition (P+ is not bounded), and
so it does not enter in the above approach to Bezout equations.

Yet another algebra of a similar “mixed nature” is the Wiener-Lipschitz
algebra F = W ∩ Lip(T, α), 0 < α ≤ 1/2, endowed with the norm f �→
‖f ‖ = ‖f ‖W + ‖f ‖α (for 1/2 < α ≤ 1, it is known that F = Lip(T, α)) for
which the functions δ �→ cn(δ, F+) have a similar behaviour to those for the
above algebra WD+. Indeed, as is shown in §3.4.5, one has M(Lip(T, α)+) =
H∞, and hence ‖S∗n‖ ≤ 1 (on the space Lip(T, α)+, and so on F+); since
F ⊂ W , we get (A4) with G = W (in view of §4.1) and can apply Theorem 1.1
with Kj = 1 (∀j ), and the claim follows.

5. Proof of Theorem 1.1

The reasoning below represents a simplified form of the classical Uchiyama-
Wolff scheme for the proof of the Carleson corona theorem (see for ex-
ample [11], Appendix 3). However, the most technical arguments (duality
and Carleson measure) are omitted and replaced by direct Fourier computa-
tions. A similar modification is already used in [8], where the partial case
A = F�1(Z+, wn) is settled.

Let f = (fj )
n
1 ∈ An, 0 < δ ≤ |f (z)| ≤ ‖f ‖ ≤ 1 (z ∈ D) and F be a

(minimal) symmetric extension of A. We start recalling the Uchiyama-Wolff
scheme.

(1) An approximation: using (A2) and (A3), we reduce (in a standard way,
see for example [11]) the question for real analytic smooth data f , replacing
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given f by its Poisson means fr , then solving g(r) · fr = 1 with ‖g(r)‖An ≤ C

(as presented below) and finishing with Montel’s theorem and (A3) arguments.
From now on, fj are real analytic, 1 ≤ j ≤ n.
(2) Anti-symmetric matrix solutions: setting

hj (z) = fj (z)

|f (z)|2 , z ∈ D,

we have a real analytic (and hence, in F ) solution to our Bezout equation
h · f = ∑n

j=1 hjfj = 1, and to correct it up to a solution in A, we set
g = h + H , where H ∈ Fn and

∂h + ∂H = 0 and H · f = 0,

∂ = ∂
∂z

being the usual complex Cauchy-Riemann derivative. A computational

lemma of T. Wolff (see [11]) shows that ∂h + uf = 0, where u is an anti-
symmentic matrix

u = (ujk)1≤j,k≤n, ujk = hj∂hk − hk∂hj ,

having yet another expression (useful in what follows)

ujk = 1

|f |4
(
fjf

′
k − f

′
j f k

)
.

Thus, it remains to find an anti-symmetric matrix v = (vjk)1≤j,k≤n (vjk =
−vkj ) solving

∂v = u,

such that H := vf ∈ Fn. Indeed, in this case, g = h + vf ∈ Fn and

∂g = ∂h + ∂(vf ) = ∂h + (∂v)f = ∂h + uf = 0 (⇒ g ∈ (H∞)n),

so that g ∈ An, and since (vf ) · f = 0 (by anti-symmetry of v),

g · f = h · f + (vf ) · f = h · f = 1.

(3) A standard Cauchy integral solution: the equation ∂v = u (inD) having
a right-hand side real analytic on D, has a real analytic solution given by the
Cauchy-Green integral

v(z) = 1

π

∫
D

u(ζ )

z − ζ
dx dy, ζ = x + iy (z ∈ D),
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or – in an entry-by-entry form –

vjk = 1

π

∫
D

ujk(ζ )

z − ζ
dx dy.

Clearly, v is anti-symmetric (since ujk = −ukj ) and anti-analytic on T (the
complex conjugate v is in H∞

0 since z �→ 1
z−ζ

, |z| = 1, is (∀ζ ∈ D)).
(4) Bounding P+(vf ): we have a real analytic function g = h+ vf solving

g · f = 1 and satisfying ∂g = 0 in D, which implies g ∈ An and g = P+g =
P+h + P+(vf ), and hence

‖g‖An ≤ ‖P+h‖An + ‖P+(vf )‖An .

Since δ2 ≤ |f |2 ≤ ‖ |f |2‖F ≤ ‖f ‖Fn‖f ‖Fn = ‖f ‖2
An ≤ 1, we have

‖ |f |−2‖F ≤ c1(δ
2, F ) and

‖P+h‖An ≤ ‖P+‖F→F ‖f ‖ · ‖ |f |−2‖F ≤ c1(δ
2, F )‖P+‖F→F .

Next, setting Vkj = zvkj ,

‖P+(vf )‖2
An =

n∑
k=1

∥∥∥∥
n∑

j=1

P+(vkjfj )

∥∥∥∥
2

A

=
n∑

k=1

∥∥∥∥
n∑

j=1

(vkj )∗(S∗)fj

∥∥∥∥
2

A

≤
n∑

k=1

( n∑
j=1

‖S∗‖ · ‖(Vkj )∗(S∗)‖ · ‖fj‖A

)2

≤ ‖S∗‖2
n∑

k=1

( n∑
j=1

K3‖(Vkj )∗‖G · ‖fj‖A

)2

,

where ‖S∗‖ = ‖S∗‖A→A. Now, for |z| = 1,

Vkj (z) = 1

π

∫
D

zukj (ζ )

z − ζ
dx dy =

∑
�≥0

z−� 1

π

∫
D

ukj (ζ )ζ � dx dy

=
∑
�≥0

z−�2
∫ 1

0
(ukj )

∧
r (−�)r�+1 dr = 2

∫ 1

0
rP−((ukj )r ∗ Pr)(z) dr,

where ur(e
it ) = u(reit ) and P−

(∑
j∈Z ajz

j
) = ∑

j≤0 ajz
j . By the hypothesis

of Theorem 1.1, ‖P−‖G→G = ‖P+‖G→G = ‖P+‖G (for brevity) and

‖(Vkj )∗‖G = ‖Vkj‖G ≤ 2
∫ 1

0
‖P−((ukj )r ∗ Pr)‖G dr

≤ 2‖P+‖G

∫ 1

0
‖(ukj )r ∗ Pr‖G dr ≤ 2‖P+‖G

∫ 1

0
‖(ukj )r‖G dr,
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The definition of ukj and properties (A1)–(A2) of G and F imply

‖(ukj )r‖G ≤ ‖1/|fr |4‖G

(‖fj‖G‖(f ′
k)r‖G + ‖fk‖G‖(f ′

j )r‖G

)
≤ (K2‖1/|fr |2‖F )2

(
K2‖fj‖A‖(f ′

k)r‖G + K2‖fk‖A‖(f ′
j )r‖G

)
≤ (K2c1(δ

2, F ))2K2
(‖fj‖A‖(f ′

k)r‖G + ‖fk‖A‖(f ′
j )r‖G

)
.

Integrating and using (A4) we get

‖(Vkj )∗‖G ≤ 2‖P+‖GK3
2 c1(δ

2, F )2
(‖fj‖AK4‖fk‖A + ‖fk‖AK4‖fj‖A

)
,

so that

‖P+(vf )‖2
An ≤ K2

3 ‖S∗‖2
n∑

k=1

( n∑
j=1

‖(Vkj )∗‖G · ‖fj‖A

)2

≤ K2
3 ‖S∗‖2

n∑
k=1

(
2‖P+‖GK3

2 c1(δ
2, F )22K4‖fk‖A

)2
,

‖P+(vf )‖An ≤ 4‖S∗‖K3
2 K3K4‖P+‖Gc1(δ

2, F )2,

and hence

‖g‖An ≤ ‖P+h‖An + ‖P+(vf )‖An

≤ c1(δ
2, F )‖P+‖F + 4‖S∗‖K3

2 K3K4‖P+‖Gc1(δ
2, F )2

≤ (‖P+‖F + 4‖S∗‖K3
2 K3K4‖P+‖G

)
c1(δ

2, F )2,

and the claim follows.
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