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PRESENTATIONS OF RINGS WITH A CHAIN OF
SEMIDUALIZING MODULES

ENSIYEH AMANZADEH and MOHAMMAD T. DIBAEI*

Abstract

Inspired by Jorgensen et al., it is proved that if a Cohen-Macaulay local ring R with dualizing
module admits a suitable chain of semidualizing R-modules of length n, then R = Q/(I) +
-+ 4 I,) for some Gorenstein ring Q and ideals /1, ..., I, of Q; and, for each A C [n], the ring
Q/ (Z teA I[) has some interesting cohomological properties. This extends the result of Jorgensen
et al., and also of Foxby and Reiten.

1. Introduction

Throughout R is a commutative noetherian local ring. Foxby [4], Vascon-
celos [17] and Golod [8] independently initiated the study of semidualizing
modules. A finite (i.e. finitely generated) R-module C is called semidualizing
if the natural homothety map x%: R —> Homg(C, C) is an isomorphism and
Extil(C, C) = 0 (see [10, Definition 1.1]). Examples of semidualizing R-
modules include R itself and a dualizing R-module when one exists. The set
of all isomorphism classes of semidualizing R-modules is denoted by &, (R),
and the isomorphism class of a semidualizing R-module C is denoted [C]. The
set &y (R) has caught the attention of several authors; see, for example [6],
[3], [12] and [15]. In [3], Christensen and Sather-Wagstaff show that & (R)
is finite when R is Cohen-Macaulay and equicharacteristic. Then Nasseh and
Sather-Wagstaff, in [12], settle the general assertion that &y (R) is finite. Also,
in [15], Sather-Wagstaff studies the cardinality of &¢(R).

Each semidualizing R-module C gives rise to a notion of reflexivity for
finite R-modules. For instance, each finite projective R-module is totally
C-reflexive. For semidualizing R-modules C and B, we write [C] < [B]
whenever B is totally C-reflexive. In [7], Gerko defines chains in &y(R). A
chain in &y(R) is a sequence [C,] < --- < [Cy] < [Cy], and such a chain
has length n if [C;] # [C;], whenever i # j. In [15], Sather-Wagstaff uses
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the length of chains in &y(R) to provide a lower bound for the cardinality
of Gy(R).

It is well-known that a Cohen-Macaulay ring which is homomorphic image
of a Gorenstein local ring, admits a dualizing module (see [16, Theorem 3.9]).
Then Foxby [4] and Reiten [13], independently, prove the converse. Recently
Jorgensen et al. [11], characterize the Cohen-Macaulay local rings which admit
dualizing modules and non-trivial semidualizing modules (i.e. neither free nor
dualizing).

In this paper, we are interested in characterization of Cohen-Macaulay rings
R which admit a dualizing module and a certain chain in &y (R). We prove that,
when a Cohen-Macaulay ring R with dualizing module has a suitable chain
in &y(R) (see Definition 3.1) of length n, then there exist a Gorenstein ring
Q andideals I, ..., I, of Q suchthat R = Q/(I; + - - - + I,) and, for each
A C [n] = {1,...,n}, the ring Q/(ZZGA I[) has certain homological and
cohomological properties (see Theorem 3.9). Note that, this result gives the
result of Jorgensen et al. when n = 2 and the result of Foxby and Reiten in the
case n = 1. We prove a partial converse of Theorem 3.9 in Propositions 3.15
and 3.16.

2. Preliminaries
This section contains definitions and background material.

DEeFINITION 2.1 ([10, Definition 2.7] and [14, Theorem 5.2.3 and Definition
6.1.2]). Let C be a semidualizing R-module. A finite R-module M is totally
C-reflexive when it satisfies the following conditions:

(i) the natural homomorphism 51?,,: M — Homgz(Homg(M, C), C) is an
isomorphism, and
(i) Extz' (M, C) = 0 = Ext;' (Homg(M, C), C).
A totally R-reflexive is referred to as totally reflexive. The G¢-dimension of a
finite R-module M, denoted G¢-dimg (M), is defined as

there is an exact sequence of R-modules
0-G,—»--—>G,>Gy—>M—>04.

Ge-dimg (M) = inf{n >0
such that each G; is totally C-reflexive

REMARK 2.2 ([2, Theorem 6.1]). Let S be a Cohen-Macaulay local ring
equipped with a module-finite local ring homomorphism 7: R — S such that
R is Cohen-Macaulay. Assume that C is a semidualizing R-module. Then
Gce-dimg(S) < oo if and only if there exists an integer g > 0 such that
ExtiR (S,C) =0, foralli # g, and Extf;'e (S, €) is a semidualizing S-module.
When these conditions hold, one has g = G¢-dimz(S).



PRESENTATIONS OF RINGS WITH A CHAIN OF SEMIDUALIZING MODULES 163

DEFINITION 2.3 (The order < on &(R)). For [B], [C] € Gy(R), write
[C] < [B] when B is totally C-reflexive (see, e.g., [15]). This relation is
reflexive and antisymmetric [5, Lemma 3.2], but it is not known whether it is
transitive in general. Also, write [C] < [B] when [C] < [B] and [C] # [B].
For a semidualizing C, set

Gc(R) = {[B] € Go(R) | [C]1 < [B]}.

In the case D is a dualizing R-module, one has [D] < [B] for any semidual-
izing R-module B, by [9, (V.2.1)], and so & (R) = Gy(R).

If [C] < [B], then Homg (B, C) is a semidualizing and [C] < [Homg (B,
()] ([2, Theorem 2.11]). Moreover, if A is another semidualizing R-module
with [C] < [A], then [B] < [A] if and only if [Homg (A, C)] < [Homg(B,
O)] ([5, Proposition 3.9]).

THEOREM 2.4 ([7, Theorem 3.1]). Let B and C be two semidualizing R-
modules such that [C] < [B]. Assume that M is an R-module which is both
totally B-reflexive and totally C-reflexive, then the composition map

¢:Homg(M, B) ® g Homg (B, C) — Homz(M, C)

is an isomorphism.

COROLLARY 2.5 ([7, Corollary 3.3]). If [C,,] < --- < [Cy] K [Col is a
chain in &y (R), then one gets

C, = Cy ®g Hompg(Cy, Cy) ®¢ - - ®g Homg(C,,_1, C,).

Assume that [C,] < --- < [C1] <0 [Cyp] is a chain in &y (R). For each i €
[n], set B; = Homg(C;_1, C;). For each sequence of integers i = {iy, ..., i;}
withj > land1 <i; <--- < ij < n,set B = B,'l QR "®RB,‘].. (B{il} = B,'l
and set By = Cy.)

In order to facilitate the discussion, we list some results from [15]. We first
recall the following definition.

DEFINITION 2.6. Let C be a semidualizing R-module. The Auslander class
¢ (R) with respect to C is the class of all R-modules M satisfying the fol-
lowing conditions:

(1) the natural map yﬂ‘;;: M — Hompg(C, C ®g M) is an isomorphism,
(2) Tor® (C, M) = 0 = Ext;' (C, C ®g M).
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PROPOSITION 2.7. Assume that [C,] < --- < [Ci] < [Cy] is a chain in
®o(R) such that OS¢, (R) € G¢,(R) S --- € B¢, (R).

(1) [15, Lemma 4.3] Foreachi, pwith1 <i <i+ p <n,
By i1, ivpy = Homp(Ci_1, Ciyp).
) [15,Lemmad44]lf1 <i<j—1<n—1,then
By jy = Homg(Homg(B;, C;_1), C)).

(3) [15,Lemmad4.5] For each sequencei = {iy, ..., i;} < [n], the R-module
B; is a semidualizing.
4) [15,Lemma4.6] Ifi = {i\,...,i;} C [n]lands = {si, ..., s;} C [n]are
two sequences with s C 1, then [Bi] < [Bs] and Homg (Bs, Bi) = Bi\s.
(5) [15, Theorem 4.11] If i = {iy,...,i;} S [n]lands = {s1, ..., s;} € [n]
are two sequences, then the following conditions are equivalent:
(@) Bi € Ap (R),
(c) the R-module B; @g Bs is semidualizing,
d ins=4¢a.

At the end of this section we recall the definition of trivial extension ring.
Note that this notion is the main key in the proof of the converse of Sharp’s
result [16], which is given by Foxby [4] and Reiten [13].

DEeFINITION 2.8. For an R-module M, the trivial extension of R by M is the
ring R x M, described as follows. As an R-module, wehave Rx M = RO M.
The multiplication is defined by (r, m)(r', m’) = (rr’, rm’ + r'm). Note that
the composition R — R X M — R of the natural homomorphisms is the
identity map of R.

Note that, for a semidualizing R-module C, the trivial extension ring R x C
is a commutative noetherian local ring. If R is Cohen-Macaulay then R x C is
Cohen-Macaulay too. For more information about the trivial extension rings
one may see, e.g., [11, Section 2].

3. Results

This section is devoted to the main result, Theorem 3.9, which extends the
results of Jorgensen et al. [11, Theorem 3.2] and of Foxby [4] and Reiten [13].

For a semidualizing R-module C, set (—)TC = Homg(—, C). The follow-
ing notations are taken from [15].
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DerINITION 3.1. Let [C,] < -+ < [C{] < [Cp] be a chain in &y(R)
of length n. For each sequence of integers i = {iy,...,;} such that j > 0

and 1 < iy < ... <i;<nsetC=C, " " . (When j = 0, set
Ci=Cy=Cy)

We say that the above chain is suitable it Cy = R and C; is totally C,-
reflexive, for alli and r with i; <t < n.

Note that if [C,,] < --- < [Cq] < [R] is a suitable chain, then Cj is a
semidualizing R-module for each i C [n]. Also, for each sequence of integers
{x1,...,xp}withl < x; < -+ < x, < n, the sequence [C,, ] < --- <
[Cy,] < [R]is a suitable chain in & (R) of length m.

Sather-Wagstaff, in [15, Theorem 3.3], proves that if &, (R) admits a chain
[Ch] < --- < [C1] < [Co] such that G (R) € G¢,(R) € --- € B¢, (R),
then | (R)| = 2". Indeed, the classes [C;], which are parameterized by the
allowable sequences i, are precisely the 2" classes constructed in the proof
of [15, Theorem 3.3].

THEOREM 3.2 ([15, Theorem 4.7]). Let &y (R) admit a chain [C,] < --- <
[C1] < [Co] such that ¢, (R) € G¢,(R) € --- C B¢, (R). If Co = R,
then the R-modules Bj are precisely the 2" semidualizing modules constructed
in [15, Theorem 3.3].

REMARK 3.3. In Proposition 2.7 and Theorem 3.2, if we replace the as-
sumption of existence of a chain [C,,] <1 --- < [C1] < [Co] in Gy(R) such
that ¢, (R) € G¢,(R) € --- € B¢, (R) by the existence of a suitable chain,
then the assertions hold true as well.

The nextlemma and proposition give us sufficient tools to treat Theorem 3.9.

LEMMA 3.4. Assume that R admits a suitable chain [C,] < --- < [C1] <
[Col = [R] in &y(R). Then for any k € [n), there exists a suitable chain

[Ca]l Q-+ Q[Crqa] < [Cr] € [C:(Ck] <--- <9 [CZ_CS] < [CZ_Cﬁ] < [R] (D)

in &y(R) of length n.

T

PrOOF. Fori, j,0< j <i <k, as[C;] < [C;] one has [Cjck] <[C; “1.

As[Ci] # [C;rck], one gets [C;] < [Cjck] foreach#,k <t < n.Thus(l)isa
chain in & (R) of length n.

Next, we show that (1) is a suitable chain. For r,r € {0,1,...,n} and a
sequence {xi, ..., x,} of integers withr < x| < --- < x,; < ¢, repeated use



166 E. AMANZADEH AND M. T. DIBAEI

of Theorem 2.4 implies

Tr ~ T X T/\ T’
C/O=C ™M @rCr ™ @ ®r Cx, "
T . . .
Foreachr, 0 < r < k, set C, = C, “OIfi = {i1,...,ij} and u =
{u1, ..., us} are sequences of integers such that j,s > 0and 1 <i; <--- <
i1 <k<u <---<u; <n,then we set
TC’{I TC; Tcul ‘“TCu;
Ciu=C, ! .

When s = 0 (resp.,, j = Oor j = 0 = s), we have C;, = Cigy (resp.,
Ciu = Cyuor Ciy = Cyy = Cp).

/

Ter
By Proposition 2.7(4) and Remark 3.3, one has C,, L= = Homg (C?Ck,

Te Tor Ter Ter fe T
T) =, " andsoC, " ™ = Homg(C,," CTCk) ~C, " @rC Tck.

By proceeding in this way one obtains the followmg 1somorphlsm

T 1 T 3 -}-C[ cp s s
TC;] .“TC;_ C. - Rr C - Rr - Qpr Ci2 ', if j is even,
C, L= 2)

fo f ; foo o
o " g G, 7 @p - - ®r C; ", if jis odd.

Therefore, by Proposition 2.7(2) and Remark 3.3,

e, e
foefo _f 7L it jiseven,
‘ | feete e
Gy’ , if jis odd,
and thus
fo to tanta,
G , if j is even,
Ci,u =
te te, Taten-Tay
Gy’ , if j is odd.

Hence, by assumption, [C;] < [Cjy] for all ¢, t > u,. If s = 0, then G, =

Tc’ - Tc’
Cig=C, K
On the other hand foreach £, 1 < £ < ij, we have

T ~ Tci_ Tci-,l T i T i
Cng:CZ J ®Rcij ' ®R'“®RC1~3C2 ®RCiZC1 ®RCICk.
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Thus, by Proposition 2.7(4) and (2), [CZCk] < [Cj ul- Hence the chain (1) is

suitable.
REMARK 3.5. Let R be Cohen-Macaulay and [C,] < --- < [C] < [Cy]
be a suitable chain in &y(R). For any k, 1 < k < n,set Ry = R X C,:r_ck1 the

trivial extension of R by C,ZL_C’i Then Ry is totally CZ “_reflexive and totally
C;-reflexive R-module forall £, ¢ with 1 < ¢ < k <t < n. Set

HomR(Rk,CZfLL,), if0<e<k—1,
Homg (R, Ces1),  ifk—1<e<n—1.

c =

Then, by Remark 2.2, Cék) is a semidualizing R;-module for all £, 0 < £ <
n—1.

PROPOSITION 3.6. Under the hypotheses of Remark 3.5, forallk, 1 < k < n,
[C2 < <GP <R

is a suitable chain in &y(Ry) of length n — 1.

PrOOF. Letk € [n]. Forintegersa, b witha # band0 < a,b <n—1,we
observe that [CF] # [C ,(,k)]. Indeed, we consider the three cases 0 < a, b <
k—1,0<a <k—1<b<<n—1,andk—1 < a,b < n—1. Weonly discuss the
first case. The other cases are treated in a similar way. For 0 < a,b < k — 1,

if [C®] = [CF], then Homg(Ry, CZ_Cﬁ_a) = Homg (R, CZ_C‘i_b) and so
Homg, (R, Homg (R, c,j_cg_a)) = Homg, (R, Homg (R, ijg_b)). Thus, by

adjointness, C,:r_c’i_a = Ck_C’i_ »» which contradicts with (1) in Lemma 3.4.
In order to proceed with the proof, for an Ri-module M, we invent the

k
symbol (—)TM = Homg, (—, M). Note that, for R,-modules My, ..., M;, we
have
ko oak k k Tk -}-]/(\4: Tk Tk Tk
(_).*_Ml TMZ'“TM; — <<((_)TM1) MZ) ) = Homg, ((—) My Ty Ty | Mt).
For two sequences of integers p = {py, ..., p,}andq = {qy, . .., g5} such

thatr,s >20andO0O < py <---<p, <k—1<qg <---<q, <n—1,set

k k k k
cw _ plew-TepTey-Tap
pa Tk )
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Therefore one gets the following R-module isomorphisms

C¥, = Homg, (... Homg, (Hompg, (

.. Hompg, (R, C)....CP), c ... c)

= Homg(...Homz(Homg(

Tc Tc
HOmR(Rk, k [71) ) k ) qu-‘rl) q:+1)
Rh‘iqf,}l ”'Tcl/c—lfpr TC’/lJrl'..TC41x+1 ® RTCIL—I-*-CL—I*M "'TCLH;V TC’/lJrl'"TC‘Ierl
= Ci,u ® Ci’,lh

wherei = {k—1—pi,....k—1—p ), i = k=1, k—1—p1,....k—1—p,},

u={q+1,....,q9,+1},C, = Cjck, forall0 < € < k, and Cjy and Cy 4
are as in the proof of Lemma 3.4.

As [Ci41] D [Ciuland [Cr11] < [Cy ] in Go(R) forallz, g, <t <n—1,
one gets [C(k)] [C(k)] in Gy(Ry), by [2, Theorem 6.5]. When s = 0 we
have C®) = C\) = Cip @ Cy . By Lemma 3.4, forall m, p, <m <k — 1,

p.Y —
one has [CZ_l_m] < [Ciy] and [C,jf’;_m] < [Cy.p] in Go(R). Thus, by [2,

Theorem 6.5], one gets [CH] < [Cl(,lfé] in ®o(Ry). Hence [CV)] <1 -+ <
[Cl(k)] <1 [Ry] is a suitable chain in &y (Ry) of length n — 1.

To state our main result, we recall the definitions of Tate homology and Tate
cohomology (see [1] and [11] for more details).

DEFINITI%N 3.7. nLet M be a finite R-module. A Tate resolution of M is a
diagram T — P — M, where 7 is an R-projective resolution of M, T is an
exact complex of projectives such that Homg (7', R) is exact, @ is a morphism,
and 9; is isomorphism for all i > 0.

By [1, Theorem 3.1], a finite R-module has finite G-dimension if and only
if it admits a Tate resolution.

DEFINITION 3.8. Let M be a finite R-module of finite G-dimension, and

let T -2 P =5 M be a Tate resolution of M. For each integer i and each
R-module N, the ith Tate homology and Tate cohomology modules are

Tor; (M, N) = Hi(T ®& N), Exty(M, N) = H_;(Homg(T, N)).

THEOREM 3.9. Let R be a Cohen-Macaulay ring with a dualizing module D.
Assume that R admits a suitable chain [C,] < --- < [Ci] < [R]in &y(R) and
that C, = D. Then there exist a Gorenstein local ring Q and ideals I, . . ., I,
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of Q, which satisfy the conditions below. In this situation, for each A C [n],
set Rn = Q/ (X cp 1), in particular R, = Q.
(1) There is a ring isomorphism R = Q /(I + - - - + I,).
(2) For each A C [n] with A # @, the ring R, is non-Gorenstein Cohen-
Macaulay with a dualizing module.
(3) Foreach A C [n] with A # @, we have (Y, I = [1pen 1o
(4) For subsets A, I of [n] with ' C A, we have G-dimg. Ry = 0, and
Hompg. (R, Rr) is a non-free semidualizing R -module.

(5) For subsets A, T" of [n] with A # I', the module Homg,..(RA, Rr) is
not cyclic and

Exty. (Ra, Rr) =0 = TorS}" (Ra, Rr).
(6) For subsets A, T of [n] with |[A\ T'| = 1, we have
Exty, , (Ra. Rr) =0 = Tor; " (Ry, Rr)

foralli € 7.

The ring Q is constructed as an iterated trivial extension of R. As an R-
module, it has the form Q = @ig[n] B;. The details are contained in the
following construction.

CoNsTRUCTION 3.10. We construct the ring Q by induction on n. We claim
that the ring @, as an R-module, has the form Q = @ig[n] B; and the ring
structure on it is as follows: for two elements (¢i)icp,) and (6;)icin; of O,

(@ici (Gici = (0i)icin, where oj= Y oy - fy.

vCi
w=i\v

Forn = 1,set Q = Rx Cyand I, = 0@ Cy, which is the result of Foxby [4]
and Reiten [13]. The casen = 21is proved by Jorgensenetal. [11, Theorem 3.2].

They proved that the extension ring Q has the form Q = R@C, & C chz & Cy
as an R-module (i.e. Q = By @ B; @ B, ® By 2)). Also the ring structure on
Qis given by (r,c, f,d)(r',c, f',d) = (r',rc’ +7v'e,rf  + ¥ f, f'(c) +
f(c)+rd +r'd). Theideal I, ¢ = 1,2, has the form I, = 00 0@ B, @ By .

Let n > 2. Take an element k € [n]. By Proposition 3.6, the ring R, =

R x c,jfk1 has the suitable chain [C™”,] <1 -+ < [C] <1 [Re] in Go(Ry) of

length n — 1. Note that C,(l]i)l = Hompg (R, C,) = Homg(Ry, D) is adualizing
R;-module.
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We set Bl.(k) = Hompg, (Ci(]i)l, Ci(k)), i =1,...,n— 1. For two sequences
p=1{pi,,....pr1,4=1{q1,...,qs}suchthatr,s > land 1 < p; < --- <
pr<k—1<q <---<qs <n—1,weset

Byy = B, ®r, -+ ®x, B, ®r By @k - ®r By, (3)
and
(k) k k (k) k k
By =B, ®r - ®r By, By =B ® @ By,
and

® _ o® _
By =C = Ry.

By applying the induction hypothesis on Ry, there is an extension ring, say
Oy, which is Gorenstein local and, as an R,-module, has the form

o= @ 8

pc&il,...k=2}
qc{k—1,...n—1}

Moreover, the ring structure on Qy is as follows: for ¢ = (¢p ¢) pcil,...k—2},
qC{k—1,...n—1}

and ¢ = (¢p.q)pc(l,...k—2}, q<fk—1,...n—1} Of Ok

¢ =Y = (¥pgpc(l,...k-2}, qStk—1,...n—1}>
where Ypq= D dab-Pea 4

acp,bcq
c=p\a
d=q\b
For each p, q, Proposition 2.7(2), Remark 3.3 and (3) imply the following
R-module isomorphism

B® = L o 5)
B k=p,....k=pr.gr+1,.qs+1} @ Blik—p,,..k—pikgat1,....q,+1)-

Therefore one gets an R-module isomorphism Qy = P;c(,; Bi- Set O = Q.
Assumethatp,p’ € {1,...,k—2}andq,q C {k—1,...,n—1}aresuch
thatpNp’ = @ and qNq’ = @. By Proposition 2.7(5) and Remark 3.3, the R-

(k) k) : s (k) k) __ pk)
module By'y ®g, B, o is a semidualizing and so By ®r, By ¢ = By quq'-
If ¢ppq € BYy and @y g € B;()]’(,)q” then by the isomorphism (5), one has

®p.q = (Bp.g> Vp.o) and ¢p g = (Bp.q'» Yp.q), SO that

P Po.a = Bpa Pp.as Ppa Yw.a + By.a Voa)-
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Thus by means of the ring structure on Qy, (4), one can see that the resulting
ring structure on Q is as claimed.
The next step is to introduce the ideals Iy, ..., I,,. We set

I(Z:(O@@O)EB<® Bi>, 1<l <n,
~———

on—1 iC[n], lei

which is an ideal of Q. Also we have the following sequence of R-isomorph-
isms which preserve ring isomorphisms:

Q/(11+---+1n)=(@Bi)/(ioe--@m@( @ 5))

icinl =1 icln], tei
iC[n] iC[n],i#0
= R.

Note that each ideal I ,, 1 < € < n — 1, of Q4 has the form I, =
0 ®0)B(P;cpuq BYy)- Then, by (5), one has the following R-module

on=2
isomorphism

Ly, f1<E<k—1,
Ly = '
Ig+1, 1fk<€<n—1.

Also, by means of the ring isomorphism Q; — @, we have the natural cor-
respondence between ideals:

Li—,, if1
Iy, ifk

k—1,

correspond
Ik,i <> { |

Se<k-—
<LeL<n—

Therefore for each A C [n]\ {k}, there is a ring isomorphism Q/(Z{GA Ie) ~
Ok/(Xpen Ik.t), for some A’ C [n — 1].

The proof of Theorem 3.9, which is inspired by the proof of [11, The-
orem 3.2], is rather technical and needs some preparatory lemmas.

LEMMA 3.11. Assume that A C [n]. Under the hypothesis of Theorem 3.9,
ifn]\ A = {b,...,b} with1 < by < -+ < by < n, then there is an
R-isomorphism
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which induces a ring structure on R, as follows: for elements (ai)ic(p,..... b

(@icpr,...b)y Oicipi,...b) = (ODicipy,..b),  Where o = Z oy - Oy.

vCi
w=i\v

ProOOF. We prove by induction on n. The case n = 1 is clear. The case
n = 2 is proved in [11]. Assume that n > 2 and the assertion holds true for
n—1.

If A = [n], there is nothing to prove. Suppose that |A| < n — 1 then there
exists k € [n] suchthat A C [r]\ {k}. Thus, by Construction 3.10, there exists
asubset A’ of [n — 1] such that Ry = Qi /(3 ,car Ix,¢) as ring isomorphism.

Notethat |[[n—1]\A'| =t—1.Set[n—1\A'={dy, ..., d,, dys1,...,di_1}
suchthatl <d; <---<d, <k—landk—1<dy11 <---<di1 <n—1.
Then by induction there exists an R;-isomorphism

QU(ZIH)z h BY

ten’ pCidi,....dy}
qg{dtx+l ..... d,‘,l}

Proceeding as Construction 3.10, there is an R-isomorphism

(@ =m)=( D a)
pCidi,....dy}

ic{by,....b;}
QS{dut1,..di_1}

Therefore one has an R-isomorphism Ry = Py,
struction 3.10, R, has the desired ring structure.

b,y Bi- Similar to Con-

,,,,,

LEMMA 3.12. Under the hypothesis of Theorem 3.9, if ' C A C [n], we
have Extir1 (Ra, Rr) = 0 and Hompg.(Rx, Rr) is a non-free semidualizing
R p-module.

PrOOF. The case n = 1 is clear and the case n = 2 is proved in [11,
Lemma 3.8]. Let n > 2 and suppose that the assertion is settled for n — 1.
First assume that A = [n]. Set [n]\ [ ={ay,...,a;}withl <a; <--- <

a; < n. By Lemma 3.11, Rp = @ig{
Remark 3.3, [ By,

arots) B;. By Proposition 2.7(4) and
a,}] < [Bil and Homg (Bi, Byq,.....a,) = Bia,....a,i» for all

..........

yeeey
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i C{a,...,as}). Therefore there are R-isomorphisms

HomR(RF,B{alw_,aS});HomR( & Bi,B{al,m,aS}>

iC{ai,....as}

EB B; = Ry

12

and, foralli > 1,
Exth(Rr, Ba,....q) = Ext"R( P s B{alwax}) =0.
ic{al Jas}

Let E be an injective resolution of By, . 4.} as an R-module. Thus Homg (Rr,
E) is an injective resolution of Rr as an Rr-module. Note that the composition
of natural homomorphisms R — R — R is the identity idg. Therefore

Hompg (R, Homg(Rr, E)) = Homg (R ®g. Rr, E) = Homz(R,E) = E.

Hence ; o i
ExtRr (R, Rr) = H' (Homg,. (R, Homg(Rr, E)))

= H'(E)
0, ifi >0,
h B{ll] ..... as}s ifi =0.

As{ay, ..., as} # ¥, the R-module By,,, 4, is a non-free semidualizing.
Now assume that |[A| < n — 1. There exist k € [n], and subsets "', A’
of [n — 1] such that there are R-isomorphisms and ring isomorphisms Rp =

O/ (X per Ixe) and Ry = Or/(Xpcnr Ikt), where Oy and I, are as in
Construction 3.10. By induction we have

E)(t"Rr (Ra, Rr) = EXtiQk/(ZZEF’ ) (Qk/(Z Ik,z), Qk/<2 Ik,[)) =0

leN Lel”
foralli > 1, and
Homg, (Ra, Rr) = Homg, (s, 1) (Qk/(Z Ik,z>, Qk/(z Ik,e))
leN Lel”

is a non-free semidualizing Qy/ (Z ven Ik, g)—module. Then Hompg. (Ra, Rr)
is a non-free semidualizing R, -module.
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LEMMA 3.13. Under the hypothesis of Theorem 3.9, if A and T" are two
subsets of [n], then Torg’l‘Ur (Ra, Rr) = 0. Moreover, there is an Rx-algebra
isomorphism Ry ®g, . Rr = Ranr.

PrOOF. We prove by induction. If n = 1, there is nothing to prove. The case
n = 2isprovedin [11, Lemma 3.9]. Let n > 2 and suppose that the assertion
holds true forn—1. Firstassume that AUT" = [n]andset[n]\A = {by, ..., b},
[2I\T = {ay,...,a;}. Then [n]\ (ANT) = {by,...,bs,ay,...,a}. By
Lemma 3.11, Ry = ®ig{b1 ..... by Bi and Rr = @ug{a, ..... o) Bu-

As {by,....b}N{ay,...,a;} = @, foreachi C {b;,...,b;} and u C
{ai, ..., as}, by Proposition 2.7(5) and Remark 3.3, one has B; € &/, (R) and
SO Torgl(Bi, B,) = 0. Hence Tor’;l(RA, Rr) =0.

By Proposition 2.7(5) and Remark 3.3, the R-module B; ® B, is semi-
dualizing and so B; ® g By = Bjuu- Therefore one has the natural R-module
isomorphism

n: Ry ®r Rr —> Ranr,

It is routine to check that 7 is also a ring isomorphism.
On the other hand the natural maps

{:Ra — Ry ®r Rr,  C((@icip,..b) = @icip,..50 ® Owluciar....a)

.....

and
&Ry = Ranrs  €((@icipr...n)) = (XWVlaras b}
where
. 0, ifu#4, ay, ifvniay,...,a,} =9,
Oy = { and Xv =
1, ifu=4¢, 0, ifvnias,...,a) # %,

are ring homomorphisms. Itis easy to check thatn¢ = €. Hence Ry ®g Rr SN
Ranr is an R -algebra isomorphism.

Now let A UT" C [n], then, by Construction 3.10, there exist k € [n] and
A',T" C [n — 1] such that there are R-isomorphisms and ring isomorphisms

Ry = Qk/(z Ik,z>, Rp = Qk/(z Ik,g>,

LeN Lel”

Raur = Qk/( Z Ik,z> and  Rpnr = Qk/( Z Ik,Z)-

LeAN'UIT LeA'NI
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Thus, by induction, for all i > 1

Tor/*" (R, Rr) = Torl.Qk/(ZZEA'“F/ o) (Qk/(Z Ik,Z)’ Qk/(Z Ik,/é))

ten el
=0

and there is a Qk/(ZZeA’ Ik,g)—algebra isomorphism, and so R, -algebra iso-
morphism, as follows:

RA ®RAUF RF = Qk/(z Ikl) ®Qk/(2ze/\’ur’ Ik-K) Qk/(Z Ik’g)

LeN el

;Qk/( > IH)

LeA'NIT

~
= Ranr.

LEMMA 3.14. Under the hypothesis of Theorem 3.9, if A and T" are two
subsets of [n), then Torg’l‘ (Raur, Ranr) = 0. Moreover, there is an Rpnr-
module isomorphism Raur ®r, Ranr = Rr.

Proor. It is proved by induction on n. If n = 1, there is nothing to prove.
The case n = 2 is proved in [11, Lemma 3.11]. Let n > 2 and suppose that
the assertion holds true for n — 1.

First assume that A UT" = [n]. Let P be an R-projective resolution of
Rr. Lemma 3.13 implies that Ry ® P is an R,-projective resolution of
RA ®g Rr = Ranr. One has the following natural isomorphisms

R®g, (RA\ ®rP) = (R®g, RA)QRP=RQrP=P
and then, foralli > 1,
Tor;" (R, Ranr) = Hi(R ®&, (Ra ®r P)) = H;(P) = 0.

Set [n]\ A = {by,....,b}and [n]\ [ = {ay,...,a;}. Then [n] \ (A N

I')=1{by,...,b;ai,...,as}. Consider the R-module isomorphism &: R —
R ®Rr, Ranr which is the composition

Rr —> R®g Rr —> R Qr, (RA ®r Rr) %@f R ®r, Ranr
given by

(Buwuciar,...a;) = 1 ® Buwuciay,...a) = 1 @ [(@icip,....51 @ Bulucia,....a,)]

> 1® ()"v)vg{al,4..,ax,b1,...,h,}»
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where
0, ifi#4, Oy, ifvNiby,...,b} =40,

diz{ and )\.v=
1, ifi=40, 0, ifvNn{by,..., b} #0.

We claim that £ is an Rxnr-module isomorphism.

PROOF OF THE CLAIM. The Rj~r-module structure of R, which is given
via the natural surjection Rynr — R, is described as

(Wveiar,....as.br.bi) Ouluciar,...a) = Yaduciar.....a.) Ouluciar,....a.)»

where (Vy)vcia,.....a,.b1....5,) 15 an element of Ronqr. In the following we check
that

%—((Vv)vg{al,‘.‘,as,hl,...,b,}(eu)ug{al ..... ax})
= (Wvlaras it} [E (Cwuciar...a) |-

Note that

E(Wvetarmacbr) Owluclay...a)) = §((ucar,...a) Ouducia....a.))
= 5((Uu)u§{a1 ..... a.‘})
=1 ® (Mv)vg{al,...,ax,hl,.“,b,}v

where (Gu)ug{al ..... a,) = (Vu)ug{al ..... ax}(gu)ug{al ..... as) and

oy, ifvN{by,....b} =0,
0 ifvN{by,...,b} #0.

My =

On the other hand

(Wvciar,asbr,bi} [§ ((Bwuciar....a.)) ]
= (Wvclar,as.brrb} [T @ Ayvciay..oay by onntr)]
=1Q® [(Wvciar,...asb1,...by A Ivclar,....as b, b} ]
= 1® (ov)vciar,...a,.br,. by}
= [1 ® (Uy)vciar....apby....b}] T [1 ® 8],

where 6 = (8v)vcya,,....a,.b1,....5,) With

0, ifvni{by,...,b} =409,
Sy =
oy, ifvni{by,...,b} #0.
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It is enough to show that 1 ® § = 0. To this end, we have

1®6= > L ®8(W),

wClai,....as,by,....b;}
wN{by,....b:}#0

where §(W) = (§(W)y)vc(ay,...a,.b1,....b,} With

0, ifv#w,
Ow, Ifv=w.
Foreachw, thereexistw’ C {by, ..., b;}andw’ C {ay, ..., a,} withw'Uw” =
ow

w. Thus By ®r By = By, and there exist §,, € By and 8, € By such that
Sw = pw(8y, ® 3y).

Seta(w) = (a(w)i)igblwb’}, where

{0, ifi £ w,
a(w); =

8y, ifi=w.

As the Rj-module structure on R is given via the natural surjection Ry — R,

.....

have la(w) = 0. Set B(W) = (B(W)v)vcia,,...a,.b1,....5,}» Where

0, ifv#w,

Vi . —/
Oy, fv=w"

IB(W)V = {

Note that 8(w) is an element of Rxnr and §(w) = a(w)B(w). Then

1@8=) 108w =) 1®aWpW)]
= llaW]®BW) =) 0@ p(W) =0.

Therefore the claim is proved and also the assertion holds in the case AUT" =
[r2].

We treat the case A UT" C [n] by induction and its details are similar to the
proof of Lemma 3.13.

PrOOF OF THEOREM 3.9. (1) is proved in Construction 3.10.

(2) is proved by induction on n. The case n = 1 is clear from the assump-
tions. Let n > 1 and suppose the claim is settled for n — 1. If A = [n],
then Ry = R and is Cohen-Macaulay with the dualizing module D and is
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not Gorenstein. Let A C [n]. There exists k € [r] such that A C [n] \ {k}.
By Construction 3.10, there exists a subset A’ # @ of [n — 1] such that
Ra = Ok/ (X sen Ik.e) as ring isomorphism. Thus, by induction, R, is non-
Gorenstein Cohen-Macaulay ring with dualizing module.

(3). Ttis clear that [ [, e € (ycp Le- Let @ = (@)icia) be an element of
ﬂee/\ I;. Then, by Construction 3.10, o; = O for all i C [n] with A Q i. We
have o = } ) <y, @(V), where a(V) = (a(V)i)icp With

0, ifi#v,
a(v); = .
oy ifi=v.
Set A ={ay,...,ay,}. If v C [n]issuchthat A C v, thenv = {a1} U {ap} U
"‘U{amfl}U(V\{a],...,amfl}).ThuS
®

By = Bia)y ®r -+ ®r Bia, 1} ®r Bway,....a,1}-

Therefore there exist 0y, € Bw{a,,...a,,) and Oy, € By, 1 < 17 < m,
such that ay = ®(0y,1 @ -+ ® Oy m—1 ® Oym). Set (v, 1) = (@(V, r)iicial»
1 <r <m,where, forl <r <m,

0, ifi#{a),
¢(V”’)‘:
ey, ifi={a)
and 0, ifiFEV\{an....an 1),
(p(V,m)i= .
6V,m7 lfl:V\{ah"'?am—l}'

Notethato(v,r) € I, ,1 <r <m.Hencep(v,1)...p(v,m—1)p(v,m) €
[Teca Ie- Onthe otherhand (v, 1) ... ¢(v, m — 1)e(v, m) = a(v). Thus a(v)
is an element of [ [,., Iy and so « € [, Le-

(4) follows from by Remark 2.2 and Lemma 3.12.

(5). Let P be a projective resolution of Rr over R, . Lemma 3.14 implies
that the complex P ®g, Ranr is a Rynr-projective resolution of Raur ®g,
Ranr = Rr. From the isomorphisms

(P ®r, Rarr) ®ryr RA =P Qpr, RA =P
one gets
Torf* ™ (Rr, Rp) = H; (P ®g, Rarr) ®r, Ra) = Hi(P) = 0.

for all i > 1. There is a natural isomorphism Rj ®g,.. Rr = Raur which is
both an Rpnr- and an Rp-isomorphism.
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Let P’ be an Rqr-projective resolution of R,. As seen in the above,
P’ @k, Rr is a projective resolution of Ryyr over Rr. Therefore we have

Exty, . (Ra, Rr) = H'(Homg, . (P, Rr))
=~ H' (Homg, (P’ ®x,.. Rr, Rr))
= Exty, (Raur. Rr),
foralli > 0. By (4), G-dimg,. Raur = 0, and so one gets Extiimr (RA, Ryr) =

0. Also, by (4), Hompg.(Raur, Rr) is a non-free semidualizing Rur-module
and thus Hompg, .. (RA, Rr) is not cyclic.

(6). As Ranr = Q/(Zzezml" 14) and
RA — Q/(ZIZ) = RAQ[‘/(ZI(/( Z I[))a
leA e LeANT”
one has the natural isomorphism
k:Homg, .(Ra, Ranr) —> (0 “Ranr Zl€/< Z Ie))’
e Le ANl
k() = Y (a), where & = (&)iciapa With
) { 0, ifi#0,
o =
1, ifi=90,

is the identity element of R, .
Next we show that

(0neXn/( X n))=xr/( T 1)

Set A\T" = {a}. Let y = (¥i)icap\anr be an element of

(00 X0 /(2 1))

Ify ¢ Y cnle/(Xgeanr Ie), then there exists v € [n] \ ANT such that
a ¢ vand yy # 0. Set M = Ryy, which is a non-zero submodule of By. As B,
is a semidualizing R-module and M # 0, we have B, @ g M # 0. Thus there
exists an element e of B, such that e ® yy # 0. Set 6 = (6;)ic(u)\anr, Where

{o, ifi # {a},
6 =

e, ifi=/{a}.
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Note that 6 is an element of ", I¢/(Y_scanr I¢) and y6 5 0, which con-
tradicts with y € (0 :r,r Ygen Ie/(Xieanr Ie))- Therefore

(0ne Xn /(X n)) /(T 1)

On the other hand },c 1/ (X sennr 1e) € (0 iruer 2open Te/(Xeanr 1e))-
Indeed, if o = ()icppanr and o' = (&))icppanr are two elements of

D ven Il/(ZzeAmr Ig), then o = 0 = o for all i such that a ¢ i. Hence,
by Lemma 3.11, ¢e’ = 0. Thus

e Homg, . (Ra, Ranr) — D 1o / ( > 1@>, kW) =y@ (6
teANT

LeA

is an Rnr-isomorphism.

By (4), G-dimg,.. Ry = 0. Let F be a minimal free resolution of Rx
over Ranr. Note that >, s 1e/(3scanr Ie) is the first syzygy of R, in F.
By [1, Construction 3.6] and (6), we can construct a Tate resolution of R, as
T — F — Rj, where T construct by splicing F with Homg, . (F, Ranr).
Hence T = Homg, (T, Ranr). This explains the first isomorphism in the
next sequence

—~R
Tor; “" (Rp, Rr) = H;(T ®g,, Rr)
=H; (HomRAm- (T, Ranr) ®@Ruor RF)
= H; (Homg, (T, Rr))
= ER;AW (Ra, Rr),
foralli € Z. As each Rynr-module T; is finite and free, the second isomorph-

ism follows.
By (4), G-dimg, . Ry = 0 and so, by [1, Theorem 5.2], one has

Tor, *™" (R, Rr) = Tor® (R, Rr)
and E)?[iRAm‘(RA, Rr) ZExty  (Ra, Rr), (8)
for all i > 1. Thus, by (7), (8) and (5), one gets
Extyp. (R, Rr) = Tor, " (Ra, Rr) = Torf™ (R, Rr) = 0,

—~ R i o
Tor ;" (R, Rr) = Extg (R, Rr) = Exty, (Ra, Rr) =0,
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for alli > 1. Therefore, by (7), to complete the proof it is enough to show that
E;%mr (RA, Rr) =0.As E;;}w (Ra, Rr) = 0and R, is totally reflexive as
an Rj~r-module one has, by [1, Lemma 5.8], the exact sequence
0 — Homg,, (Ra. Racr) ®k,r Rr —> Homg, (Ry. Rr)

—> Exty, (Ra, Rr) > 0, (9)

where the map v is given by

vy ®0) =v,, ¥, (a) =P@)b.

In a similar way to (6), one gets the natural isomorphism t: Homg. (Raur, Rr)

—> Y penur Le/ (X e 1) given by t(¥) = ¥ (), where ¢ is the identity
element of Rayr. It is straightforward to show that the following diagram
commutes:

Homg, . (Ra, Ranr) ®r, Rr ——> Homg, .(Ra, Rr)

K®R1l; fl;

Dven 1t/ (X rennr 1e) ®ryor Rr Hompg (Raur, Rr)
gl% rl;
Ia/(ZZGF Ia]ﬁ) f ZZEAUF Iﬁ/(ZzGr I‘i)

where the maps f, g and & are natural isomorphisms. Hence v is surjective
and (9) implies that Exty__ (R, Rr) = 0.

The following results give a partial converse to Theorem 3.9. Note that
Proposition 3.16 is a generalization of the result of Jorgensen et al. [11, The-
orem 3.1].

PROPOSITION 3.15. Let R be a Cohen-Macaulay ring. Assume that there exist
a Gorenstein local ring Q and ideals 1y, ..., I, of Q satisfying the following
conditions:

(1) there is a ring isomorphism R = Q/(I; + --- + I,),
(2) thering Ry = Q/(I; + - - - + I) is Cohen-Macaulay for all k € [n],
(3) fdg,(Ry) < oo forallk € [n]and all 1 < j <k,

(4) foreach k € [n]and all0 < j <k, Illgi (1) # telllgj (t) for any integer e,
(Ro = Q).
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Then there exist integers go, g1, - - - , 8n—1 Such that
[Ext(R, Q)] < [Ext (R, R)] < -+ < [Ext4~ (R, R,_1)] < [R]

is a chain in &y(R) of length n.

PrOOF. We prove by induction. For n = 1, it is clear that EX'[Z)(R, Q) is
a dualizing R-module for some integer g¢. It will be shown in following that
condition (4) implies [Ext‘g’(R, 0)] < [R].Letn = 2. As fdg, (R) < 0o, one
has G-dimg, (R) < oc. Then, by Remark 2.2, there exists an integer g; such
thatExt’kl (R, Ry) =0foralli # gyandC, = Ext‘};‘l (R, Ry)isasemidualizing
R-module. Therefore there is an isomorphism C; >~ X8 RHomg, (R, R}) in
the derived category D(R). Thus, by [2, (1.7.8)], Igl ) = t‘gllllgl‘ (t). Also
there exists an integer go such that ExtiQ(R, Q) = O0foralli # gy and
D = Extg’ (R, Q) is adualizing R-module and then D >~ 3% RHomg (R, Q)
in D(R). Assumption (4) implies that C; is a non-trivial semidualizing R-
module and so [D] <1 [C1] < [R] is a chain in &y(R) of length 2.

Let n > 2 and suppose that the assertion holds true for n — 1. By induction
there exist integers ho, hy, ..., h,— such that

[Exty (Ry—1, Q)] <1 [Exty (Ry_1, R1)] <
co < Bt (Ryzr, Ri2)] < [Rymy] (10)

is a chain in &y(R,_1) of length n — 1. (In fact, there is an isomorphism
Extl;gi (Ry_1, R}) =~ Xhi RHomg, (R,—1, R;)inD(R,_y),forall0 <i < n-2.)

As fdg,(R) < oo, one has G-dimg, (R) < oo, for all k£ € [r], and so,
by Remark 2.2, there exists an integer g, such that Ext’IRk (R, Ry) = 0, for
all i # g, and C, = Ext% (R, Ry) is a semidualizing R-module. We have
Cr >~ X% RHompg, (R, Ry) in D(R). Also there exists an integer go such that
ExtiQ(R, Q) =0,foralli # gg,and D = Ext‘g(R, Q) is a dualizing for R
and so D >~ % RHomg (R, Q) in D(R). Note that there is an isomorphism
RHompg, (R, Ry) ~ RHompg, (R, RHompg, (R,—1, Rx)), 0 < k < n—1,
in D(R), and R is a finite R,_;-module with fdg ,(R) < oo. Thus, by [5,
Theorem 5.7] and (10), one obtains [Ext}; ' (R, Ri—1)] < [Extf (R, Ry)], for
all1 <k <n-—1.By|[2,(1.7.8)], ng(t) = t*gklgi(t) foralll <k<<n-—1
and Ig(t) = t‘gOIg(t). Therefore, by condition (4), [Extif‘k’_‘l(R, Ri-1)] <
[Ext (R, R)] forall 1 <k <n—1,and [Ext}™" (R, R,—1)] < [R]. Hence

[Ext$ (R, Q)] < [Ext§ (R, R))] < -~ < [Ext}y ™ (R, Ry_1)] < [R]

is a chain in &y (R) of length n.
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PrOPOSITION 3.16. Let R be a Cohen-Macaulay ring. Assume that there exist
a Gorenstein local ring Q and ideals 1y, ..., I, of Q satisfying the following
conditions:

(1) there is a ring isomorphism R = Q/(I; + --- + I,),
(2) for each A C [n], the ring Ry = Q/(Zee/\ Ig) is Cohen-Macaulay,

(3) for subsets A, T of [n] with ANT =0,
(i) Tor% (R, Rr) =0,
(ii) foralli € Z, Exty(Ra, Rr) = 0 = Tor? (R, Rr),

(4) for two subsets A, T of [n] with A # T and for any integer e, 122 (1) #
tIRE (1)
Then, for each A C [n), there is an integer g, such that Ext’;;’:\ (R,Rp) isa

semidualizing R-module. As conclusion, R admits 2" non-isomorphic semidu-
alizing modules.

PRrOOF. Fortwo subsets A, I' of [n] with " € A, we have G-dimpg,.(R)) <
00. Indeed, G-dimg (Rx\r) < 00, since Q is Gorenstein. Thus Ry\r admits a
Tate resolution T i) P> R a\r over O, where ¥; is isomorphism for all
i > 0. We show that the induced diagram T® ¢ Rr- O®BoRr, P®g Rr EAZLON
Ra\r ®¢ Rr is a Tate resolution of Ry\r ® 9 Rr = R, over Rr. By condition
(3)(1), P ®¢ Rr is a free resolution of Ry over Rr. Also by assumption,
"fgriQ(RA\p, Rr) =0, foralli € Z, and then T ®¢ Rr is an exact complex of
finite free Rr-modules. Of course, the map ¥; ® o Rr is an isomorphism, for
all i > 0. In order to show that Homg (T ® Rr, Rr) is exact we note that
the sequence of isomorphisms

HOl'Ier (T ®Q Rr, Rr) = HOIHQ(T, HOIHRI_ (Rr, Rr)) = HOIDQ(T, R[‘),
implies that
H; (Hompg, (T ® Rr. Rr)) = H;(Hom(T, Rr)) = Exty (Rayr Rr),

which is zero, by condition (3)(ii), for all i € Z. Hence the complex
Hompg,. (T ®¢ Rr, Rr) is exact and so R, admits a Tate resolution over Rr.
Therefore G-dimpg, (Rp) < o0.

In particular, G-dimg, (R) < oo, for all A C [n]. Hence, by Remark 2.2,
Exty (R, Ry) = O forall i # ga, where g5 := G-dimg, (R), and C, :=
Ext}' (R, Ry) is a semidualizing R-module.
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Note that there is an isomorphism C, =~ X%* RHomg, (R, Rs) in the
derived category D(R). Therefore, by [2, (1.7.8)],

Ig“ (1) = Iﬁ“ RHomg, (R,R»)

() = 75 RN ().
Now condition (4) implies that the 2" semidualizing C, are pairwise non-
isomorphic.
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