A short note on Cuntz splice from a viewpoint of continuous orbit equivalence of topological Markov shifts
DOI:
https://doi.org/10.7146/math.scand.a-102939Abstract
Let $A$ be an $N\times N$ irreducible matrix with entries in $\{0,1\}$. We present an easy way to find an $(N+3)\times (N+3)$ irreducible matrix $\bar {A}$ with entries in $\{0,1\}$ such that the associated Cuntz-Krieger algebras ${\mathcal {O}}_A$ and ${\mathcal {O}}_{\bar {A}}$ are isomorphic and $\det (1 -A) = - \det (1-\bar {A})$. As a consequence, we find that two Cuntz-Krieger algebras ${\mathcal {O}}_A$ and ${\mathcal {O}}_B$ are isomorphic if and only if the one-sided topological Markov shift $(X_A, \sigma _A)$ is continuously orbit equivalent to either $(X_B, \sigma _B)$ or $(X_{\bar {B}}, \sigma _{\bar {B}})$.
References
Bentmann, R., Cuntz splice invariance for purely infinite graph algebras, Math. Scand. 122 (2018), no. 1, 91-106. https://doi.org/10.7146/math.scand.a-96633
Bowen, R. and Franks, J., Homology for zero-dimensional nonwandering sets, Ann. of Math. (2) 106 (1977), no. 1, 73–92. https://doi.org/10.2307/1971159
Bowen, R. and Lanford III, O. E., Zeta functions of restrictions of the shift transformation, in “Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968)'', Amer. Math. Soc., Providence, R.I., 1970, pp. 43--49.
Cuntz, J., A class of $C^ast $-algebras and topological Markov chains. II. Reducible chains and the Ext-functor for $C^ast $-algebras, Invent. Math. 63 (1981), no. 1, 25–40. https://doi.org/10.1007/BF01389192
Cuntz, J., The classification problem for the $C^ast $-algebras $mathcal O_A$, in “Geometric methods in operator algebras (Kyoto, 1983)'', Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 145--151.
Cuntz, J. and Krieger, W., A class of $C^ast $-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. https://doi.org/10.1007/BF01390048
Eilers, S., Restorff, G., Ruiz, E., and Sørensen, A. P. W., Invariance of the Cuntz splice, Math. Ann. 369 (2017), no. 3-4, 1061–1080. https://doi.org/10.1007/s00208-017-1570-y
Enomoto, M., Fujii, M., and Watatani, Y., $K_0$-groups and classifications of Cuntz-Krieger algebras, Math. Japon. 26 (1981), no. 4, 443–460.
Franks, J., Flow equivalence of subshifts of finite type, Ergodic Theory Dynam. Systems 4 (1984), no. 1, 53–66. https://doi.org/10.1017/S0143385700002261
Lind, D. and Marcus, B., An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511626302
Matsumoto, K., Orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Pacific J. Math. 246 (2010), no. 1, 199–225. https://doi.org/10.2140/pjm.2010.246.199
Matsumoto, K. and Matui, H., Continuous orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Kyoto J. Math. 54 (2014), no. 4, 863–877. https://doi.org/10.1215/21562261-2801849
Parry, B. and Sullivan, D., A topological invariant of flows on $1$-dimensional spaces, Topology 14 (1975), no. 4, 297–299. https://doi.org/10.1016/0040-9383(75)90012-9
Rørdam, M., Classification of Cuntz-Krieger algebras, $K$-Theory 9 (1995), no. 1, 31–58. https://doi.org/10.1007/BF00965458