Projection operators on matrix weighted Lp and a simple sufficient Muckenhoupt condition

Authors

  • Morten Nielsen
  • Morten Grud Rasmussen

DOI:

https://doi.org/10.7146/math.scand.a-103316

Abstract

Boundedness for a class of projection operators, which includes the coordinate projections, on matrix weighted Lp-spaces is completely characterised in terms of simple scalar conditions. Using the projection result, sufficient conditions, which are straightforward to verify, are obtained that ensure that a given matrix weight is contained in the Muckenhoupt matrix Ap class. Applications to singular integral operators with product kernels are considered.

References

Bloom, S., A commutator theorem and weighted BMO, Trans. Amer. Math. Soc. 292 (1985), no. 1, 103–122. https://doi.org/10.2307/2000172

Bloom, S., Applications of commutator theory to weighted BMO and matrix analogs of A2, Illinois J. Math. 33 (1989), no. 3, 464–487.

Bownik, M., Inverse volume inequalities for matrix weights, Indiana Univ. Math. J. 50 (2001), no. 1, 383–410. https://doi.org/10.1512/iumj.2001.50.1672

Chang, S.-Y. A. and Fefferman, R., Some recent developments in Fourier analysis and Hp-theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 1–43. https://doi.org/10.1090/S0273-0979-1985-15291-7

Fefferman, R. and Stein, E. M., Singular integrals on product spaces, Adv. in Math. 45 (1982), no. 2, 117–143. https://doi.org/10.1016/S0001-8708(82)80001-7

Goldberg, M., Matrix Ap weights via maximal functions, Pacific J. Math. 211 (2003), no. 2, 201–220. https://doi.org/10.2140/pjm.2003.211.201

Hunt, R., Muckenhoupt, B., and Wheeden, R., Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. https://doi.org/10.2307/1996205

Nielsen, M., On stability of finitely generated shift-invariant systems, J. Fourier Anal. Appl. 16 (2010), no. 6, 901–920. https://doi.org/10.1007/s00041-009-9096-7

Ricci, F. and Stein, E. M., Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), no. 1, 179–194. https://doi.org/10.1016/0022-1236(87)90064-4

Roudenko, S., Matrix-weighted Besov spaces, Trans. Amer. Math. Soc. 355 (2003), no. 1, 273–314. https://doi.org/10.1090/S0002-9947-02-03096-9

Treil, S. and Volberg, A., Continuous frame decomposition and a vector Hunt-Muckenhoupt-Wheeden theorem, Ark. Mat. 35 (1997), no. 2, 363–386. https://doi.org/10.1007/BF02559975

Treil, S. and Volberg, A., Wavelets and the angle between past and future, J. Funct. Anal. 143 (1997), no. 2, 269–308. https://doi.org/10.1006/jfan.1996.2986

Volberg, A., Matrix Ap weights via S-functions, J. Amer. Math. Soc. 10 (1997), no. 2, 445–466. https://doi.org/10.1090/S0894-0347-97-00233-6

Downloads

Published

2018-08-06

How to Cite

Nielsen, M., & Rasmussen, M. G. (2018). Projection operators on matrix weighted Lp and a simple sufficient Muckenhoupt condition. MATHEMATICA SCANDINAVICA, 123(1), 72–84. https://doi.org/10.7146/math.scand.a-103316

Issue

Section

Articles