Regularity of Villadsen algebras and characters on their central sequence algebras
DOI:
https://doi.org/10.7146/math.scand.a-104840Abstract
We show that if $A$ is a simple Villadsen algebra of either the first type with seed space a finite dimensional CW complex, or of the second type, then $A$ absorbs the Jiang-Su algebra tensorially if and only if the central sequence algebra of $A$ does not admit characters.
Additionally, in a joint appendix with Joan Bosa (see the following paper), we show that the Villadsen algebra of the second type with infinite stable rank fails the Corona Factorization Property, thus providing the first example of a unital, simple, separable and nuclear $C^\ast $-algebra with a unique tracial state which fails to have this property.
References
Ando, H. and Kirchberg, E., Non-commutativity of the central sequence algebra for separable non-type I $C^*$-algebras, J. Lond. Math. Soc. (2) 94 (2016), no. 1, 280–294. https://doi.org/10.1112/jlms/jdw035
Ara, P., Perera, F., and Toms, A. S., $K$-theory for operator algebras. Classification of $C^*$-algebras, in “Aspects of operator algebras and applications”, Contemp. Math., vol. 534, Amer. Math. Soc., Providence, RI, 2011, pp. 1--71. https://doi.org/10.1090/conm/534/10521
Blackadar, B., Dădărlat, M., and Rørdam, M., The real rank of inductive limit $C^*$-algebras, Math. Scand. 69 (1991), no. 2, 211–216. https://doi.org/10.7146/math.scand.a-12379
Blackadar, B., Robert, L., Tikuisis, A. P., Toms, A. S., and Winter, W., An algebraic approach to the radius of comparison, Trans. Amer. Math. Soc. 364 (2012), no. 7, 3657–3674. https://doi.org/10.1090/S0002-9947-2012-05538-3
Coward, K. T., Elliott, G. A., and Ivanescu, C., The Cuntz semigroup as an invariant for $C^*$-algebras, J. Reine Angew. Math. 623 (2008), 161–193. https://doi.org/10.1515/CRELLE.2008.075
Elliott, G. A. and Niu, Z., On the classification of simple amenable $C^*$-algebras with finite decomposition rank, in “Operator algebras and their applications”, Contemp. Math., vol. 671, Amer. Math. Soc., Providence, RI, 2016, pp. 117--125. https://doi.org/10.1090/conm/671/13506
Elliott, G. A. and Niu, Z., The C$^*$-algebra of a minimal homeomorphism of zero mean dimension, Duke Math. J. 166 (2017), no. 18, 3569–3594. https://doi.org/10.1215/00127094-2017-0033
Farah, I., Hart, B., and Sherman, D., Model theory of operator algebras I: stability, Bull. Lond. Math. Soc. 45 (2013), no. 4, 825–838. https://doi.org/10.1112/blms/bdt014
Ge, L. and Hadwin, D., Ultraproducts of $C^*$-algebras, in “Recent advances in operator theory and related topics (Szeged, 1999)'', Oper. Theory Adv. Appl., vol. 127, Birkhäuser, Basel, 2001, pp. 305--326.
Giol, J. and Kerr, D., Subshifts and perforation, J. Reine Angew. Math. 639 (2010), 107–119. https://doi.org/10.1515/CRELLE.2010.012
Gong, G., Jiang, X., and Su, H., Obstructions to $mathcal Z$-stability for unital simple $C^*$-algebras, Canad. Math. Bull. 43 (2000), no. 4, 418–426. https://doi.org/10.4153/CMB-2000-050-1
Gong, G., Lin, H., and Niu, Z., Classification of finite simple amenable $mathcal Z$-stable $C^*$-algebras, preprint arxiv:1501.00135 [math.OA], 2015.
Husemoller, D., Fibre bundles, third ed., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994. https://doi.org/10.1007/978-1-4757-2261-1
Kirchberg, E., Central sequences in $C^*$-algebras and strongly purely infinite algebras, in “Operator Algebras: The Abel Symposium 2004”, Abel Symp., vol. 1, Springer, Berlin, 2006, pp. 175--231. https://doi.org/10.1007/978-3-540-34197-0_10
Kirchberg, E. and Rørdam, M., When central sequence $C^*$-algebras have characters, Internat. J. Math. 26 (2015), no. 7, 1550049, 32. https://doi.org/10.1142/S0129167X15500494
Kucerovsky, D. and Ng, P. W., The corona factorization property and approximate unitary equivalence, Houston J. Math. 32 (2006), no. 2, 531–550.
Kucerovsky, D. and Ng, P. W., $S$-regularity and the corona factorization property, Math. Scand. 99 (2006), no. 2, 204–216. https://doi.org/10.7146/math.scand.a-15009
Kucerovsky, D. and Ng, P. W., A simple $C^ast $-algebra with perforation and the corona factorization property, J. Operator Theory 61 (2009), no. 2, 227–238.
Matui, H. and Sato, Y., Strict comparison and $mathcal Z$-absorption of nuclear $C^*$-algebras, Acta Math. 209 (2012), no. 1, 179–196. https://doi.org/10.1007/s11511-012-0084-4
Matui, H. and Sato, Y., Decomposition rank of UHF-absorbing $C^*$-algebras, Duke Math. J. 163 (2014), no. 14, 2687–2708. https://doi.org/10.1215/00127094-2826908
McDuff, D., Central sequences and the hyperfinite factor, Proc. London Math. Soc. (3) 21 (1970), 443–461. https://doi.org/10.1112/plms/s3-21.3.443
Milnor, J. W. and Stasheff, J. D., Characteristic classes, Annals of Mathematics Studies, no. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974.
Niu, Z., Mean dimension and AH-algebras with diagonal maps, J. Funct. Anal. 266 (2014), no. 8, 4938–4994. https://doi.org/10.1016/j.jfa.2014.02.010
Ortega, E., Perera, F., and Rørdam, M., The corona factorization property, stability, and the Cuntz semigroup of a $C^ast $-algebra, Int. Math. Res. Not. IMRN (2012), no. 1, 34–66. https://doi.org/10.1093/imrn/rnr013
Robert, L. and Rørdam, M., Divisibility properties for $C^*$-algebras, Proc. Lond. Math. Soc. (3) 106 (2013), no. 6, 1330–1370. https://doi.org/10.1112/plms/pds082
Rørdam, M., Stability of $C^*$-algebras is not a stable property, Doc. Math. 2 (1997), 375–386.
Rørdam, M., A simple $C^*$-algebra with a finite and an infinite projection, Acta Math. 191 (2003), no. 1, 109–142. https://doi.org/10.1007/BF02392697
Sato, Y., Discrete amenable group actions on von neumann algebras and invariant nuclear $C^ast $-subalgebras, preprint arXiv:1104.4339 [math.OA], 2011.
Tikuisis, A., White, S., and Winter, W., Quasidiagonality of nuclear $C^ast $-algebras, Ann. of Math. (2) 185 (2017), no. 1, 229–284. https://doi.org/10.4007/annals.2017.185.1.4
Toms, A. S., On the independence of $K$-theory and stable rank for simple $C^*$-algebras, J. Reine Angew. Math. 578 (2005), 185–199. https://doi.org/10.1515/crll.2005.2005.578.185
Toms, A. S., Flat dimension growth for $C^*$-algebras, J. Funct. Anal. 238 (2006), no. 2, 678–708. https://doi.org/10.1016/j.jfa.2006.01.010
Toms, A. S., On the classification problem for nuclear $C^ast $-algebras, Ann. of Math. (2) 167 (2008), no. 3, 1029–1044. https://doi.org/10.4007/annals.2008.167.1029
Toms, A. S., Comparison theory and smooth minimal $C^*$-dynamics, Comm. Math. Phys. 289 (2009), no. 2, 401–433. https://doi.org/10.1007/s00220-008-0665-4
Toms, A. S. and Winter, W., The Elliott conjecture for Villadsen algebras of the first type, J. Funct. Anal. 256 (2009), no. 5, 1311–1340. https://doi.org/10.1016/j.jfa.2008.12.015
Villadsen, J., Simple $C^*$-algebras with perforation, J. Funct. Anal. 154 (1998), no. 1, 110–116. https://doi.org/10.1006/jfan.1997.3168
Villadsen, J., On the stable rank of simple $C^ast $-algebras, J. Amer. Math. Soc. 12 (1999), no. 4, 1091–1102. https://doi.org/10.1090/S0894-0347-99-00314-8