Non-Koszul quadratic Gorenstein toric rings
DOI:
https://doi.org/10.7146/math.scand.a-105278Abstract
Koszulness of Gorenstein quadratic algebras of small socle degree is studied. In this paper, we construct non-Koszul Gorenstein quadratic toric ring such that its socle degree is more than $3$ by using stable set polytopes.
References
Aramova, A., Herzog, J., and Hibi, T., Shellability of semigroup rings, Nagoya Math. J. 168 (2002), 65–84. https://doi.org/10.1017/S0027763000008357
Blum, S., Initially Koszul algebras, Beiträge Algebra Geom. 41 (2000), no. 2, 455–467.
Chappell, T., Friedl, T., and Sanyal, R., Two double poset polytopes, SIAM J. Discrete Math. 31 (2017), no. 4, 2378–2413. https://doi.org/10.1137/16M1091800
Chudnovsky, M., Robertson, N., Seymour, P., and Thomas, R., The strong perfect graph theorem, Ann. of Math. (2) 164 (2006), no. 1, 51–229. https://doi.org/10.4007/annals.2006.164.51
Conca, A., Universally Koszul algebras, Math. Ann. 317 (2000), no. 2, 329–346. https://doi.org/10.1007/s002080000100
Conca, A., De Negri, E., and Rossi, M. E., Koszul algebras and regularity, in “Commutative algebra”, Springer, New York, 2013, pp. 285--315. https://doi.org/10.1007/978-1-4614-5292-8_8
Conca, A., Rossi, M. E., and Valla, G., Gröbner flags and Gorenstein algebras, Compositio Math. 129 (2001), no. 1, 95–121. https://doi.org/10.1023/A:1013160203998
Diestel, R., Graph theory, fourth ed., Graduate Texts in Mathematics, vol. 173, Springer, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-14279-6
Ene, V., Herzog, J., and Hibi, T., Koszul binomial edge ideals, in “Bridging algebra, geometry, and topology”, Springer Proc. Math. Stat., vol. 96, Springer, Cham, 2014, pp. 125--136. https://doi.org/10.1007/978-3-319-09186-0_8
Engström, A. and Norén, P., Ideals of graph homomorphisms, Ann. Comb. 17 (2013), no. 1, 71–103. https://doi.org/10.1007/s00026-012-0169-y
Fröberg, R., Determination of a class of Poincaré series, Math. Scand. 37 (1975), no. 1, 29–39. https://doi.org/10.7146/math.scand.a-11585
Fulkerson, D. R., Hoffman, A. J., and McAndrew, M. H., Some properties of graphs with multiple edges, Canad. J. Math. 17 (1965), 166–177. https://doi.org/10.4153/CJM-1965-016-2
Grayson, D. R. and Stillman, M. E., Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
Herzog, J., Hibi, T., and Restuccia, G., Strongly Koszul algebras, Math. Scand. 86 (2000), no. 2, 161–178. https://doi.org/10.7146/math.scand.a-14287
Hibi, T., Distributive lattices, affine semigroup rings and algebras with straightening laws, in “Commutative algebra and combinatorics (Kyoto, 1985)'', Adv. Stud. Pure Math., vol. 11, North-Holland, Amsterdam, 1987, pp. 93--109.
Hibi, T. and Li, N., Chain polytopes and algebras with straightening laws, Acta Math. Vietnam. 40 (2015), no. 3, 447–452. https://doi.org/10.1007/s40306-015-0115-2
Hibi, T. and Matsuda, K., Quadratic Gröbner bases of twinned order polytopes, European J. Combin. 54 (2016), 187–192. https://doi.org/10.1016/j.ejc.2015.12.014
Hibi, T., Matsuda, K., and Ohsugi, H., Strongly Koszul edge rings, Acta Math. Vietnam. 41 (2016), no. 1, 69–76. https://doi.org/10.1007/s40306-014-0097-5
Hibi, T., Matsuda, K., Ohsugi, H., and Shibata, K., Centrally symmetric configurations of order polytopes, J. Algebra 443 (2015), 469–478. https://doi.org/10.1016/j.jalgebra.2015.06.010
Hibi, T., Matsuda, K., and Tsuchiya, A., Gorenstein Fano polytopes arising from order polytopes and chain polytopes, preprint arXiv:1507.03221 [math.CO], 2015.
Hibi, T., Matsuda, K., and Tsuchiya, A., Quadratic Gröbner bases arising from partially ordered sets, Math. Scand. 121 (2017), no. 1, 19–25. https://doi.org/10.7146/math.scand.a-26246
Hibi, T., Nishiyama, K., Ohsugi, H., and Shikama, A., Many toric ideals generated by quadratic binomials possess no quadratic Gröbner bases, J. Algebra 408 (2014), 138–146. https://doi.org/10.1016/j.jalgebra.2013.09.039
Hochster, M., Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. https://doi.org/10.2307/1970791
Ishida, M.-N., Torus embeddings and dualizing complexes, Tôhoku Math. J. (2) 32 (1980), no. 1, 111–146. https://doi.org/10.2748/tmj/1178229687
Mancini, F., Graph modification problems related to graph classes, Ph.D. thesis, University of Bergen, 2008.
Matsuda, K., Strong Koszulness of toric rings associated with stable set polytopes of trivially perfect graphs, J. Algebra Appl. 13 (2014), no. 4, 1350138, 11 pp. https://doi.org/10.1142/S0219498813501387
Matsuda, K. and Ohsugi, H., Reverse lexicographic Gröbner bases and strongly Koszul toric rings, Math. Scand. 119 (2016), no. 2, 161–168. https://doi.org/10.7146/math.scand.a-24741
Matsuda, K., Ohsugi, H., and Shibata, K., Toric rings and ideals of stable set polytopes, preprint arXiv:1603.01850 [math.AC], 2016.
Ohsugi, H., Herzog, J., and Hibi, T., Combinatorial pure subrings, Osaka J. Math. 37 (2000), no. 3, 745–757.
Ohsugi, H. and Hibi, T., Toric ideals generated by quadratic binomials, J. Algebra 218 (1999), no. 2, 509–527. https://doi.org/10.1006/jabr.1999.7918
Ohsugi, H. and Hibi, T., Special simplices and Gorenstein toric rings, J. Combin. Theory Ser. A 113 (2006), no. 4, 718–725. https://doi.org/10.1016/j.jcta.2005.06.002
Priddy, S. B., Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60. https://doi.org/10.2307/1995637
Roos, J.-E. and Sturmfels, B., A toric ring with irrational Poincaré-Betti series, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 2, 141–146. https://doi.org/10.1016/S0764-4442(97)89459-1
Shibata, K., Strong Koszulness of the toric ring associated to a cut ideal, Comment. Math. Univ. St. Pauli 64 (2015), no. 1, 71–80.
Stanley, R. P., Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83. https://doi.org/10.1016/0001-8708(78)90045-2
Sturmfels, B., Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996.
Sturmfels, B., Four counterexamples in combinatorial algebraic geometry, J. Algebra 230 (2000), no. 1, 282–294. https://doi.org/10.1006/jabr.1999.7950
Tate, J., Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14–27.