Multilinear square functions and multiple weights

Authors

  • Loukas Grafakos
  • Parasar Mohanty
  • Saurabh Shrivastava

DOI:

https://doi.org/10.7146/math.scand.a-105504

Abstract

In this paper we prove weighted estimates for a class of smooth multilinear square functions with respect to multilinear AP weights. In particular, we establish weighted estimates for the smooth multilinear square functions associated with disjoint cubes of equivalent side-lengths. As a consequence, for this particular class of multilinear square functions, we provide an affirmative answer to a question raised by Benea and Bernicot (Forum Math. Sigma 4, 2016, e26) about unweighted estimates for smooth bilinear square functions.

References

Benea, C. and Bernicot, F., A bilinear Rubio de Francia inequality for arbitrary squares, Forum Math. Sigma 4 (2016), e26, 34 pp. https://doi.org/10.1017/fms.2016.21

Bernicot, F., Lp estimates for non-smooth bilinear Littlewood-Paley square functions on ℝ, Math. Ann. 351 (2011), no. 1, 1–49. https://doi.org/10.1007/s00208-010-0588-1

Bernicot, F. and Shrivastava, S., Boundedness of smooth bilinear square functions and applications to some bilinear pseudo-differential operators, Indiana Univ. Math. J. 60 (2011), no. 1, 233–268. https://doi.org/10.1512/iumj.2011.60.4527

Culiuc, A., Plinio, F. D., and Ou, Y., Domination of multilinear singular integrals by positive sparse forms, preprint arxiv:1603.05317 [math.CA], 03 2016.

Diestel, G., Some remarks on bilinear Littlewood-Paley theory, J. Math. Anal. Appl. 307 (2005), no. 1, 102–119. https://doi.org/10.1016/j.jmaa.2005.01.014

Grafakos, L., He, S., and Xue, Q., Certain multi(sub)linear square functions, Potential Anal. 45 (2016), no. 1, 55–64. https://doi.org/10.1007/s11118-016-9534-5

Grafakos, L. and Torres, R. H., Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124–164. https://doi.org/10.1006/aima.2001.2028

Lacey, M. and Thiele, C., Lp estimates on the bilinear Hilbert transform for 2<p<infty, Ann. of Math. (2) 146 (1997), no. 3, 693–724. https://doi.org/10.2307/2952458

Lacey, M. and Thiele, C., On Calderón's conjecture, Ann. of Math. (2) 149 (1999), no. 2, 475–496. https://doi.org/10.2307/120971

Lacey, M. T., On bilinear Littlewood-Paley square functions, Publ. Mat. 40 (1996), no. 2, 387–396. https://doi.org/10.5565/PUBLMAT_40296_10

Lerner, A. K. and Nazarov, F., Intuitive dyadic calculus: The basics, Expositiones Mathematicae (2018), to appear. https://doi.org/https://doi.org/10.1016/j.exmath.2018.01.001

Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., and Trujillo-González, R., New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 (2009), no. 4, 1222–1264. https://doi.org/10.1016/j.aim.2008.10.014

Li, K., Moen, K., and Sun, W., The sharp weighted bound for multilinear maximal functions and Calderón-Zygmund operators, J. Fourier Anal. Appl. 20 (2014), no. 4, 751–765. https://doi.org/10.1007/s00041-014-9326-5

Mohanty, P. and Shrivastava, S., A note on the bilinear Littlewood-Paley square function, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2095–2098. https://doi.org/10.1090/S0002-9939-10-10233-0

Ratnakumar, P. K. and Shrivastava, S., A remark on bilinear Littlewood-Paley square functions, Monatsh. Math. 176 (2015), no. 4, 615–622. https://doi.org/10.1007/s00605-014-0668-5

Rubio de Francia, J. L., Estimates for some square functions of Littlewood-Paley type, Publ. Sec. Mat. Univ. Autònoma Barcelona 27 (1983), no. 2, 81–108.

Rubio de Francia, J. L., A Littlewood-Paley inequality for arbitrary intervals, Rev. Mat. Iberoamericana 1 (1985), no. 2, 1–14. https://doi.org/10.4171/RMI/7

Downloads

Published

2019-01-13

How to Cite

Grafakos, L., Mohanty, P., & Shrivastava, S. (2019). Multilinear square functions and multiple weights. MATHEMATICA SCANDINAVICA, 124(1), 149–160. https://doi.org/10.7146/math.scand.a-105504

Issue

Section

Articles