Infinite weighted graphs with bounded resistance metric
DOI:
https://doi.org/10.7146/math.scand.a-106208Abstract
We consider infinite weighted graphs $G$, i.e., sets of vertices $V$, and edges $E$ assumed countably infinite. An assignment of weights is a positive symmetric function $c$ on $E$ (the edge-set), conductance. From this, one naturally defines a reversible Markov process, and a corresponding Laplace operator acting on functions on $V$, voltage distributions. The harmonic functions are of special importance. We establish explicit boundary representations for the harmonic functions on $G$ of finite energy.
We compute a resistance metric $d$ from a given conductance function. (The resistance distance $d(x,y)$ between two vertices $x$ and $y$ is the voltage drop from $x$ to $y$, which is induced by the given assignment of resistors when $1$ amp is inserted at the vertex $x$, and then extracted again at $y$.)
We study the class of models where this resistance metric is bounded. We show that then the finite-energy functions form an algebra of ${1}/{2}$-Lipschitz-continuous and bounded functions on $V$, relative to the metric $d$. We further show that, in this case, the metric completion $M$ of $(V,d)$ is automatically compact, and that the vertex-set $V$ is open in $M$. We obtain a Poisson boundary-representation for the harmonic functions of finite energy, and an interpolation formula for every function on $V$ of finite energy. We further compare $M$ to other compactifications; e.g., to certain path-space models.
References
Albeverio, S. and Kusuoka, S., Diffusion processes in thin tubes and their limits on graphs, Ann. Probab. 40 (2012), no. 5, 2131–2167. https://doi.org/10.1214/11-AOP667
Alpay, D. and Jorgensen, P., Reproducing kernel Hilbert spaces generated by the binomial coefficients, Illinois J. Math. 58 (2014), no. 2, 471–495.
Alpay, D., Jorgensen, P., Lewkowicz, I., and Marziano, I., Representation formulas for Hardy space functions through the Cuntz relations and new interpolation problems, in “Multiscale signal analysis and modeling”, Springer, New York, 2013, pp. 161--182. https://doi.org/10.1007/978-1-4614-4145-8_7
Alpay, D., Jorgensen, P., Seager, R., and Volok, D., On discrete analytic functions: products, rational functions and reproducing kernels, J. Appl. Math. Comput. 41 (2013), no. 1-2, 393–426. https://doi.org/10.1007/s12190-012-0608-2
Alpay, D., Jorgensen, P., and Volok, D., Relative reproducing kernel Hilbert spaces, Proc. Amer. Math. Soc. 142 (2014), no. 11, 3889–3895. https://doi.org/10.1090/S0002-9939-2014-12121-6
Ancona, A., Théorie du potentiel sur les graphes et les variétés, in “École d'été de Probabilités de Saint-Flour XVIII—1988”, Lecture Notes in Math., vol. 1427, Springer, Berlin, 1990, pp. 1--112. https://doi.org/10.1007/BFb0103041
Bayer, C. and Veliyev, B., Utility maximization in a binomial model with transaction costs: a duality approach based on the shadow price process, Int. J. Theor. Appl. Finance 17 (2014), no. 4, 1450022, 27 pp. https://doi.org/10.1142/S0219024914500228
Bezuglyi, S., Kwiatkowski, J., and Yassawi, R., Perfect orderings on finite rank Bratteli diagrams, Canad. J. Math. 66 (2014), no. 1, 57–101. https://doi.org/10.4153/CJM-2013-041-6
Bratteli, O., Inductive limits of finite dimensional $C^ast $-algebras, Trans. Amer. Math. Soc. 171 (1972), 195–234. https://doi.org/10.2307/1996380
Bratteli, O., Jorgensen, P. E. T., Kim, K. H., and Roush, F., Non-stationarity of isomorphism between AF algebras defined by stationary Bratteli diagrams, Ergodic Theory Dynam. Systems 20 (2000), no. 6, 1639–1656. https://doi.org/10.1017/S0143385700000912
Bratteli, O., Jorgensen, P. E. T., and Ostrovs'kyu ı, V., Representation theory and numerical AF-invariants. The representations and centralizers of certain states on $mathscr O_d$, Mem. Amer. Math. Soc. 168 (2004), no. 797, xviii+178. https://doi.org/10.1090/memo/0797
Chang, X., Xu, H., and Yau, S.-T., Spanning trees and random walks on weighted graphs, Pacific J. Math. 273 (2015), no. 1, 241–255. https://doi.org/10.2140/pjm.2015.273.241
Doob, J. L., The structure of a Markov chain, in “Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory”, Univ. California Press, Berkeley, Calif., 1972, pp. 131--141.
Dunford, N. and Schwartz, J. T., Linear operators. Part II. spectral theory. selfadjoint operators in hilbert space, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988, reprint of the 1963 original.
Dutkay, D. E. and Jorgensen, P. E. T., Martingales, endomorphisms, and covariant systems of operators in Hilbert space, J. Operator Theory 58 (2007), no. 2, 269–310.
Dutkay, D. E. and Jorgensen, P. E. T., Affine fractals as boundaries and their harmonic analysis, Proc. Amer. Math. Soc. 139 (2011), no. 9, 3291–3305. https://doi.org/10.1090/S0002-9939-2011-10752-4
Dutkay, D. E., Jorgensen, P. E. T., and Silvestrov, S., Decomposition of wavelet representations and Martin boundaries, J. Funct. Anal. 262 (2012), no. 3, 1043–1061. https://doi.org/10.1016/j.jfa.2011.10.010
Georgakopoulos, A., Haeseler, S., Keller, M., Lenz, D., and Wojciechowski, R. K., Graphs of finite measure, J. Math. Pures Appl. (9) 103 (2015), no. 5, 1093–1131. https://doi.org/10.1016/j.matpur.2014.10.006
Giordano, T., Putnam, I. F., and Skau, C. F., Full groups of Cantor minimal systems, Israel J. Math. 111 (1999), 285–320. https://doi.org/10.1007/BF02810689
Gorodezky, I. and Pak, I., Generalized loop-erased random walks and approximate reachability, Random Structures Algorithms 44 (2014), no. 2, 201–223. https://doi.org/10.1002/rsa.20460
Herman, R. H., Putnam, I. F., and Skau, C. F., Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), no. 6, 827–864. https://doi.org/10.1142/S0129167X92000382
Hersonsky, S., Boundary value problems on planar graphs and flat surfaces with integer cone singularities, I: The Dirichlet problem, J. Reine Angew. Math. 670 (2012), 65–92.
Jorgensen, P. E. T., A uniqueness theorem for the Heisenberg-Weyl commutation relations with nonselfadjoint position operator, Amer. J. Math. 103 (1981), no. 2, 273–287. https://doi.org/10.2307/2374217
Jorgensen, P. E. T., Essential self-adjointness of the graph-Laplacian, J. Math. Phys. 49 (2008), no. 7, 073510, 33 pp. https://doi.org/10.1063/1.2953684
Jorgensen, P. E. T., A sampling theory for infinite weighted graphs, Opuscula Math. 31 (2011), no. 2, 209–236. https://doi.org/10.7494/OpMath.2011.31.2.209
Jorgensen, P. E. T. and Pearse, E. P. J., A Hilbert space approach to effective resistance metric, Complex Anal. Oper. Theory 4 (2010), no. 4, 975–1013. https://doi.org/10.1007/s11785-009-0041-1
Jorgensen, P. E. T. and Pearse, E. P. J., Resistance boundaries of infinite networks, in “Random walks, boundaries and spectra”, Progr. Probab., vol. 64, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 111--142. https://doi.org/10.1007/978-3-0346-0244-0_7
Keller, M. and Lenz, D., Dirichlet forms and stochastic completeness of graphs and subgraphs, J. Reine Angew. Math. 666 (2012), 189–223. https://doi.org/10.1515/CRELLE.2011.122
Kostrykin, V., Potthoff, J., and Schrader, R., Brownian motions on metric graphs, J. Math. Phys. 53 (2012), no. 9, 095206, 36 pp. https://doi.org/10.1063/1.4714661
Roblin, T., Comportement harmonique des densités conformes et frontière de Martin, Bull. Soc. Math. France 139 (2011), no. 1, 97–128.
Rudin, W., Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987.
Rudin, W., Functional analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.
Sawyer, S. A., Martin boundaries and random walks, in “Harmonic functions on trees and buildings (New York, 1995)'', Contemp. Math., vol. 206, Amer. Math. Soc., Providence, RI, 1997, pp. 17--44. https://doi.org/10.1090/conm/206/02685
Skopenkov, M., The boundary value problem for discrete analytic functions, Adv. Math. 240 (2013), 61–87. https://doi.org/10.1016/j.aim.2013.03.002
Tosiek, J. and Brzykcy, P., States in the Hilbert space formulation and in the phase space formulation of quantum mechanics, Ann. Physics 332 (2013), 1–15. https://doi.org/10.1016/j.aop.2013.01.010
Wojciechowski, R. K., Stochastic completeness of graphs, Ph.D. Theses, eprint arxiv:0712.1570 [math.SP], 2007.