The reproducing kernel of $\mathcal H^2$ and radial eigenfunctions of the hyperbolic Laplacian

Authors

  • Manfred Stoll

DOI:

https://doi.org/10.7146/math.scand.a-109674

Abstract

In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\mathbb {B}$ in $\mathbb {R}^n$. Specifically we prove that \[ \mathcal {K}_{n,h}(x,y) = \sum _{\alpha =0}^\infty S_{n,\alpha }(\lvert x\rvert )S_{n,\alpha }(\lvert y\rvert ) Z_\alpha (x,y), \] where the series converges absolutely and uniformly on $K\times \mathbb {B}$ for every compact subset $K$ of $\mathbb {B}$. In the above, $S_{n,\alpha }$ is a hypergeometric function and $Z_\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \[ 0\le \mathcal K_{n,h}(x,y) \le \frac {C_n}{(1-2\langle x,y\rangle + \lvert x \rvert^2 \lvert y \rvert^2)^{n-1}}, \] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\varDelta_h $ on $\mathbb{B} $ with eigenvalue $\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\varDelta_h $ on $\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\varDelta_h $ with eigenvalue $\lambda _\alpha = 4(n-1)^2\alpha (\alpha -1)$, then \[ g(r) = g(0) \frac {p_{n,\alpha }(r^2)}{(1-r^2)^{(\alpha -1)(n-1)}}, \] where $p_{n,\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\alpha }(r^2)$ is a polynomial of degree $2(\alpha -1)(n-1)$.

References

Abramowitz, M. and Stegun, I. A. (eds.), Handbook of mathematical functions, with formulas, graphs and mathematical tables, National Bureau of Standards Applied Mathematics Series, no. 55, Washington, D.C., 1966.

Axler, S., Bourdon, P., and Ramey, W., Harmonic function theory, Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 1992. https://doi.org/10.1007/b97238

Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., Higher transcendental functions. Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.

Grellier, S. and Jaming, P., Harmonic functions on the real hyperbolic ball. II. Hardy-Sobolev and Lipschitz spaces, Math. Nachr. 268 (2004), 50–73. https://doi.org/10.1002/mana.200310159

Jaming, P., Harmonic functions on the real hyperbolic ball. I. Boundary values and atomic decomposition of Hardy spaces, Colloq. Math. 80 (1999), no. 1, 63–82. https://doi.org/10.4064/cm-80-1-63-82

Lebedev, N. N., Special functions and their applications, Dover Publications, Inc., New York, 1972.

Minemura, K., Eigenfunctions of the Laplacian on a real hyperbolic space, J. Math. Soc. Japan 27 (1975), no. 1, 82–105. https://doi.org/10.2969/jmsj/02710082

Stoll, M., Weighted Dirichlet spaces of harmonic functions on the real hyperbolic ball, Complex Var. Elliptic Equ. 57 (2012), no. 1, 63–89. https://doi.org/10.1080/17476931003786642

Stoll, M., Harmonic and subharmonic function theory on the hyperbolic ball, London Mathematical Society Lecture Note Series, vol. 431, Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781316341063

Downloads

Published

2019-01-13

How to Cite

Stoll, M. (2019). The reproducing kernel of $\mathcal H^2$ and radial eigenfunctions of the hyperbolic Laplacian. MATHEMATICA SCANDINAVICA, 124(1), 81–101. https://doi.org/10.7146/math.scand.a-109674

Issue

Section

Articles