The reproducing kernel of H2 and radial eigenfunctions of the hyperbolic Laplacian
DOI:
https://doi.org/10.7146/math.scand.a-109674Abstract
In the paper we characterize the reproducing kernel Kn,h for the Hardy space H2 of hyperbolic harmonic functions on the unit ball B in Rn. Specifically we prove that Kn,h(x,y)=∞∑α=0Sn,α(|x|)Sn,α(|y|)Zα(x,y), where the series converges absolutely and uniformly on K×B for every compact subset K of B. In the above, Sn,α is a hypergeometric function and Zα is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that 0≤Kn,h(x,y)≤Cn(1−2⟨x,y⟩+|x|2|y|2)n−1, where Cn is a constant depending only on n. It is known that the diagonal function Kn,h(x,x) is a radial eigenfunction of the hyperbolic Laplacian Δh on B with eigenvalue λ2=8(n−1)2. The result for n=4 provides motivation that leads to an explicit characterization of all radial eigenfunctions of Δh on B. Specifically, if g is a radial eigenfunction of Δh with eigenvalue λα=4(n−1)2α(α−1), then g(r)=g(0)pn,α(r2)(1−r2)(α−1)(n−1), where pn,α is again a hypergeometric function. If α is an integer, then pn,α(r2) is a polynomial of degree 2(α−1)(n−1).
References
Axler, S., Bourdon, P., and Ramey, W., Harmonic function theory, Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 1992. https://doi.org/10.1007/b97238
Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., Higher transcendental functions. Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.
Grellier, S. and Jaming, P., Harmonic functions on the real hyperbolic ball. II. Hardy-Sobolev and Lipschitz spaces, Math. Nachr. 268 (2004), 50–73. https://doi.org/10.1002/mana.200310159
Jaming, P., Harmonic functions on the real hyperbolic ball. I. Boundary values and atomic decomposition of Hardy spaces, Colloq. Math. 80 (1999), no. 1, 63–82. https://doi.org/10.4064/cm-80-1-63-82
Lebedev, N. N., Special functions and their applications, Dover Publications, Inc., New York, 1972.
Minemura, K., Eigenfunctions of the Laplacian on a real hyperbolic space, J. Math. Soc. Japan 27 (1975), no. 1, 82–105. https://doi.org/10.2969/jmsj/02710082
Stoll, M., Weighted Dirichlet spaces of harmonic functions on the real hyperbolic ball, Complex Var. Elliptic Equ. 57 (2012), no. 1, 63–89. https://doi.org/10.1080/17476931003786642
Stoll, M., Harmonic and subharmonic function theory on the hyperbolic ball, London Mathematical Society Lecture Note Series, vol. 431, Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781316341063