The reproducing kernel of $\mathcal H^2$ and radial eigenfunctions of the hyperbolic Laplacian
DOI:
https://doi.org/10.7146/math.scand.a-109674Abstract
In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\mathbb {B}$ in $\mathbb {R}^n$. Specifically we prove that \[ \mathcal {K}_{n,h}(x,y) = \sum _{\alpha =0}^\infty S_{n,\alpha }(\lvert x\rvert )S_{n,\alpha }(\lvert y\rvert ) Z_\alpha (x,y), \] where the series converges absolutely and uniformly on $K\times \mathbb {B}$ for every compact subset $K$ of $\mathbb {B}$. In the above, $S_{n,\alpha }$ is a hypergeometric function and $Z_\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \[ 0\le \mathcal K_{n,h}(x,y) \le \frac {C_n}{(1-2\langle x,y\rangle + \lvert x \rvert^2 \lvert y \rvert^2)^{n-1}}, \] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\varDelta_h $ on $\mathbb{B} $ with eigenvalue $\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\varDelta_h $ on $\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\varDelta_h $ with eigenvalue $\lambda _\alpha = 4(n-1)^2\alpha (\alpha -1)$, then \[ g(r) = g(0) \frac {p_{n,\alpha }(r^2)}{(1-r^2)^{(\alpha -1)(n-1)}}, \] where $p_{n,\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\alpha }(r^2)$ is a polynomial of degree $2(\alpha -1)(n-1)$.
References
Axler, S., Bourdon, P., and Ramey, W., Harmonic function theory, Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 1992. https://doi.org/10.1007/b97238
Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., Higher transcendental functions. Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.
Grellier, S. and Jaming, P., Harmonic functions on the real hyperbolic ball. II. Hardy-Sobolev and Lipschitz spaces, Math. Nachr. 268 (2004), 50–73. https://doi.org/10.1002/mana.200310159
Jaming, P., Harmonic functions on the real hyperbolic ball. I. Boundary values and atomic decomposition of Hardy spaces, Colloq. Math. 80 (1999), no. 1, 63–82. https://doi.org/10.4064/cm-80-1-63-82
Lebedev, N. N., Special functions and their applications, Dover Publications, Inc., New York, 1972.
Minemura, K., Eigenfunctions of the Laplacian on a real hyperbolic space, J. Math. Soc. Japan 27 (1975), no. 1, 82–105. https://doi.org/10.2969/jmsj/02710082
Stoll, M., Weighted Dirichlet spaces of harmonic functions on the real hyperbolic ball, Complex Var. Elliptic Equ. 57 (2012), no. 1, 63–89. https://doi.org/10.1080/17476931003786642
Stoll, M., Harmonic and subharmonic function theory on the hyperbolic ball, London Mathematical Society Lecture Note Series, vol. 431, Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781316341063