Characterisation and applications of $\Bbbk$-split bimodules
DOI:
https://doi.org/10.7146/math.scand.a-111146Abstract
We describe the structure of bimodules (over finite dimensional algebras) which have the property that the functor of tensoring with such a bimodule sends any module to a projective module. The main result is that all such bimodules are $\Bbbk $-split in the sense that they factor (inside the tensor category of bimodules) over $\Bbbk $-vector spaces. As one application, we show that any simple $2$-category has a faithful $2$-representation inside the $2$-category of $\Bbbk $-split bimodules. As another application, we classify simple transitive $2$-representations of the $2$-category of projective bimodules over the algebra $\Bbbk [x,y]/(x^2,y^2,xy)$.
References
Bernstein, J., Frenkel, I., and Khovanov, M., A categorification of the Temperley-Lieb algebra and Schur quotients of $U(\mathfrak{sl}_2)$ via projective and Zuckerman functors, Selecta Math. (N.S.) 5 (1999), no. 2, 199–241. https://doi.org/10.1007/s000290050047
Chan, A. and Mazorchuk, V., Diagrams and discrete extensions for finitary $2$-representations, Math. Proc. Camb. Phil. Soc. (2017, online), 28 pp. https://doi.org/10.1017/S0305004117000858
Chuang, J. and Rouquier, R., Derived equivalences for symmetric groups and $\mathfrak{sl}_2$-categorification, Ann. of Math. (2) 167 (2008), no. 1, 245–298. https://doi.org/10.4007/annals.2008.167.245
Dugas, A. S. and Martínez-Villa, R., A note on stable equivalences of Morita type, J. Pure Appl. Algebra 208 (2007), no. 2, 421–433. https://doi.org/10.1016/j.jpaa.2006.01.007
Forsberg, L., Multisemigroups with multiplicities and complete ordered semi-rings, Beitr. Algebra Geom. 58 (2017), no. 2, 405–426. https://doi.org/10.1007/s13366-016-0320-8
Grensing, A.-L. and Mazorchuk, V., Categorification of the Catalan monoid, Semigroup Forum 89 (2014), no. 1, 155–168. https://doi.org/10.1007/s00233-013-9510-y
Grensing, A.-L. and Mazorchuk, V., Finitary $2$-categories associated with dual projection functors, Commun. Contemp. Math. 19 (2017), no. 3, 1650016, 40 pp. https://doi.org/10.1142/S0219199716500164
Khovanov, M., A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426. https://doi.org/10.1215/S0012-7094-00-10131-7
Khovanov, M. and Lauda, A. D., A categorification of quantum $\mathrm{sl}(n)$, Quantum Topol. 1 (2010), no. 1, 1–92. https://doi.org/10.4171/QT/1
Kildetoft, T., Mackaay, M., Mazorchuk, V., and Zimmermann, J., Simple transitive $2$-representations of small quotients of Soergel bimodules, Trans. Amer. Math. Soc. (2018, online), 40 pp. https://doi.org/10.1090/tran/7456
Kildetoft, T. and Mazorchuk, V., Parabolic projective functors in type $A$, Adv. Math. 301 (2016), 785–803. https://doi.org/10.1016/j.aim.2016.06.026
Kildetoft, T. and Mazorchuk, V., Special modules over positively based algebras, Doc. Math. 21 (2016), 1171–1192.
König, S. and Xi, C., On the structure of cellular algebras, in “Algebras and modules, II (Geiranger, 1996)'', CMS Conf. Proc., vol. 24, Amer. Math. Soc., Providence, RI, 1998, pp. 365--386.
König, S. and Xi, C., Affine cellular algebras, Adv. Math. 229 (2012), no. 1, 139–182. https://doi.org/10.1016/j.aim.2011.08.010
Kudryavtseva, G. and Mazorchuk, V., On multisemigroups, Port. Math. 72 (2015), no. 1, 47–80. https://doi.org/10.4171/PM/1956
Leinster, T., Basic category theory, Cambridge Studies in Advanced Mathematics, vol. 143, Cambridge University Press, Cambridge, 2014. https://doi.org/10.1017/CBO9781107360068
Mac Lane, S., Categories for the working mathematician, second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998.
Mackaay, M. and Mazorchuk, V., Simple transitive $2$-representations for some $2$-subcategories of Soergel bimodules, J. Pure Appl. Algebra 221 (2017), no. 3, 565–587. https://doi.org/10.1016/j.jpaa.2016.07.006
Mackaay, M., Mazorchuk, V., Miemietz, V., and Tubbenhauer, D., Simple transitive $2$-representations via (co)algebra $1$-morphisms, Indiana Univ. Math. J. (to appear), 30 pp.
Mackaay, M. and Tubbenhauer, D., Two-color Soergel calculus and simple transitive $2$-representations, Canad. J. Math. (to appear), 39 pp. https://doi.org/10.4153/CJM-2017-061-2
Mazorchuk, V. and Miemietz, V., Cell $2$-representations of finitary $2$-categories, Compos. Math. 147 (2011), no. 5, 1519–1545. https://doi.org/10.1112/S0010437X11005586
Mazorchuk, V. and Miemietz, V., Additive versus abelian $2$-representations of fiat $2$-categories, Mosc. Math. J. 14 (2014), no. 3, 595–615.
Mazorchuk, V. and Miemietz, V., Endomorphisms of cell $2$-representations, Int. Math. Res. Not. IMRN (2016), no. 24, 7471–7498. https://doi.org/10.1093/imrn/rnw025
Mazorchuk, V. and Miemietz, V., Isotypic faithful $2$-representations of $\mathcal J$-simple fiat $2$-categories, Math. Z. 282 (2016), no. 1-2, 411–434. https://doi.org/10.1007/s00209-015-1546-0
Mazorchuk, V. and Miemietz, V., Morita theory for finitary $2$-categories, Quantum Topol. 7 (2016), no. 1, 1–28. https://doi.org/10.4171/QT/72
Mazorchuk, V. and Miemietz, V., Transitive $2$-representations of finitary $2$-categories, Trans. Amer. Math. Soc. 368 (2016), no. 11, 7623–7644. https://doi.org/10.1090/tran/6583
Mazorchuk, V., Miemietz, V., and Zhang, X., Pyramids and $2$-representations, preprint arXiv:1705.03174 [math.RT].
Mazorchuk, V. and Zhang, X., Simple transitive $2$-representations for two non-fiat $2$-categories of projective functors, Ukrainian Math. J. (to appear), preprint arXiv:1601.00097 [math.RT].
Rouquier, R., $2$-Kac-Moddy algebras, preprint arXiv:0812.5023 [math.RT].
Xantcha, Q. R., Gabriel $2$-quivers for finitary $2$-categories, J. Lond. Math. Soc. (2) 92 (2015), no. 3, 615–632. https://doi.org/10.1112/jlms/jdv037
Zhang, X., Duflo involutions for $2$-categories associated to tree quivers, J. Algebra Appl. 15 (2016), no. 3, 1650041, 25 pp. https://doi.org/10.1142/S0219498816500419
Zhang, X., Simple transitive $2$-representations and Drinfeld center for some finitary $2$-categories, J. Pure Appl. Algebra 222 (2018), no. 1, 97–130. https://doi.org/10.1016/j.jpaa.2017.03.006
Zimmermann, J., Simple transitive $2$-representations of Soergel bimodules in type $B_2$, J. Pure Appl. Algebra 221 (2017), no. 3, 666–690. https://doi.org/10.1016/j.jpaa.2016.07.011