The K-inductive structure of the noncommutative Fourier transform
DOI:
https://doi.org/10.7146/math.scand.a-114723Abstract
The noncommutative Fourier transform σ(U)=V−1, σ(V)=U of the irrational rotation C*-algebra Aθ (generated by canonical unitaries U, V satisfying VU=e2πiθUV) is shown to have the following K-inductive structure (for a concrete class of irrational parameters, containing dense Gδ's). There are approximately central matrix projections e1, e2, f that are σ-invariant and which form a partition of unity in K0 of the fixed-point orbifold Aσθ, where f has the form f=g+σ(g)+σ2(g)+σ3(g), and where g is an approximately central matrix projection as well.
References
Buck, J. and Walters, S., Connes-Chern characters of hexic and cubic modules, J. Operator Theory 57 (2007), no. 1, 35–65.
Echterhoff, S., Lück, W., Phillips, N. C., and Walters, S., The structure of crossed products of irrational rotation algebras by finite subgroups of SL2(Z), J. Reine Angew. Math. 639 (2010), 173–221. https://doi.org/10.1515/CRELLE.2010.015
Elliott, G. A. and Evans, D. E., The structure of the irrational rotation C∗-algebra, Ann. of Math. (2) 138 (1993), no. 3, 477–501. https://doi.org/10.2307/2946553
Lin, H., Classification of simple tracially AF C∗-algebras, Canad. J. Math. 53 (2001), no. 1, 161–194. https://doi.org/10.4153/CJM-2001-007-8
Polishchuk, A., Holomorphic bundles on 2-dimensional noncommutative toric orbifolds, in “Noncommutative geometry and number theory”, Aspects Math., E37, Friedr. Vieweg, Wiesbaden, 2006, pp. 341--359. https://doi.org/10.1007/978-3-8348-0352-8_16
Walters, S. G., Chern characters of Fourier modules, Canad. J. Math. 52 (2000), no. 3, 633–672. https://doi.org/10.4153/CJM-2000-028-9
Walters, S. G., K-theory of non-commutative spheres arising from the Fourier automorphism, Canad. J. Math. 53 (2001), no. 3, 631–672. https://doi.org/10.4153/CJM-2001-026-x
Walters, S. G., The AF structure of non commutative toroidal Z/4Z orbifolds, J. Reine Angew. Math. 568 (2004), 139–196. https://doi.org/10.1515/crll.2004.015
Walters, S. G., Decomposable projections related to the Fourier and flip automorphisms, Math. Scand. 107 (2010), no. 2, 174–197. https://doi.org/10.7146/math.scand.a-15150
Walters, S. G., Toroidal orbifolds of Z3 and Z6 symmetries of noncommutative tori, Nuclear Phys. B 894 (2015), 496–526. https://doi.org/10.1016/j.nuclphysb.2015.03.008
Walters, S. G., Continuous fields of projections and orthogonality relations, J. Operator Theory 77 (2017), no. 1, 191–203. https://doi.org/10.7900/jot.2016mar19.2130
Walters, S. G., Semiflat orbifold projections, Houston J. Math. 44 (2018), no. 2, 645–663.
Echterhoff, S., Lück, W., Phillips, N. C., and Walters, S., The structure of crossed products of irrational rotation algebras by finite subgroups of SL2(Z), J. Reine Angew. Math. 639 (2010), 173–221. https://doi.org/10.1515/CRELLE.2010.015
Elliott, G. A. and Evans, D. E., The structure of the irrational rotation C∗-algebra, Ann. of Math. (2) 138 (1993), no. 3, 477–501. https://doi.org/10.2307/2946553
Lin, H., Classification of simple tracially AF C∗-algebras, Canad. J. Math. 53 (2001), no. 1, 161–194. https://doi.org/10.4153/CJM-2001-007-8
Polishchuk, A., Holomorphic bundles on 2-dimensional noncommutative toric orbifolds, in “Noncommutative geometry and number theory”, Aspects Math., E37, Friedr. Vieweg, Wiesbaden, 2006, pp. 341--359. https://doi.org/10.1007/978-3-8348-0352-8_16
Walters, S. G., Chern characters of Fourier modules, Canad. J. Math. 52 (2000), no. 3, 633–672. https://doi.org/10.4153/CJM-2000-028-9
Walters, S. G., K-theory of non-commutative spheres arising from the Fourier automorphism, Canad. J. Math. 53 (2001), no. 3, 631–672. https://doi.org/10.4153/CJM-2001-026-x
Walters, S. G., The AF structure of non commutative toroidal Z/4Z orbifolds, J. Reine Angew. Math. 568 (2004), 139–196. https://doi.org/10.1515/crll.2004.015
Walters, S. G., Decomposable projections related to the Fourier and flip automorphisms, Math. Scand. 107 (2010), no. 2, 174–197. https://doi.org/10.7146/math.scand.a-15150
Walters, S. G., Toroidal orbifolds of Z3 and Z6 symmetries of noncommutative tori, Nuclear Phys. B 894 (2015), 496–526. https://doi.org/10.1016/j.nuclphysb.2015.03.008
Walters, S. G., Continuous fields of projections and orthogonality relations, J. Operator Theory 77 (2017), no. 1, 191–203. https://doi.org/10.7900/jot.2016mar19.2130
Walters, S. G., Semiflat orbifold projections, Houston J. Math. 44 (2018), no. 2, 645–663.
Downloads
Published
2019-06-17
How to Cite
Walters, S. G. (2019). The K-inductive structure of the noncommutative Fourier transform. MATHEMATICA SCANDINAVICA, 124(2), 305–319. https://doi.org/10.7146/math.scand.a-114723
Issue
Section
Articles