The K-inductive structure of the noncommutative Fourier transform
DOI:
https://doi.org/10.7146/math.scand.a-114723Abstract
The noncommutative Fourier transform $\sigma (U)=V^{-1}$, $\sigma (V)=U$ of the irrational rotation C*-algebra $A_\theta $ (generated by canonical unitaries $U$, $V$ satisfying $VU = e^{2\pi i\theta } UV$) is shown to have the following K-inductive structure (for a concrete class of irrational parameters, containing dense $G_\delta $'s). There are approximately central matrix projections $e_1$, $e_2$, $f$ that are σ-invariant and which form a partition of unity in $K_0$ of the fixed-point orbifold $A_\theta ^\sigma $, where $f$ has the form $f = g+\sigma (g) +\sigma ^2(g)+\sigma ^3(g)$, and where $g$ is an approximately central matrix projection as well.
References
Echterhoff, S., Lück, W., Phillips, N. C., and Walters, S., The structure of crossed products of irrational rotation algebras by finite subgroups of $\mathrm SL_2(\mathbb Z)$, J. Reine Angew. Math. 639 (2010), 173–221. https://doi.org/10.1515/CRELLE.2010.015
Elliott, G. A. and Evans, D. E., The structure of the irrational rotation $C^*$-algebra, Ann. of Math. (2) 138 (1993), no. 3, 477–501. https://doi.org/10.2307/2946553
Lin, H., Classification of simple tracially AF $C^*$-algebras, Canad. J. Math. 53 (2001), no. 1, 161–194. https://doi.org/10.4153/CJM-2001-007-8
Polishchuk, A., Holomorphic bundles on $2$-dimensional noncommutative toric orbifolds, in “Noncommutative geometry and number theory”, Aspects Math., E37, Friedr. Vieweg, Wiesbaden, 2006, pp. 341--359. https://doi.org/10.1007/978-3-8348-0352-8_16
Walters, S. G., Chern characters of Fourier modules, Canad. J. Math. 52 (2000), no. 3, 633–672. https://doi.org/10.4153/CJM-2000-028-9
Walters, S. G., $K$-theory of non-commutative spheres arising from the Fourier automorphism, Canad. J. Math. 53 (2001), no. 3, 631–672. https://doi.org/10.4153/CJM-2001-026-x
Walters, S. G., The AF structure of non commutative toroidal $\mathbb Z/4\mathbb Z$ orbifolds, J. Reine Angew. Math. 568 (2004), 139–196. https://doi.org/10.1515/crll.2004.015
Walters, S. G., Decomposable projections related to the Fourier and flip automorphisms, Math. Scand. 107 (2010), no. 2, 174–197. https://doi.org/10.7146/math.scand.a-15150
Walters, S. G., Toroidal orbifolds of $\mathbb Z_3$ and $\mathbb Z_6$ symmetries of noncommutative tori, Nuclear Phys. B 894 (2015), 496–526. https://doi.org/10.1016/j.nuclphysb.2015.03.008
Walters, S. G., Continuous fields of projections and orthogonality relations, J. Operator Theory 77 (2017), no. 1, 191–203. https://doi.org/10.7900/jot.2016mar19.2130
Walters, S. G., Semiflat orbifold projections, Houston J. Math. 44 (2018), no. 2, 645–663.