Vandermonde determinantal ideals

Authors

  • Junzo Watanabe
  • Kohji Yanagawa

DOI:

https://doi.org/10.7146/math.scand.a-114906

Abstract

We show that the ideal generated by maximal minors (i.e., $k+1$-minors) of a $(k+1) \times n$ Vandermonde matrix is radical and Cohen-Macaulay. Note that this ideal is generated by all Specht polynomials with shape $(n-k,1, …,1)$.

References

Fröberg, R. and Shapiro, B., On Vandermonde varieties, Math. Scand. 119 (2016), no. 1, 73–91. https://doi.org/10.7146/math.scand.a-24185

Harima, T., Maeno, T., Morita, H., Numata, Y., Wachi, A., and Watanabe, J., The Lefschetz properties, Lecture Notes in Mathematics, vol. 2080, Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-38206-2

Miró-Roig, R. M., A note on the multiplicity of determinantal ideals, J. Algebra 299 (2006), no. 2, 714–724. https://doi.org/10.1016/j.jalgebra.2005.05.017

Miró-Roig, R. M., Determinantal ideals, Progress in Mathematics, vol. 264, Birkhäuser Verlag, Basel, 2008.

Sagan, B. E., The symmetric group: representations, combinatorial algorithms, and symmetric functions, second ed., Graduate Texts in Mathematics, vol. 203, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4757-6804-6

Watanabe, J. and Yanagawa, K., On Specht ideals, in preparation.

Downloads

Published

2019-10-19

How to Cite

Watanabe, J., & Yanagawa, K. (2019). Vandermonde determinantal ideals. MATHEMATICA SCANDINAVICA, 125(2), 179–184. https://doi.org/10.7146/math.scand.a-114906

Issue

Section

Articles