Remarks on vector space generated by the multiplicative commutators of a division ring

Authors

  • M. Aaghabali
  • Z. Tajfirouz

DOI:

https://doi.org/10.7146/math.scand.a-116324

Abstract

Let D be a division ring with centre F. An element of the form xyx1y1D is called a multiplicative commutator. Let T(D) be the vector space over F generated by all multiplicative commutators in D. In M. Aghabali et al., J. Algebra Appl. 12 (2013), no. 8, art. 1350043, the authors have conjectured that every division ring is generated as a vector space over its centre by all of its multiplicative commutators. In this note it is shown that if D is centrally finite, then the conjecture holds.

References

Aghabali, M., Akbari, S., Ariannejad, M., and Madadi, A., Vector space generated by the multiplicative commutators of a division ring, J. Algebra Appl. 12 (2013), no. 8, art. 1350043, 7 pp. https://doi.org/10.1142/S0219498813500436

Akbari, S., Arian-Nejad, M., and Mehrabadi, M. L., On additive commutator groups in division rings, Results Math. 33 (1998), no. 1-2, 9–21. https://doi.org/10.1007/BF03322065

Hazrat, R., A note on multiplicative commutators of division rings, J. Algebra Appl. 18 (2019), no. 2, art. 1950031, 2 pp. https://doi.org/10.1142/S0219498819500312

Herstein, I. N., Topics in ring theory, The University of Chicago Press, Chicago, Ill.-London, 1969.

Lam, T. Y., A first course in noncommutative rings, second ed., Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4419-8616-0

Morandi, P., Field and Galois theory, Graduate Texts in Mathematics, vol. 167, Springer-Verlag, New York, 1996. https://doi.org/10.1007/978-1-4612-4040-2

Rowen, L. H., Ring theory, student ed., Academic Press, Inc., Boston, MA, 1991.

Published

2020-05-06

How to Cite

Aaghabali, M., & Tajfirouz, Z. (2020). Remarks on vector space generated by the multiplicative commutators of a division ring. MATHEMATICA SCANDINAVICA, 126(2), 161–164. https://doi.org/10.7146/math.scand.a-116324

Issue

Section

Articles