Little dimension and the improved new intersection theorem
DOI:
https://doi.org/10.7146/math.scand.a-119740Abstract
Let $R$ be a commutative noetherian local ring. We define a new invariant for $R$-modules which we call the little dimension. Using it, we extend the improved new intersection theorem.
References
André, Y., La conjecture du facteur direct, Publ. Math. Inst. Hautes Études Sci. 127 (2018), 71–93. https://doi.org/10.1007/s10240-017-0097-9
Bruns, W. and Herzog, J., Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993.
Christensen, L. W., Gorenstein dimensions, Lecture Notes in Mathematics, vol. 1747, Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/BFb0103980
Evans, E. G. and Griffith, P., The syzygy problem, Ann. of Math. (2) 114 (1981), no. 2, 323–333. https://doi.org/10.2307/1971296
Foxby, H.-B., Bounded complexes of flat modules, J. Pure Appl. Algebra 15 (1979), no. 2, 149–172. https://doi.org/10.1016/0022-4049(79)90030-6
Foxby, H.-B. and Iyengar, S., Depth and amplitude for unbounded complexes, in “Commutative algebra (Grenoble/Lyon, 2001)”, Contemp. Math., vol. 331, Amer. Math. Soc., Providence, RI, 2003, pp. 119–137. https://doi.org/10.1090/conm/331/05906
Foxby, H.-B. and Yassemi, S., Small dimension and intersection theorem (infinite version), private notes, 1999.
Hartshorne, R., Residues and duality, Lecture Notes in Mathematics, no. 20, Springer-Verlag, Berlin-New York, 1966.
Heitmann, R. and Ma, L., Big Cohen-Macaulay algebras and the vanishing conjecture for maps of Tor in mixed characteristic, Algebra Number Theory 12 (2018), no. 7, 1659–1674. https://doi.org/10.2140/ant.2018.12.1659
Hochster, M., Canonical elements in local cohomology modules and the direct summand conjecture, J. Algebra 84 (1983), no. 2, 503–553. https://doi.org/10.1016/0021-8693(83)90092-3
Hochster, M., Homological conjectures, old and new, Illinois J. Math. 51 (2007), no. 1, 151–169.
Iyengar, S., Depth for complexes, and intersection theorems, Math. Z. 230 (1999), no. 3, 545–567. https://doi.org/10.1007/PL00004705
Sharif, T. and Yassemi, S., Special homological dimensions and intersection theorem, Math. Scand. 96 (2005), no. 2, 161–168. https://doi.org/10.7146/math.scand.a-14950
Sharp, R. Y., Cohen-Macaulay properties for balanced big Cohen-Macaulay modules, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 2, 229–238. https://doi.org/10.1017/S0305004100058680
Veliche, O., Construction of modules with finite homological dimensions, J. Algebra 250 (2002), no. 2, 427–449. https://doi.org/10.1006/jabr.2001.9100
Bruns, W. and Herzog, J., Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993.
Christensen, L. W., Gorenstein dimensions, Lecture Notes in Mathematics, vol. 1747, Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/BFb0103980
Evans, E. G. and Griffith, P., The syzygy problem, Ann. of Math. (2) 114 (1981), no. 2, 323–333. https://doi.org/10.2307/1971296
Foxby, H.-B., Bounded complexes of flat modules, J. Pure Appl. Algebra 15 (1979), no. 2, 149–172. https://doi.org/10.1016/0022-4049(79)90030-6
Foxby, H.-B. and Iyengar, S., Depth and amplitude for unbounded complexes, in “Commutative algebra (Grenoble/Lyon, 2001)”, Contemp. Math., vol. 331, Amer. Math. Soc., Providence, RI, 2003, pp. 119–137. https://doi.org/10.1090/conm/331/05906
Foxby, H.-B. and Yassemi, S., Small dimension and intersection theorem (infinite version), private notes, 1999.
Hartshorne, R., Residues and duality, Lecture Notes in Mathematics, no. 20, Springer-Verlag, Berlin-New York, 1966.
Heitmann, R. and Ma, L., Big Cohen-Macaulay algebras and the vanishing conjecture for maps of Tor in mixed characteristic, Algebra Number Theory 12 (2018), no. 7, 1659–1674. https://doi.org/10.2140/ant.2018.12.1659
Hochster, M., Canonical elements in local cohomology modules and the direct summand conjecture, J. Algebra 84 (1983), no. 2, 503–553. https://doi.org/10.1016/0021-8693(83)90092-3
Hochster, M., Homological conjectures, old and new, Illinois J. Math. 51 (2007), no. 1, 151–169.
Iyengar, S., Depth for complexes, and intersection theorems, Math. Z. 230 (1999), no. 3, 545–567. https://doi.org/10.1007/PL00004705
Sharif, T. and Yassemi, S., Special homological dimensions and intersection theorem, Math. Scand. 96 (2005), no. 2, 161–168. https://doi.org/10.7146/math.scand.a-14950
Sharp, R. Y., Cohen-Macaulay properties for balanced big Cohen-Macaulay modules, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 2, 229–238. https://doi.org/10.1017/S0305004100058680
Veliche, O., Construction of modules with finite homological dimensions, J. Algebra 250 (2002), no. 2, 427–449. https://doi.org/10.1006/jabr.2001.9100
Downloads
Published
2020-05-06
How to Cite
Nakamura, T., Takahashi, R., & Yassemi, S. (2020). Little dimension and the improved new intersection theorem. MATHEMATICA SCANDINAVICA, 126(2), 209–220. https://doi.org/10.7146/math.scand.a-119740
Issue
Section
Articles