The block Schur product is a Hadamard product
DOI:
https://doi.org/10.7146/math.scand.a-121069Abstract
Given two $n \times n $ matrices $A = (a_{ij})$ and $B=(b_{ij}) $ with entries in $B(H)$ for some Hilbert space $H$, their block Schur product is the $n \times n$ matrix $ A\square B := (a_{ij}b_{ij})$. Given two continuous functions $f$ and $g$ on the torus with Fourier coefficients $(f_n)$ and $(g_n)$ their convolution product $f \star g$ has Fourier coefficients $(f_n g_n)$. Based on this, the Schur product on scalar matrices is also known as the Hadamard product.
We show that for a C*-algebra $\mathcal{A} $, and a discrete group $G$ with an action $\alpha _g$ of $G$ on $\mathcal{A} $ by *-automorphisms, the reduced crossed product C*-algebra $\mathrm {C}^*_r(\mathcal{A} , \alpha , G)$ possesses a natural generalization of the convolution product, which we suggest should be named the Hadamard product.
We show that this product has a natural Stinespring representation and we lift some known results on block Schur products to this setting, but we also show that the block Schur product is a special case of the Hadamard product in a crossed product algebra.
References
Bédos, E. and Conti, R., Fourier series and twisted $\rm C^\ast $-crossed products, J. Fourier Anal. Appl. 21 (2015), no. 1, 32–75. https://doi.org/10.1007/s00041-014-9360-3
Christensen, E., Commutator inequalities via Schur products, in “Operator algebras and applications, the Abel Symposium 2015”, Abel Symp., vol. 12, Springer, 2017, pp. 133–149.
Christensen, E., On the complete boundedness of the Schur block product, Proc. Amer. Math. Soc. 147 (2019), no. 2, 523–532. https://doi.org/10.1090/proc/14202
Christensen, E., Decompositions of Schur block products, J. Operator Theory (to appear).
Christensen, E. and Sinclair, A. M., Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), no. 1, 151–181. https://doi.org/10.1016/0022-1236(87)90084-X
Hadamard, J., Théorème sur les séries entières, Acta Math. 22 (1899), no. 1, 55–63. https://doi.org/10.1007/BF02417870
Horn, R. A., The Hadamard product, in “Matrix theory and applications (Phoenix, AZ, 1989)”, Proc. Sympos. Appl. Math., vol. 40, Amer. Math. Soc., Providence, RI, 1990, pp. 87–169. https://doi.org/10.1090/psapm/040/1059485
Horn, R. A. and Johnson, C. R., Topics in matrix analysis, Cambridge University Press, Cambridge, 1991. https://doi.org/10.1017/CBO9780511840371
Kadison, R. V. and Ringrose, J. R., Fundamentals of the theory of operator algebras. Vol. II: Advanced theory, Pure and Applied Mathematics, no. 100, Academic Press, Inc., Orlando, FL, 1986. https://doi.org/10.1016/S0079-8169(08)60611-X
Livshits, L., Block-matrix generalizations of infinite-dimensional Schur products and Schur multipliers, Linear and Multilinear Algebra 38 (1994), no. 1-2, 59–78. https://doi.org/10.1080/03081089508818340
Mercer, R., Convergence of Fourier series in discrete crossed products of von Neumann algebras, Proc. Amer. Math. Soc. 94 (1985), no. 2, 254–258. https://doi.org/10.2307/2045386
Pedersen, G. K., $C^*$-algebras and their automorphism groups, second ed., Pure and Applied Mathematics (Amsterdam), Academic Press, London, 2018.
Rørdam, M. and Sierakowski, A., Purely infinite $C^*$-algebras arising from crossed products, Ergodic Theory Dynam. Systems 32 (2012), no. 1, 273–293. https://doi.org/10.1017/S0143385710000829
Schur, J., Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1–28. https://doi.org/10.1515/crll.1911.140.1
Stinespring, W. F., Positive functions on $C^*$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211–216. https://doi.org/10.2307/2032342
Williams, D. P., Crossed products of $C^\ast $-algebras, Mathematical Surveys and Monographs, vol. 134, American Mathematical Society, Providence, RI, 2007. https://doi.org/10.1090/surv/134
Zeller-Meier, G., Produits croisés d'une $C^\ast $-algèbre par un groupe d'automorphismes, J. Math. Pures Appl. (9) 47 (1968), 101–239.