A direct proof that toric rank 2 bundles on projective space split

Authors

  • David Stapleton

DOI:

https://doi.org/10.7146/math.scand.a-121452

Abstract

The point of this paper is to give a short, direct proof that rank 2 toric vector bundles on n-dimensional projective space split once n is at least 3. This result is originally due to Bertin and Elencwajg, and there is also related work by Kaneyama, Klyachko, and Ilten-Süss. The idea is that, after possibly twisting the vector bundle, there is a section which is a complete intersection.

References

Barth, W., Transplanting cohomology classes in complex-projective space, Amer. J. Math. 92 (1970), 951–967. https://doi.org/10.2307/2373404

Bertin, J. and Elencwajg, G., Symétries des fibrés vectoriels sur Pn et nombre d'Euler, Duke Math. J. 49 (1982), no. 4, 807–831.

Hartshorne, R., Varieties of small codimension in projective space, Bull. Amer. Math. Soc. 80 (1974), 1017–1032. https://doi.org/10.1090/S0002-9904-1974-13612-8

Horrocks, G. and Mumford, D., A rank 2 vector bundle on P4 with 15,000 symmetries, Topology 12 (1973), 63–81. https://doi.org/10.1016/0040-9383(73)90022-0

Ilten, N. and Süss, H., Equivariant vector bundles on T-varieties, Transform. Groups 20 (2015), no. 4, 1043–1073. https://doi.org/10.1007/s00031-015-9312-2

Kaneyama, T., Torus-equivariant vector bundles on projective spaces, Nagoya Math. J. 111 (1988), 25–40. https://doi.org/10.1017/S0027763000000982

Klyachko, A. A., Equivariant bundles over toric varieties, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 5, 1001–1039. https://doi.org/10.1070/IM1990v035n02ABEH000707

Published

2020-09-03

How to Cite

Stapleton, D. (2020). A direct proof that toric rank 2 bundles on projective space split. MATHEMATICA SCANDINAVICA, 126(3), 493–496. https://doi.org/10.7146/math.scand.a-121452

Issue

Section

Articles