Invariants of linkage of modules
DOI:
https://doi.org/10.7146/math.scand.a-125992Abstract
Let $(A,\mathfrak{m})$ be a Gorenstein local ring and let $M$, $N$ be two Cohen-Macaulay $A$-modules with $M$ linked to $N$ via a Gorenstein ideal $\mathfrak{q}$. Let $L$ be another finitely generated $A$-module. We show that $\mathrm{Ext}^i_A(L,M) = 0 $ for all $i \gg 0$ if and only if $\mathrm{Tor}^A_i(L,N) = 0$ for all $i \gg 0$. If $D$ is a Cohen-Macaulay module then we show that $\mathrm{Ext}^i_A(M, D) = 0 $ for all $i \gg 0$ if and only if $\mathrm{Ext}^i_A(D^\dagger , N) = 0$ for all $i \gg 0$, where $D^\dagger = \mathrm{Ext}^r_A(D,A)$ and $r = \mathrm{codim}(D)$. As a consequence we get that $\mathrm{Ext}^i_A(M, M) = 0 $ for all $i \gg 0$ if and only if $\mathrm{Ext}^i_A(N, N) = 0$ for all $i \gg 0$. We also show that $\mathrm{End}_A(M)/\mathrm{rad}\,\mathrm{End}_A(M) \cong (\mathrm{End}_A(N)/\mathrm{rad}\,\mathrm{End}_A(N))^{\mathrm{op}}$. We also give a negative answer to a question of Martsinkovsky and Strooker.
References
Auslander, M., and Buchweitz, R-O, The homological theory of maximal Cohen-Macaulay approximations, Colloque en l'honneur de Pierre Samuel (Orsay, 1987). Mém. Soc. Math. France (N.S.) No. 38 (1989), 5–37.
Avramov, L. L., Modules of finite virtual projective dimension, Invent. math textbf 96 (1989), no. 1, 71–101. https://doi.org/10.1007/BF01393971
Avramov, L. L., Infinite free resolutions, Six lectures on commutative algebra (Bellaterra, 1996), 1–118, Progr. Math., 166, Birkhäuser, Basel, 1998.
Avramov, L. L., and Buchweitz, R-O, Support varieties and cohomology over complete intersections, Invent. Math. 142 (2000), no. 2, 285–318. https://doi.org/10.1007/s002220000090
Bruns, W., and Herzog, J., Cohen-Macaulay Rings, revised edition, Cambridge Stud. Adv. Math., vol. 39, Cambridge University Press, Cambridge, (1993).
Decker, W., Greuel, G.-M., Pfister, G., and Schönemann, H., newblock textsc Singular 4-0-2 — A computer algebra system for polynomial computations. newblock http://www.singular.uni-kl.de (2015).
Eisenbud, D., Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. textbf 260 (1980), no. 1, 35–64. https://doi.org/10.2307/1999875
Huneke, C., Linkage and the Koszul homology of ideals, Amer. J. Math. 104 (1982), no. 5, 1043–1062. https://doi.org/10.2307/2374083
Huneke, C., Numerical invariants of liaison classes, Invent. Math. 75 (1984), no. 2, 301–325. https://doi.org/10.1007/BF01388567
Huneke, C., Hyman Bass and ubiquity: Gorenstein rings, Algebra, K-theory, groups, and education (New York, 1997), 55–78, Contemp. Math., 243, Amer. Math. Soc., Providence, RI, 1999, arXiv: math/0209199. https://doi.org/10.1090/conm/243/03686
Martsinkovsky, A., and Strooker, J. R., Linkage of modules, J. Algebra 271 (2004), no. 2, 587–626. https://doi.org/j.jalgebra.2003.07.020
Matsumura, H., Commutative ring theory, Translated from the Japanese by M. Reid. Second edition. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1989.
Peskine, C. and Szpiro, L., Liaison des variétés algébriques. I, Invent. Math. 26 (1974) 271–302. https://doi.org/10.1007/BF01425554