The Dirichlet problem for the complex Hessian operator in the class $\mathcal{N}_m(\Omega,f)$
DOI:
https://doi.org/10.7146/math.scand.a-125994Abstract
Let $\Omega\subset \mathbb{C}^{n}$ be a bounded $m$-hyperconvex domain, where $m$ is an integer such that $1\leq m\leq n$. Let $\mu$ be a positive Borel measure on $\Omega$. We show that if the complex Hessian equation $H_m (u) = \mu$ admits a (weak) subsolution in $\Omega$, then it admits a (weak) solution with a prescribed least maximal $m$-subharmonic majorant in $\Omega$.
References
Åhag, P., A Dirichlet Problem for the complex Monge-Ampère operator in $F(f)$, Michigan Math. J. 55 (2007), no. 1, 123-138. https://doi.org/10.1307/mmj/1177681988
Åhag, P., Cegrell, U., Czyż, R., and Hid êp, P. H., Monge-Ampère measures on pluripolar sets, J. Math. Pures Appl. (9) 92 (2009), no. 6, 613-627. https://doi.org/10.1016/j.matpur.2009.06.001
Åhag, P., Czyż, R., and Hed, L., The geometry of $m$-hyperconvex domains, J. Geom. Anal. 28 (2018), no. 4, 3196–3222 https://doi.org/10.1007/s12220-017-9957-2
Alesker, S., and Verbitsky, M., Quaternionic Monge-Ampère equations and Calabi problem for HKT-manifolds, Israel J. Math. 176 (2010), 109-138. https://doi.org/10.1007/s11856-010-0022-0
Bedford, E., and Taylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), no. 1, 1-44. https://doi.org/10.1007/BF01418826
Błocki, Z., Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 5, 1735-1756.
Cegrell, U., Pluricomplex energy, Acta Math. 180 (1998), no. 2, 187-217. https://doi.org/10.1007/BF02392899
Cegrell, U., A general Dirichlet problem for the complex Monge-Ampère operator, Ann. Polon. Math. 94 (2008), no. 2, 131-147. https://doi.org/10.4064/ap94-2-3
Charabati, M., Modulus of continuity of solutions to complex Hessian equations, Internat. J. Math. 27 (2016), no. 1, 1650003, 24 pp. https://doi.org/10.1142/S0129167X16500038
Dhouib, A., and Elkhadhra, F., $m$-potential theory associated to a positive closed current in the class of $m$-sh functions, Complex Var. Elliptic Equ. 61 (2016), no. 7, 875-901. https://doi.org/10.1080/17476933.2015.1133615
Dinew, S., and Kołodziej, S., A priori estimates for the complex Hessian equations, Anal. PDE 7 (2014), no. 1, 227-244. https://doi.org/10.2140/apde.2014.7.227
El-Gasmi, A.,The Dirichlet problem for the complex Hessian operator in the class $mathcal N_m (H)$, Preprint arXiv:1712.06911.
Guedj, V., and Zeriahi, A., Degenerate complex Monge-Ampère equations, EMS Trends in Mathematics, EMS, Vol. 26, 2017. https://doi.org/10.4171/167
Hung, V. V., Local property of a class of $m$-subharmonic functions, Vietnam J. Math. 44 (2016), no. 3, 603-621. https://doi.org/10.1007/s10013-015-0176-5
Hung, V. V. and Van Phu, N., Hessian measures on $m$-polar sets and applications to the complex Hessian equations, Complex Var. Elliptic Equ. 62 (2017), no. 8, 1135-1164. https://doi.org/10.1080/17476933.2016.1273907
Kołodziej, S,. The range of the complex Monge-Ampère operator II, Indiana Univ. Math. J. 44 (1995), no. 3, 765-782. https://doi.org/10.1512/iumj.1995.44.2007
Li, S.-Y., On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian, Asian J. Math. 8 (2004), no. 1, 87-106. https://doi.org/10.4310/AJM.2004.v8.n1.a8
Lu, C. H., Équations Hessiennes complexes, Ph.D. thesis, Université Paul Sabatier, Toulouse, France (2012), http://thesesups.ups-tlse.fr/1961/.
Lu, C. H., A variational approach to complex Hessian equations in $C^n$, J. Math. Anal. Appl. 431 (2015), no. 1, 228-259. https://doi.org/10.1016/j.jmaa.2015.05.067
Nguyen, N. C., Subsolution theorem for the complex Hessian equation, Univ. Iagel. Acta Math. 50 (2013), 69-88.
Nguyen, V. T., Maximal $m$-subharmonic functions and the Cegrell class $N_m$, Indag. Math. (N.S.) 30 (2019), no. 4, 717-739. https://doi.org/10.1016/j.indag.2019.03.005
Sadullaev, A., and Abdullaev, B., Potential theory in the class of $m$-subharmonic functions, Tr. Mat. Inst. Steklova 279 (2012) 166-192. https://doi.org/10.1134/s0081543812080111
Song, J., and Weinkove, B., On the convergence and singularities of the $J$-flow with applications to the Mabuchi energy, Comm. Pure. Appl. Math. 61 (2008), no. 2, 210-229. https://doi.org/10.1002/cpa.20182