Asymptotic behavior of $j$-multiplicities
DOI:
https://doi.org/10.7146/math.scand.a-126029Abstract
Let $R= \oplus_{n\in \mathbb{N}_0}R_n$ be a Noetherian homogeneous ring with local base ring $(R_0,\mathfrak{m}_0)$. Let $R_+= \oplus_{n\in \mathbb{N}}R_n$ denote the irrelevant ideal of $R$ and let $M=\oplus_{n\in \mathbb{Z}}M_n$ be a finitely generated graded $R$-module. When $\dim(R_0)\leq 2$ and $\mathfrak{q}_0$ is an arbitrary ideal of $R_0$, we show that the $j$-multiplicity of the graded local cohomology module $j_0({\mathfrak{q}_0},H_{R_+}^i(M)_n)$ has a polynomial behavior for all $n\ll0$.
References
Achilles, R., and Manaresi, M., Multiplicity for ideals of maximal analytic spread and intersection theory, J. Math. Kyoto Univ. 33 (1993), no. 4, 1029–1046. https://doi.org/10.1215/kjm/1250519127
Brodmann, M., Fumasoli, S., and Lim, C. S., Low-codimensional associated primes of graded components of local cohomology modules, J. Algebra 275 (2004), no. 2, 867–882. https://doi.org/10.1016/j.jalgebra.2003.12.003
Brodmann, M., Fumasoli, S., and Tajarod, R., Local cohomology over homogeneous rings with one-dimensional local base ring, Proc. Amer. Math. Soc. 131 (2003), no. 10, 2977–2985. https://doi.org/10.1090/S0002-9939-03-07009-6
Brodmann, M., and Hellus, M., Cohomological patterns of coherent sheaves over projective schemes, J. Pure Appl. Algebra 172 (2002), no. 2–3 165–182. https://doi.org/10.1016/S0022-4049(01)00144-X
Brodmann, M., Kurmann, S., and Rohrer, F., An avoidance principle with an application to the asymptotic behaviour of graded local cohomology modules, J. Pure Appl. Algebra 210 (2007), no. 3, 639–645. https://doi.org/10.1016/j.jpaa.2006.11.002
Brodmann, M., and Rohrer, F., Hilbert-Samuel coefficients and postulation numbers of graded components of certain local cohomology modules, Proc. Amer. Math. Soc. 193 (2005), no. 4, 987–993. https://doi.org/10.1090/S0002-9939-04-07779-2
Brodmann, M., Rohrer, F., and Sazeedeh, R., Multiplicities of graded components of local cohomology modules, J. Pure Appl. Algebra 197 (2005), no. 1–3, 249–278. https://doi.org/10.1016/j.jpaa.2004.08.034
Brodmann, M., and Sharp, R., Local cohomology - an algebraic introduction with geometric applications, Cambridge studies in advanced mathematics 60, Cambridge University Press, Cambridge, 1998. https://doi.org/10.1017/CBO9780511629204
Huneke, C., and Swanson, I., Integral closure of ideals, rings, and modules. London Mathematical Society Lecture Note Series, 336. Cambridge University Press, Cambridge, 2006.
Jeffries, J., and Montaño, J., The $j$-multiplicity of monomial ideals, Math. Res. Lett. 20 (2013), no. 4, 729–744. https://doi.org/10.4310/MRL.2013.v20.n4.a9
Kirby, D., Artinian modules and Hilbert polynomials, Quart. J. Math. Oxford Ser. (2) 24 (1973), 47-57. https://doi.org/10.1093/qmath/24.1.47
Nishida, K., and Ulrich, B., Computing $j$-multiplicities, J. Pure Appl. Algebra 214 (2010), no. 12, 2101–2110. https://doi.org/10.1016/j.jpaa.2010.02.008
Polini, C., and Xie, Y., Generalized Hilbert Functions, Comm. Algebra 42 (2014), no. 6, 2411–2427. https://doi.org/10.1080/00927872.2012.756884
Roberts, P., Multiplicities and Chern Classes in Local Algebra, Cambridge Tracts in Mathematics, 133. Cambridge University Press, Cambridge, 1998. https://doi.org/10.1017/CBO9780511529986