The strength for line bundles

Authors

  • Edoardo Ballico
  • Emanuele Ventura

DOI:

https://doi.org/10.7146/math.scand.a-128529

Abstract

We introduce the strength for sections of a line bundle on an algebraic variety. This generalizes the strength of homogeneous polynomials that has been recently introduced to resolve Stillman's conjecture, an important problem in commutative algebra. We establish the first properties of this notion and give some tool to obtain upper bounds on the strength in this framework. Moreover, we show some results on the usual strength such as the reducibility of the set of strength two homogeneous polynomials.

References

Ananyan, T., and Hochster, M., Small subalgebras of polynomial rings and Stillman's conjecture, J. Amer. Math. Soc. 33 (2020), no. 1, 291–309. https://doi.org/10.1090/jams/932

Bik, A., Draisma, J., and Eggermont, R. H., Polynomials and tensors of bounded strength, Commun. Contemp. Math. 21 (2019) no. 7, 1850062, 24 pp. https://doi.org/10.1142/S0219199718500621

Bik, A., and Oneto, A., On the strength of general polynomials, texttt arXiv:2005.08617, 2020.

Derksen, H., Eggermont, R. H., and Snowden, A., Topological noetherianity for cubic polynomials, Algebra Number Theory, 11 (2017), no. 9, 2197–2212. https://doi.org/10.2140/ant.2017.11.2197

Ellenberg, J. S., and Gijswijt, D., On large subsets of $F^n_q$ with no three-term arithmetic progression, Ann. of Math. (2) 185 (2017), no. 1, 339–343.

Erman, D., Sam, S. V., and Snowden, A., Big polynomial rings and Stillman's conjecture, Invent. Math. 218 (2019), no. 2, 413–439. https://doi.org/10.1007/s00222-019-00889-y

Eisenbud, D., Linear sections of determinantal varieties, Amer. Math. J. 110 (1988), no. 3, 541–575. https://doi.org/10.2307/2374622

Green, M., Components of maximal dimension in the Noether-Lefschetz locus, J. Differential Geom. 29 (1989), no. 2, 295–302. http://projecteuclid.org/euclid.jdg/1214442876

Harris, J., and Morrison, D., Moduli of curves, Springer-Verlag, New York, 1998.

Hartshorne, R., and Hirschowitz, A., Smoothing algebraic space curves, Algebraic Geometry, Sitges 1983, 98–131, Lecture Notes in Math. 1124, Springer, Berlin, 1985. https://doi.org/10.1007/BFb0074998

Hartshorne, R., Algebraic Geometry, Springer-Verlag, New York-Heidelberg, 1977.

Kazhdan D., and Ziegler, T., Properties of high rank subvarieties of affine spaces, arXiv:1902.00767, 2019.

Kazhdan, D., and Ziegler, T., On Ranks of Polynomials, Algebr. Represent. Theory 21 (2018), no. 5, 1017–1021. https://doi.org/10.1007/s10468-018-9783-7

Lazarsfeld, R., Positivity in Algebraic Geometry, Vol. I, Springer-Verlag, Berlin, 2004. https://doi.org/10.1007/978-3-642-18808-4

Lazarsfeld, R., Positivity in Algebraic Geometry, Vol. II, Springer-Verlag, Berlin, 2004. https://doi.org/10.1007/978-3-642-18808-4

Lopez, A. F., Noether-Lefschetz theory and the Picard group of projective surfaces, Mem. Amer. Math. Soc. 89 (1991), no. 438. https://doi.org/10.1090/memo/0438

Martin-Deschamps, M., and Perrin, D., Sur la classification des courbes gauches, Astérisque, No. 184-185, (1990).

Naslund, E., Exponential bounds for the Erdös-Ginzburg-Ziv constant, J. Combin. Theory Ser. A 174 (2020), 105185, 19 pp. https://doi.org/10.1016/j.jcta.2019.105185

Sawin, W. F., and Tao, T., Notes on the slice rank of tensors, Notes available at the website https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors/, 2016.

Schwede, K., Generalized divisors and reflexive sheaves, Notes available at the website www.math.psu.edu/schwede/Notes/GeneralizedDivisors.pdf, 2010.

Voisin, C., Composantes de petite codimension du lieu de Noether-Lefschetz, Comment. Math. Helv. 64 (1989), no. 4, 515–526. https://doi.org/10.1007/BF02564692

Xu, G., Subvarieties of general hypersurfaces in projective space, J. Differential Geom. 39 (1994), no. 1, 139–172. http://projecteuclid.org/euclid.jdg/1214454680

Published

2021-11-30

How to Cite

Ballico, E., & Ventura, E. (2021). The strength for line bundles. MATHEMATICA SCANDINAVICA, 127(3). https://doi.org/10.7146/math.scand.a-128529

Issue

Section

Articles