The strength for line bundles
DOI:
https://doi.org/10.7146/math.scand.a-128529Abstract
We introduce the strength for sections of a line bundle on an algebraic variety. This generalizes the strength of homogeneous polynomials that has been recently introduced to resolve Stillman's conjecture, an important problem in commutative algebra. We establish the first properties of this notion and give some tool to obtain upper bounds on the strength in this framework. Moreover, we show some results on the usual strength such as the reducibility of the set of strength two homogeneous polynomials.
References
Ananyan, T., and Hochster, M., Small subalgebras of polynomial rings and Stillman's conjecture, J. Amer. Math. Soc. 33 (2020), no. 1, 291–309. https://doi.org/10.1090/jams/932
Bik, A., Draisma, J., and Eggermont, R. H., Polynomials and tensors of bounded strength, Commun. Contemp. Math. 21 (2019) no. 7, 1850062, 24 pp. https://doi.org/10.1142/S0219199718500621
Bik, A., and Oneto, A., On the strength of general polynomials, texttt arXiv:2005.08617, 2020.
Derksen, H., Eggermont, R. H., and Snowden, A., Topological noetherianity for cubic polynomials, Algebra Number Theory, 11 (2017), no. 9, 2197–2212. https://doi.org/10.2140/ant.2017.11.2197
Ellenberg, J. S., and Gijswijt, D., On large subsets of $F^n_q$ with no three-term arithmetic progression, Ann. of Math. (2) 185 (2017), no. 1, 339–343.
Erman, D., Sam, S. V., and Snowden, A., Big polynomial rings and Stillman's conjecture, Invent. Math. 218 (2019), no. 2, 413–439. https://doi.org/10.1007/s00222-019-00889-y
Eisenbud, D., Linear sections of determinantal varieties, Amer. Math. J. 110 (1988), no. 3, 541–575. https://doi.org/10.2307/2374622
Green, M., Components of maximal dimension in the Noether-Lefschetz locus, J. Differential Geom. 29 (1989), no. 2, 295–302. http://projecteuclid.org/euclid.jdg/1214442876
Harris, J., and Morrison, D., Moduli of curves, Springer-Verlag, New York, 1998.
Hartshorne, R., and Hirschowitz, A., Smoothing algebraic space curves, Algebraic Geometry, Sitges 1983, 98–131, Lecture Notes in Math. 1124, Springer, Berlin, 1985. https://doi.org/10.1007/BFb0074998
Hartshorne, R., Algebraic Geometry, Springer-Verlag, New York-Heidelberg, 1977.
Kazhdan D., and Ziegler, T., Properties of high rank subvarieties of affine spaces, arXiv:1902.00767, 2019.
Kazhdan, D., and Ziegler, T., On Ranks of Polynomials, Algebr. Represent. Theory 21 (2018), no. 5, 1017–1021. https://doi.org/10.1007/s10468-018-9783-7
Lazarsfeld, R., Positivity in Algebraic Geometry, Vol. I, Springer-Verlag, Berlin, 2004. https://doi.org/10.1007/978-3-642-18808-4
Lazarsfeld, R., Positivity in Algebraic Geometry, Vol. II, Springer-Verlag, Berlin, 2004. https://doi.org/10.1007/978-3-642-18808-4
Lopez, A. F., Noether-Lefschetz theory and the Picard group of projective surfaces, Mem. Amer. Math. Soc. 89 (1991), no. 438. https://doi.org/10.1090/memo/0438
Martin-Deschamps, M., and Perrin, D., Sur la classification des courbes gauches, Astérisque, No. 184-185, (1990).
Naslund, E., Exponential bounds for the Erdös-Ginzburg-Ziv constant, J. Combin. Theory Ser. A 174 (2020), 105185, 19 pp. https://doi.org/10.1016/j.jcta.2019.105185
Sawin, W. F., and Tao, T., Notes on the slice rank of tensors, Notes available at the website https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors/, 2016.
Schwede, K., Generalized divisors and reflexive sheaves, Notes available at the website www.math.psu.edu/schwede/Notes/GeneralizedDivisors.pdf, 2010.
Voisin, C., Composantes de petite codimension du lieu de Noether-Lefschetz, Comment. Math. Helv. 64 (1989), no. 4, 515–526. https://doi.org/10.1007/BF02564692
Xu, G., Subvarieties of general hypersurfaces in projective space, J. Differential Geom. 39 (1994), no. 1, 139–172. http://projecteuclid.org/euclid.jdg/1214454680