Generalized John Gromov hyperbolic domains and extensions of maps
DOI:
https://doi.org/10.7146/math.scand.a-128968Abstract
Let $\Omega \subset \mathbb{R}^n$ be a Gromov hyperbolic, $\varphi$-length John domain. We show that there is a uniformly continuous identification between the inner boundary of $\Omega$ and the Gromov boundary endowed with a visual metric, By using this result, we prove the boundary continuity not only for quasiconformal homeomorphisms, but also for more generally rough quasi-isometries between the domains equipped with the quasihyperbolic metrics.
References
Arsenović, M., Manojlović, V., and Näkki, R., Boundary modulus of continuity and quasiconformal mappings, Ann. Acad. Sci. Fenn. Math. 37 (2012), no. 1, 107–118. https://doi.org/10.5186/aasfm.2012.3718
Arsenović, M., Manojlović, V., and Vuorinen, M., Hölder continuity of harmonic quasiconformal mappings, J. Inequal. Appl. 37 (2011), 5 pp. https://doi.org/10.1186/1029-242X-2011-37
Balogh, Z. M., and Buckley, S. M., Geometric characterizations of Gromov hyperbolicity, Invent. Math. 153 (2003), no. 2, 261–301. https://doi.org/10.1007/s00222-003-0287-6
Bonk, M., Heinonen, J., and Koskela, P., Uniformizing Gromov hyperbolic spaces, Astérisque No. 270 (2001), viii+99 pp.
Bonk, M., and Schramm, O., Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), 266–306. https://doi.org/10.1007/s000390050009
Bridson, M. R., and Haefliger, A., Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999. https://doi.org/10.1007/978-3-662-12494-9
Buyalo, S., and Schroeder, V., Elements of Asymptotic Geometry, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007. https://doi.org/10.4171/036
Gehring, F. W., and Hayman, W. K., An inequality in the theory of conformal mapping, J. Math. Pures Appl. 41 (1962), 353–361.
Gehring, F. W., and Martio, O., Lipschitz classes and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 203–219.
Gehring, F. W., and Martio, O., Quasiextremal distance domains and extension of quasiconformal mappings, J. Analyse Math. 45 (1985), 181–206. https://doi.org/10.1007/BF02792549
Gehring, F. W., and Osgood, B. G., Uniform domains and the quasi-hyperbolic metric, J. Analyse Math. 36 (1979), 50–74. https://doi.org/10.1007/BF02798768
Gehring, F. W., and Palka, B. P., Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. https://doi.org/10.1007/BF02786713
Guo, C. Y., Uniform continuity of quasiconformal mappings onto generalized John domains, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 1, 183–202. https://doi.org/10.5186/aasfm.2015.4010
Guo, C. Y., and Koskela, P., Generalized John disks, Cent. Eur. J. Math. 12 (2014), no. 2, 349–361. https://doi.org/10.2478/s11533-013-0344-3
Heinonen, J., Quasiconformal mappings onto John domains, Rev. Math. Iberoamericana 5 (1989), no. 3-4, 97–123. https://doi.org/10.4171/RMI/87
Heinonen, J., The boundary absolute continuity of quasiconformal mappings. II, Rev. Math. Iberoamericana 12 (1996), no. 3, 697–725. https://doi.org/10.4171/RMI/212
Huang, X., and Liu, J., Quasihyperbolic metric and quasisymmetric mappings in metric spaces, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6225–6246. https://doi.org/10.1090/S0002-9947-2015-06240-0
John, F., Rotation and strain, Comm. Pure. Appl. Math. 14 (1961), 391–413. https://doi.org/10.1002/cpa.3160140316
Koskela, P., Onninen, K., and Tyson, J., Quasihyperbolic boundary conditions and capacity: Hölder continuity of quasiconformal mappings, Comment. Math. Helv. 76 (2001), no. 3, 416–435. https://doi.org/10.1007/PL00013214
Lammi, P., Quasihyperbolic boundary condition: compactness of the inner boundary, Illinois J. Math. 55 (2011), no. 3, 1221–1233. http://projecteuclid.org/euclid.ijm/1371474552
Liu, J., Wang, H., and Zhou, Q., The Gehring-Hayman type theorems on complex domains, arXiv:2005.02594.
Martio, O., and Näkki, R., Boundary Hölder continuity and quasiconformal mappings, J. London Math. Soc. (2) 44 (1991), no. 2, 339–350. https://doi.org/10.1112/jlms/s2-44.2.339
Martio, O., and Sarvas, J., Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), no. 2, 383–401. https://doi.org/10.5186/aasfm.1978-79.0413
Näkki, R., and Väisälä, J., John disks, Expo. Math. 9 (1991), no. 1, 3–43.
Väisälä, J., Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229. Springer-Verlag, Berlin-New York, 1971.
Väisälä, J., The free quasiworld. Freely quasiconformal and related maps in Banach spaces, Quasiconformal geometry and dynamics (Lublin, 1996), 55–118, Banach Center Publ., 48, Polish Acad. Sci. Inst. Math., Warsaw, 1999.
Väisälä, J., Gromov hyperbolic spaces, Expo. Math. 23 (2005), no. 3, 187–231. https://doi.org/10.1016/j.exmath.2005.01.010