Product property of global $P$-extremal functions
DOI:
https://doi.org/10.7146/math.scand.a-129007Abstract
In this note, we establish a product property for $P$-extremal functions in the same spirit as the original product formula due to J. Siciak in Ann. Polon. Math., 39 (1981), 175–211. As a consequence, we obtain convexity for the sublevel sets of such extremal functions. Moreover, we also generalize the product property of $P$-extremal functions established by L. Bos and N. Levenberg in Comput. Methods Funct. Theory 18 (2018), 361–388, and later by N. Levenberg and M. Perera, in Contemporary Mathematics 743 (2020), 11–19, in which no restriction on $P$ is needed.
References
Bayraktar, T., Zero distribution of random sparse polynomials, Mich. Math. J., 62 (2017), no. 2, 389–419. https://doi.org/10.1307/mmj/1490639822
Bayraktar, T., Hussung, S., Levenberg, N., and Perera, M., Pluripotential theory and convex bodies: a Siciak-Zaharjuta theorem, Comput. Methods and Funct. Theory 20 (2020), no. 3–4, 571–590. https://doi.org/10.1007/s40315-020-00345-6
Błocki, Z., Equilibrium measure of a product subset of $C^n$, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3595–3599. https://doi.org/10.1090/S0002-9939-00-05552-0
Bos. L., and Levenberg, N., Bernstein-Walsh theory associated to convex bodies and applications to multivariate approximation theory, Comput. Methods Funct. Theory 18 (2018), no. 2, 361–388. https://doi.org/10.1007/s40315-017-0220-4
Dieu. N. G., and Long, T. V., Sublevel sets of certain extremal functions, Math. Scand. 101 (2007), no. 2, 184–194. https://doi.org/10.7146/math.scand.a-15039
Klimek, M., Pluripotential Theory, London Mathematical Society Monographs. New Series, 6. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991.
Lárusson, F., Lassere, P., and Sigurdsson, R., Convexity of sublevel sets of plurisubharmonic extremal functions, Ann. Polon. Math., 68 (1998), no. 3, 267–273. https://doi.org/10.4064/ap-68-3-267-273
Levenberg, N., and Perera, M., A global domination principle for P-pluripotential theory, Contemp. Math. 743, (2020), 11–19. https://doi.org/10.1090/conm/743/14955
Momm, S., An extremal plurisubharmonic function associated to a convex pluricomplex Green function with pole at infinity, J. Reine Angew. Math. 471 (1996), 139–163. https://doi.org/10.1515/crll.1996.471.139
Siciak, J., Extremal plurisubharmonic function in $C^N$, Ann. Polon. Math. 39 (1981), 175–211. https://doi.org/10.4064/ap-39-1-175-211