Trudinger-type inequalities on Musielak-Orlicz-Morrey spaces of an integral form
DOI:
https://doi.org/10.7146/math.scand.a-129245Abstract
Our aim in this paper is to give Trudinger-type inequalities for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces of an integral form over non-doubling metric measure spaces. Our result are new even for the doubling metric measure setting. As a corollary, we give Trudinger-type inequalities on Musielak-Orlicz-Morrey spaces of an integral form in the framework of double phase functions with variable exponents.
References
Adams, D. R., and Hedberg, L. I., Function spaces and potential theory, Springer-Verlag, Berlin, 1996. https://doi.org/10.1007/978-3-662-03282-4
Ahmida, Y., Chlebicka, I., Gwiazda, P., and Youssfi, A., Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces, J. Funct. Anal. 275 (2018), no. 9, 2538–2571. https://doi.org/10.1016/j.jfa.2018.05.015
Alberico, A., and Cianchi, A., Differentiability properties of Orlicz-Sobolev functions, Ark. Mat. 43 (2005), no. 1, 1–28. https://doi.org/10.1007/BF02383608
Baroni, P., Colombo, M., and Mingione, G., Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018) no. 2, Paper No. 62. https://doi.org/10.1007/s00526-018-1332-z
Baroni, P., Colombo, M., and Mingione, G., Nonautonomous functionals, borderline cases and related function classes, St Petersburg Math. J. 27 (2016), no. 3, 347–379. https://doi.org/10.1090/spmj/1392
Baroni, P., Colombo, M., and Mingione, G., Harnack inequalities for double phase functionals, Nonlinear Anal. 121 (2015), 206–222. https://doi.org/10.1016/j.na.2014.11.001
Björn, A., and Björn, J., Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zürich, 2011. https://doi.org/10.4171/099
Brézis, H., and Wainger, S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations 5 (1980), no. 7, 773–789. https://doi.org/10.1080/03605308008820154
Byun, S. S., and Lee, H. S., Calderón-Zygmund estimates for elliptic double phase problems with variable exponents, J. Math. Anal. Appl. 501 (2021), no. 1, Paper No. 124015. https://doi.org/10.1016/j.jmaa.2020.124015
Colasuonno, F., and Squassina, M., Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl. (4) 195 (2016), no. 6, 1917–1959. https://doi.org/10.1007/s10231-015-0542-7
Colombo, M., and Mingione, G., Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), no. 2, 443–496. https://doi.org/10.1007/s00205-014-0785-2
Colombo, M., and Mingione, G., Bounded minimizers of double phase variational integrals, Arch. Rat. Mech. Anal. 218 (2015), no. 1, 219–273. https://doi.org/10.1007/s00205-015-0859-9
Cruz-Uribe, D., and Shukla, P., The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type, Studia Math. 242 (2018), no. 2, 109–139. https://doi.org/10.4064/sm8556-6-2017
De Filippis, C., and Oh, J., Regularity for multi-phase variational problems, J. Differential Equations 267 (2019), no. 3, 1631–1670. https://doi.org/10.1016/j.jde.2019.02.015
Edmunds, D. E., Gurka P., and Opic, B., Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 (1995), no. 2, 151–181.
Edmunds, D. E., Gurka P., and Opic, B., Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Royal Soc. Edinburgh Sect. A 126 (1996), no. 5, 995–1009. https://doi.org/10.1017/S0308210500023210
Edmunds, D. E., and Hurri-Syrjänen, R., Sobolev inequalities of exponential type, Israel J. Math. 123 (2001), 61–92. https://doi.org/10.1007/BF02784120
Edmunds, D. E., and Krbec, M. Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 (1995), no. 1, 119–128.
Futamura, T., and Mizuta, Y., Continuity properties of Riesz potentials for functions in $L^p(cdot )$ of variable exponent, Math. Inequal. Appl. 8 (2005), no. 4, 619–631. https://doi.org/10.7153/mia-08-58
Futamura, T., Mizuta, Y., and Shimomura, T., Sobolev embedding for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 495–522.
Futamura, T., Mizuta, Y., and Shimomura, T., Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent, J. Math. Anal. Appl. 366 (2010), no. 2, 391–417. https://doi.org/10.1016/j.jmaa.2010.01.053
Hajłasz, P., and Koskela, P., Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688. https://doi.org/10.1090/memo/0688
Harjulehto, P., and Hästö, P., Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Mathematics, 2236, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-15100-3
Harjulehto, P., Hästö, P., and Karppinen, A., Local higher integrability of the gradient of a quasiminimizer under generalized Orlicz growth conditions, Nonlinear Anal. 177 (2018), Part B, 543–552. https://doi.org/10.1016/j.na.2017.09.010
Hedberg, L. I., On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505–510. https://doi.org/10.2307/2039187
Hurri-Syrjänen, P., Ohno, T., and Shimomura, T., On Trudinger-type inequalities in Orlicz-Morrey spaces of an integral form, Canad. Math. Bull. 64 (2021), no. 1, 75–90. https://doi.org/10.4153/S0008439520000223
Kairema, A., Two-weight norm inequalities for potential type and maximal operators in a metric space, Publ. Mat. 57 (2013), no. 1, 3–56. https://doi.org/10.5565/PUBLMAT_57113_01
Maeda, F.-Y., Mizuta, Y., Ohno, T., and Shimomura, T., Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137 (2013), no. 1, 76–96. https://doi.org/10.1016/j.bulsci.2012.03.008
Maeda, F.-Y., Mizuta, Y., Ohno, T., and Shimomura, T., Trudinger's inequality and continuity of potentials on Musielak-Orlicz-Morrey spaces, Potential Anal. 38 (2013), no. 2, 515–535. https://doi.org/10.1007/s11118-012-9284-y
Maeda, F.-Y., Mizuta, Y., Ohno, T., and Shimomura, T., Sobolev's inequality for double phase functionals with variable exponents, Forum Math. 31 (2019), no. 2, 517–527. https://doi.org/10.1515/forum-2018-0077
Maeda, F.-Y., Mizuta, Y., Ohno, T., and Shimomura, T., Trudinger's inequality for double phase functionals with variable exponents, Czechoslovak Math. J. 71(146) (2021), no. 2, 511–528. https://doi.org/10.21136/CMJ.2021.0506-19
Mizuta, Y., Nakai, E., Ohno T., and Shimomura, T., An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^1,nu ,beta (G)$, Hiroshima Math. J. 38 (2008), no. 3, 425–436. http://projecteuclid.org/euclid.hmj/1233152779
Mizuta, Y., Nakai, E., Ohno T., and Shimomura, T., Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials, J. Math. Soc. Japan 62 (2010), no. 3, 707–744. http://projecteuclid.org/euclid.jmsj/1280496817
Mizuta, Y., Nakai, E., Ohno T., and Shimomura, T., Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent, Complex Vari. Elliptic Equ. 56, no. 7–9, (2011), 671–695. https://doi.org/10.1080/17476933.2010.504837
Mizuta, Y., Nakai, E., Ohno T., and Shimomura, T., Campanato-Morrey spaces for the double phase functionals, Rev. Mat. Complut. 33 (2020), no. 3, 817–834. https://doi.org/10.1007/s13163-019-00332-z
Mizuta, Y., Nakai, E., Ohno T., and Shimomura, T., Campanato-Morrey spaces for the double phase functionals with variable exponents, Nonlinear Anal. 197 (2020), 111827, 19 pp. https://doi.org/10.1016/j.na.2020.111827
Mizuta, Y., Ohno T., and Shimomura, T., Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space $L^p(cdot )(log L)^q(cdot )$, J. Math. Anal. Appl. 345 (2008), no. 1, 70–85. https://doi.org/10.1016/j.jmaa.2008.03.067
Mizuta, Y., Ohno T., and Shimomura, T., Sobolev's theorem for double phase functionals, Math. Inequal. Appl. 23 (2020), no. 1, 17–33. https://doi.org/10.7153/mia-2020-23-02
Mizuta, Y., Ohno T., and Shimomura, T., Herz-Morrey spaces on the unit ball with variable exponent approaching $1$ and double phase functionals, Nagoya Math. J. 242 (2021), 1–34. https://doi.org/10.1017/nmj.2019.18
Mizuta, Y., and Shimomura, T., Exponential integrability for Riesz potentials of functions in Orlicz classes, Hiroshima Math. J. 28 (1998), no. 2, 355–371. http://projecteuclid.org/euclid.hmj/1206126767
Mizuta, Y., and Shimomura, T., Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan 60 (2008), no. 2, 583–602. http://projecteuclid.org/euclid.jmsj/1212156663
Mizuta, Y., and Shimomura, T., Differentiability and Hölder continuity of Riesz potentials of Orlicz functions, Analysis (Munich) 20 (2000), no. 3, 201–223. https://doi.org/10.1524/anly.2000.20.3.201
Mizuta, Y., and Shimomura, T., Continuity properties of Riesz potentials of Orlicz functions, Tohoku Math. J. (2) 61 (2009), no. 2, 225–240. https://doi.org/10.2748/tmj/1245849445
Mizuta, Y., and Shimomura, T., Sobolev's inequality for Riesz potentials of functions in Morrey spaces of integral form, Math. Nachr. 283 (2010), no. 9, 1336–1352. https://doi.org/10.1002/mana.200710122
Mizuta, Y., and Shimomura, T., Boundary growth of Sobolev functions for double phase functionals, Ann. Acad. Sci. Fenn. Math. 45 (2020), no. 1, 279–292. https://doi.org/10.5186/aasfm.2020.4510
Mizuta, Y., Shimomura, T., and Sobukawa, T., Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces, Osaka J. Math. 46 (2009), no. 1, 255–271. http://projecteuclid.org/euclid.ojm/1235574047
Moser, J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077–1092. https://doi.org/10.1512/iumj.1971.20.20101
Nakai, E., Generalized fractional integrals on Orlicz-Morrey spaces, Banach and function spaces, 323–333, Yokohama Publ., Yokohama, 2004.
Nazarov, F., Treil, S., and Volberg, A., Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 1997, no. 15, 703–726. https://doi.org/10.1155/S1073792897000469
Nazarov, F., Treil, S., and Volberg, A., Weak type estimates and Cotlar inequalities for Calderön-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 1998, no. 9, 463–487. https://doi.org/10.1155/S1073792898000312
Ohno, T., and Shimomura, T., Trudinger's inequality for Riesz potentials of functions in Musielak-Orlicz spaces, Bull. Sci. Math. 138 (2014), no. 2, 225–235. https://doi.org/10.1016/j.bulsci.2013.05.007
Ohno, T., and Shimomura, T., Maximal and Riesz potential operators on Musielak-Orlicz spaces over metric measure spaces, Integral Equations Operator Theory 90 (2018), no. 6, Paper No. 62. https://doi.org/10.1007/s00020-018-2484-0
Ohno, T., and Shimomura, T., Sobolev inequalities for Riesz potentials of functions in $L^p(cdot )$ over nondoubling measure spaces, Bull. Aust. Math. Soc. 93 (2016), no. 1, 128–136. https://doi.org/10.1017/S0004972715001331
Ragusa, M. A., and Tachikawa, A. Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), no. 1, 710–728. https://doi.org/10.1515/anona-2020-0022
Samko, N., Samko, S., and Vakulov, B. G., Weighted Sobolev theorem in Lebesgue spaces with variable exponent, J. Math. Anal. Appl. 335 (2007), no. 1, 560–583. https://doi.org/10.1016/j.jmaa.2007.01.091
Sawano, Y., and Shimomura, T., Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents, Collect. Math. 64 (2013), no. 3, 313–350. https://doi.org/10.1007/s13348-013-0082-7
Sawano, Y., Sobukawa, T., and Tanaka, H., Limiting case of the boundedness of fractional integral operators on non-homogeneous space, J. Inequal. Appl. (2006), Art. ID 92470, 16 pp. https://doi.org/10.1155/JIA/2006/92470
Serrin, J., A remark on Morrey potential, Control methods in PDE-dynamical systems, 307–315, Contemp. Math., 426, Amer. Math. Soc., Providence, RI, 2007. https://doi.org/10.1090/conm/426/08195
Stempak, K., Examples of metric measure spaces related to modified Hardy-Littlewood maximal operators, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 1, 313–314. https://doi.org/10.5186/aasfm.2016.4119
Trudinger, N., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. https://doi.org/10.1512/iumj.1968.17.17028
Zhikov, V. V., Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675–710.