Dimension of images of large level sets
DOI:
https://doi.org/10.7146/math.scand.a-129246Abstract
Let $k$ be a natural number. We consider $k$-times continuously differentiable real-valued functions $f\colon E\to \mathbb{R} $, where $E$ is some interval on the line having positive length. For $0<\alpha <1$ let $I_\alpha (f)$ denote the set of values $y\in \mathbb{R} $ whose preimage $f^{-1}(y)$ has Hausdorff dimension at least $\alpha$. We consider how large can be the Hausdorff dimension of $I_\alpha (f)$, as $f$ ranges over the set of all $k$-times continuously differentiable functions from $E$ into $\mathbb{R} $. We show that the sharp upper bound on $\dim I_\alpha (f)$ is $(1-\alpha )/k$.
References
Allan, G., Kakiko, G., O'Farrell, A. G., and Watson, R. O., Finitely-generated algebras of smooth functions in one dimension, J. Funct. Anal. 158 (1998), no. 2, 458–74. https://doi.org/10.1006/jfan.1998.3250
Balka, R., Buczolich, Z., and Elekes, M., Topological Hausdorff dimension and fibres of generic continuous functions on fractals, Chaos Solitons Fractals 45 (2012), no. 12, 1579–1589. https://doi.org/10.1016/j.chaos.2012.08.005
Balka, R., Inductive topological Hausdorff dimension and fibers of generic continuous functions, Monatsh. Math. 174 (2014), no. 1, 1–28. https://doi.org/10.1007/s00605-014-0621-7
Balka, R., Darji, U. B., and Elekes, M., Bruckner-Garg-type results with respect to Haar null sets in $C[0,1]$, Proc. Edinb. Math. Soc. (2) 60 (2017), no. 1, 17–30. https://doi.org/10.1017/S0013091515000577
Balka, R., Darji, U. B., and Elekes, M., Hausdorff and packing dimension of fibers and graphs of prevalent continuous maps, Adv. Math. 293 (2016) 221–274. https://doi.org/10.1016/j.aim.2016.02.005
Balka, R., Dimensions of fibres of generic continuous maps Monatsh. Math., 184 (2017), no. 3, 339–378. https://doi.org/10.1007/s00605-017-1067-5
Bertoin, J., Hausdorff dimension of the level sets for self-affine functions, Japan J. Appl. Math. 7 (1990), no. 2, 197–202. https://doi.org/10.1007/BF03167841
Beyer, W. A., Hausdorff dimension of level sets of some Rademacher series, Pacific J. Math. 12 (1962) 35–46 http://projecteuclid.org/euclid.pjm/1103036703
Bishop, C. J., and Peres, Y., Fractals in probability and analysis, Cambridge University Press, Cambridge, 2017. https://doi.org/10.1017/9781316460238
Bruckner, A. M., and Garg, K. M., The level structure of a residual set of continuous functions, Trans. Amer. Math. Soc. 232 (1977) 307–321. https://doi.org/10.2307/1998943
Bruckner, A. M., Differentiation of real functions, Lecture Notes in Mathematics, 659. Springer, Berlin, 1978.
Bruckner, A. M., and Petruska, G., Some typical results on bounded Baire $1$ functions, Acta Math. Hungar. 43 (1984), no. 3–4, 325–333. https://doi.org/10.1007/BF01958029
Buckley, S., Space-filling curves and related functions, Bull. Irish Math. Soc. 36 (1996) 9–18.
Dougherty, R., Examples of non-shy sets, Fund. Math. 144 (1994), no. 1, 73–88. https://doi.org/10.4064/fm-144-1-73-88
Garg, K. M., On a residual set of continuous functions, Czechoslovak Math. J. 20(95) (1970) 537–543.
Garnett, J., and O'Farrell, A. G., Sobolev approximation by a sum of subalgebras on the circle, Pacific J. Math. 65 (1976), no. 1, 55–63. http://projecteuclid.org/euclid.pjm/1102866952
Elekes, M., Level sets of differentiable functions of two variables with non-vanishing gradient, J. Math. Anal. Appl. 270 (2002), no. 2, 369–382. https://doi.org/10.1016/S0022-247X(02)00072-0
Falconer, K., Fractal geometry: Mathematical foundations and applications, Third edition. John Wiley & Sons, Ltd., Chichester, 2014.
Federer, H., Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York 1969.
Howroyd, J. D., On dimension and on the existence of sets of finite positive Hausdorff measure, Proc. London Math. Soc. (3) 70 (1995), no. 3,7 581–604. https://doi.org/10.1112/plms/s3-70.3.581
Hunt, B., The Hausdorff dimension of graphs of Weierstrass functions, Proc. Amer. Math. Soc. 126 (1998), no. 3, 791–800. https://doi.org/10.1090/S0002-9939-98-04387-1
Kirchheim, B., Some further typical results on bounded Baire one functions, Acta Math. Hungar. 62(1993), no. 1–2, 119–129. https://doi.org/10.1007/BF01874223
Kirchheim, B., Typical approximately continuous functions are surprisingly thick, Real Analysis Exchange 18 (1992–93), no. 1, 52–62.
Kirchheim, B., Hausdorff measure and level sets of typical continuous mappings in Euclidean spaces, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1763–1777. https://doi.org/10.2307/2154971
Kôno, N., On self-affine functions, Japan J. Appl. Math. 3 (1986), no. 2, 259–269. https://doi.org/10.1007/BF03167101
Kôno, N., On self-affine functions II, Japan J. Appl. Math. 5 (1988), no. 3, 441–454 https://doi.org/10.1007/BF03167911
Mattila, M., Geometry of sets and measures in Euclidean spaces, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511623813
Mauldin, R. D., and Williams, S. C., On the Hausdorff dimension of some graphs, Trans. Amer. Math. Soc. 298 (1986), no. 2, 793–803. https://doi.org/10.2307/2000650
Morse, A. P., The behaviour of a function on its critical set, Ann. of Math. (2) 40 (1939), no. 1, 62–70. https://doi.org/10.2307/1968544
O'Farrell, A. G., $C^infty $ maps can increase $C^infty $ dimension, Invent. Math. 89 (1987), no. 3, 663–668. https://doi.org/10.1007/BF01388989
O'Farrell, A. G., and Roginskaya, M., Conjugacy of real diffeomorphisms. A Survey, Algebra i Analiz, 22 (2010) 3–56 = St. Petersburg Math. J. 22 (2011), no. 1, 1–40. https://doi.org/10.1090/S1061-0022-2010-01130-0
Orponen, T., On the packing measure of slices of self-similar sets, J. Fractal Geom. 2 (2013), no. 4, 389–401. https://doi.org/10.4171/JFG/26
Rogers, C. A., Hausdorff measures, Cambridge University Press, London-New York 1970.
Shen, W., Hausdorff dimension of the graphs of the classical Weierstrass functions, Math. Z. 289 (2018), no-1 2, 223–266. https://doi.org/10.1007/s00209-017-1949-1